Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-12-2020 | Original Article | Issue 1/2020

Social Network Analysis and Mining 1/2020

Influence modeling of opinion switching by Twitter users in public shaming events

Journal:
Social Network Analysis and Mining > Issue 1/2020
Authors:
Rajesh Basak, Soumya K. Ghosh, Shamik Sural
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Public shaming is mass criticism of someone for perceived violation of an established social norm. These events are ever increasing in number and scope on online social media platforms. An individual instance of shaming is, as a matter of fact, an expression of opinion regarding the target or victim of the event. Public shaming events are more engaging and often evoke stronger opinions from users than word of mouth spreading of information. This work models polarity of a user’s opinion as a function of several factors, such as his/her recently held opinions, received opinions and the environment, in online public shaming events on Twitter. Specifically, we investigate the opinion change process of Twitter users by highlighting the influence of responsible factors. A semi-supervised representation learning model is used to get opinion vectors from tweets. Next, an opinion prediction model based on the user’s past opinions, received opinions and environment is designed. We show that opinion changes can be attributed to factors in varying proportions depending on the direction of the change. Thus, a strategy to stop a shaming event by inducing opinion changes in the participants needs to take into account the direction of the change. Efficacy of possible counter measures to shaming is analyzed based on our findings.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2020

Social Network Analysis and Mining 1/2020 Go to the issue

Premium Partner

    Image Credits