Skip to main content
Top
Published in: Metallurgist 9-10/2019

29-01-2019

Increase in Electrolyzer Energy Efficiency with a Self-Baking Anode

Authors: S. G. Shakhrai, A. A. Dekterev, A. P. Skuratov, A. V. Minakov, V. Yu. Bazhin

Published in: Metallurgist | Issue 9-10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A brief analysis is provided for the energy consumption to overcome the resistance of a gas layer generated during electrolysis beneath the aluminum electrolytic cell anode, and basic concepts are provided for reducing the volume of a gas layer beneath the anode. A technical solution is proposed providing separation of the self-baking anode into individual units in a common anode housing that improves significantly not only energy, but also ecological parameters of the aluminum electrolyzer. Mathematical modeling is provided for anode gas behavior under a monoblock and a self-baking anode block. On the basis of analyzing the data obtained it is revealed that the use of a block anode reduces the electrolyzer energy required in a cell by 3–5%, improves cell productivity by 10–12%, and reduces by half the number of burners in used in the electrolysis vessel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference É. A. Yanko, Aluminum Production. Manual for Workshop Masters and Workers of Aluminum Plant Electrolyzers Workshops [in Russian], Izd. St. Petersburg Univ. (2007). É. A. Yanko, Aluminum Production. Manual for Workshop Masters and Workers of Aluminum Plant Electrolyzers Workshops [in Russian], Izd. St. Petersburg Univ. (2007).
2.
go back to reference Z. Yiwen, Z. Jiemin, Ya. Jianhong, et al., “Simulation of anode bubble: volume of fluid method,” Light Metals, 783–788 (2014). Z. Yiwen, Z. Jiemin, Ya. Jianhong, et al., “Simulation of anode bubble: volume of fluid method,” Light Metals, 783–788 (2014).
3.
go back to reference T. M. Hyde and B. J. Welch, “The gas under anodes in aluminium smelting cells, Part I: measuring and modelling bubble resistance under horizontally oriented electrodes,” Light Metals, 333–340 (1997). T. M. Hyde and B. J. Welch, “The gas under anodes in aluminium smelting cells, Part I: measuring and modelling bubble resistance under horizontally oriented electrodes,” Light Metals, 333–340 (1997).
4.
go back to reference M. M. Vetyukov, A. M. Tsyplakov, and S. N. Shkol’nikov, Aluminum and Magnesium Electrometallurgy [in Russian], Metallurgiya, Moscow (1987). M. M. Vetyukov, A. M. Tsyplakov, and S. N. Shkol’nikov, Aluminum and Magnesium Electrometallurgy [in Russian], Metallurgiya, Moscow (1987).
5.
go back to reference E. Yu. Radionov, Yu. V. Bogdanov, A. V. Knizhnik, et al., “Use of preliminarily baked anodes with grooves in aluminum electrolyzers for improving technical and economic indices,” Proc. XIII Internat. Conf. “Aluminum Siberia – 2007”, Krasnoyarsk (2007). E. Yu. Radionov, Yu. V. Bogdanov, A. V. Knizhnik, et al., “Use of preliminarily baked anodes with grooves in aluminum electrolyzers for improving technical and economic indices,” Proc. XIII Internat. Conf. “Aluminum Siberia – 2007”, Krasnoyarsk (2007).
6.
go back to reference V. Kh. Mann, Buzunov, N. N. Pitertsev, et al., “Reduction in electrical energy consumption during manufacture of aluminum in existing electrolyzer housings of OK RUSAL Plants,” Proc. Internat. Conf. “Iskoba” and XIX Internat. Conf. “Aluminum Siberia”, Krasnoyarsk (2013). V. Kh. Mann, Buzunov, N. N. Pitertsev, et al., “Reduction in electrical energy consumption during manufacture of aluminum in existing electrolyzer housings of OK RUSAL Plants,” Proc. Internat. Conf. “Iskoba” and XIX Internat. Conf. “Aluminum Siberia”, Krasnoyarsk (2013).
7.
go back to reference S. Si, Improvement of Electrolyzer Productivity and Development of Energy Saving Technology in China, Proc. IV Internat. Conf. “Nonferrous metals,” Krasnoyarsk (2012). S. Si, Improvement of Electrolyzer Productivity and Development of Energy Saving Technology in China, Proc. IV Internat. Conf.Nonferrous metals,” Krasnoyarsk (2012).
8.
go back to reference L. Xiaojun, Sh. Yajing, L. Jie, et al., “Characterization on bubble behavior in aluminum reduction cells,” Light Metals, 347–352 (2016). L. Xiaojun, Sh. Yajing, L. Jie, et al., “Characterization on bubble behavior in aluminum reduction cells,” Light Metals, 347–352 (2016).
9.
go back to reference V. N. Ryaguzov, Inventor’s Cert. 313897 (USSR) USSRР, С25С3/22, С25С3/12, Method for separating gases from beneath an aluminum electrolyzer self-baking anode hearth, No. 1360714/22-1; Claim 09.10.1969; Publ. 09.07.1971. Bull. No. 27. V. N. Ryaguzov, Inventor’s Cert. 313897 (USSR) USSRР, С25С3/22, С25С3/12, Method for separating gases from beneath an aluminum electrolyzer self-baking anode hearth, No. 1360714/22-1; Claim 09.10.1969; Publ. 09.07.1971. Bull. No. 27.
10.
go back to reference P. S. Saakyan and M. M. Anababyan, Inventor’s Cert. 124627 USSR, С25С3/14, Unit for continuous and semi-continuous supply of alumina to electrolyte, No. 624616/22; Claim 04.08.1959; Publ. In Bull. No. 23 (1959). P. S. Saakyan and M. M. Anababyan, Inventor’s Cert. 124627 USSR, С25С3/14, Unit for continuous and semi-continuous supply of alumina to electrolyte, No. 624616/22; Claim 04.08.1959; Publ. In Bull. No. 23 (1959).
11.
go back to reference S. G. Shakhrai, P. V. Polyakov, A. V. Belyanin, et al., RF Patent 2542180 РФ, МПК С25С3/06. Device for extracting gases from beneath a self-baking anode, Claimant and patent holder Federal and State Autonomic Education Establishment for Higher Professional Education “Siberian Federal University” No. 2013151258/02; Claim 11.18.2013; Bubl. 02.20.2015; Bull. No. 5. S. G. Shakhrai, P. V. Polyakov, A. V. Belyanin, et al., RF Patent 2542180 РФ, МПК С25С3/06. Device for extracting gases from beneath a self-baking anode, Claimant and patent holder Federal and State Autonomic Education Establishment for Higher Professional Education “Siberian Federal University” No. 2013151258/02; Claim 11.18.2013; Bubl. 02.20.2015; Bull. No. 5.
12.
go back to reference Knut Arne Peulsen, RF Patent 2121014, МПК6 С25С3/06, Electrolyzer with self-baking anode, Claimant and Petent Holder Norsk Hydro A. S., No. 95100760/02; Claim 01.06.1995; Publ. 10.27.1998. Knut Arne Peulsen, RF Patent 2121014, МПК6 С25С3/06, Electrolyzer with self-baking anode, Claimant and Petent Holder Norsk Hydro A. S., No. 95100760/02; Claim 01.06.1995; Publ. 10.27.1998.
13.
go back to reference A. I. Begunov, RF Patent 2186881, МПК7 С25С3/12, Electrolyzer for obtaining aluminum with side current supply, Claimant and Patent Holder A. I. Begunov, No. 2000128961/02; Claim 11.20.00; Publ. 08.10.02. A. I. Begunov, RF Patent 2186881, МПК7 С25С3/12, Electrolyzer for obtaining aluminum with side current supply, Claimant and Patent Holder A. I. Begunov, No. 2000128961/02; Claim 11.20.00; Publ. 08.10.02.
14.
go back to reference A. I. Begunov, RF Patent 2187581, МПК7 С25С3/06, Electrolyzer for obtaining aluminum, Claimant and Patent Holder A. I. Begunov, No. 2000120072/02; Claim 07.27.00; Publ. 08.20.02. A. I. Begunov, RF Patent 2187581, МПК7 С25С3/06, Electrolyzer for obtaining aluminum, Claimant and Patent Holder A. I. Begunov, No. 2000120072/02; Claim 07.27.00; Publ. 08.20.02.
15.
go back to reference Alton T. Tabereaux and Xiangwen Wang, “In-situ formation of slots in Søderberg anodes,” Light Metals, 815–820 (2015). Alton T. Tabereaux and Xiangwen Wang, “In-situ formation of slots in Søderberg anodes,” Light Metals, 815–820 (2015).
16.
go back to reference S. G. Shakhrai, A. A. Dekterev, and A. P. Skuratov, “Electrolyzer for obtaining aluminum,” Claim for RF patent No. 2017123473 of 07.03.2017. S. G. Shakhrai, A. A. Dekterev, and A. P. Skuratov, “Electrolyzer for obtaining aluminum,” Claim for RF patent No. 2017123473 of 07.03.2017.
17.
go back to reference A. V. Minakov, “Numerical algorithm for moving-boundary fluid dynamics problems and its testing,” Comput. Math. Math. Phys., 54, 1560–1570 (2014).CrossRef A. V. Minakov, “Numerical algorithm for moving-boundary fluid dynamics problems and its testing,” Comput. Math. Math. Phys., 54, 1560–1570 (2014).CrossRef
18.
go back to reference A. V. Minakov, M. V. Pervukhin, D. V. Platonov, and M. Y. Khatsayuk, “Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics,” Comput. Math. Math. Phys., 55, No. 12, 2066–2079 (2015).CrossRef A. V. Minakov, M. V. Pervukhin, D. V. Platonov, and M. Y. Khatsayuk, “Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics,” Comput. Math. Math. Phys., 55, No. 12, 2066–2079 (2015).CrossRef
19.
go back to reference Z. Yiwen, Z. Jiemin, Y. Jianhong, L. Wangxing, and C. Shouhui, “Simulation of anode bubble: volume of fluid method,” Light Metals, 783–788 (2014). Z. Yiwen, Z. Jiemin, Y. Jianhong, L. Wangxing, and C. Shouhui, “Simulation of anode bubble: volume of fluid method,” Light Metals, 783–788 (2014).
20.
go back to reference Meijia Sun, Baokuan Li, Linmin Li, et al, “Anode on gas bubble behavior in aluminum reduction cell,” Metallurgical and Materials Trans, B256–264 (2017). Meijia Sun, Baokuan Li, Linmin Li, et al, “Anode on gas bubble behavior in aluminum reduction cell,” Metallurgical and Materials Trans, B256–264 (2017).
21.
go back to reference J. O. Hinze, Turbulence, McGraw-Hill Publishing Co., New York (1975). J. O. Hinze, Turbulence, McGraw-Hill Publishing Co., New York (1975).
22.
go back to reference F. R. Menter, “Two equation eddy viscosity turbulence models for engineering applications,” AIAA J., 32, No. 8, 1598–1605 (1994).CrossRef F. R. Menter, “Two equation eddy viscosity turbulence models for engineering applications,” AIAA J., 32, No. 8, 1598–1605 (1994).CrossRef
23.
go back to reference F. R. Menter, “Review of the SST turbulence model experience from an industrial perspective,” Int. J. Comput. Fluid Dynamics, 23, No. 4 (2009). F. R. Menter, “Review of the SST turbulence model experience from an industrial perspective,” Int. J. Comput. Fluid Dynamics, 23, No. 4 (2009).
Metadata
Title
Increase in Electrolyzer Energy Efficiency with a Self-Baking Anode
Authors
S. G. Shakhrai
A. A. Dekterev
A. P. Skuratov
A. V. Minakov
V. Yu. Bazhin
Publication date
29-01-2019
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2019
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-019-00736-8

Other articles of this Issue 9-10/2019

Metallurgist 9-10/2019 Go to the issue

Premium Partners