Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2017

26-04-2017

Influence of Al2O3 Nanoparticles on Microstructure and Strengthening Mechanism of Al-Based Nanocomposites Produced via Spark Plasma Sintering

Authors: B. Sadeghi, M. Shamanian, F. Ashrafizadeh, P. Cavaliere, A. Rizzo

Published in: Journal of Materials Engineering and Performance | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spark plasma sintering (SPS) has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the materials’ properties are strongly related to the reinforcement types and percentages as well as to the processing parameters employed during synthesis. The present paper examines the effect of 2 wt.% of Al2O3 nanoparticles on mechanical and microstructural behaviors of Al-based metal matrix composites produced via SPS. The composite mechanical properties were evaluated through micro-, nanoindentation and tensile tests. The microstructural evolution was studied through scanning electron microscopy observations. It was found that the addition of nanoparticles produces the reduction of materials porosity and the improvement of mechanical properties in SPSed materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.K. Koli, G. Agnihotri, and R. Purohit, A Review on Properties, Behaviour and Processing Methods for Al-Nano Al2O3 Composites, Procedia Mater. Sci., 2014, 6, p 567–589CrossRef D.K. Koli, G. Agnihotri, and R. Purohit, A Review on Properties, Behaviour and Processing Methods for Al-Nano Al2O3 Composites, Procedia Mater. Sci., 2014, 6, p 567–589CrossRef
2.
go back to reference M.T. Khorshid, S.J. Jahromi, and M. Moshksar, Mechanical Properties of Tri-Modal Al Matrix Composites Reinforced by Nano-and Submicron-Sized Al2O3 Particulates Developed by Wet Attrition Milling and Hot Extrusion, Mater. Des., 2010, 31(8), p 3880–3884CrossRef M.T. Khorshid, S.J. Jahromi, and M. Moshksar, Mechanical Properties of Tri-Modal Al Matrix Composites Reinforced by Nano-and Submicron-Sized Al2O3 Particulates Developed by Wet Attrition Milling and Hot Extrusion, Mater. Des., 2010, 31(8), p 3880–3884CrossRef
3.
go back to reference Z.R. Hesabi, A. Simchi, and S.M.S. Reihani, Structural Evolution During Mechanical Milling of Nanometric and Micrometric Al2O3 Reinforced Al Matrix Composites, Mater. Sci. Eng, 2006, A428(1–2), p 159–168CrossRef Z.R. Hesabi, A. Simchi, and S.M.S. Reihani, Structural Evolution During Mechanical Milling of Nanometric and Micrometric Al2O3 Reinforced Al Matrix Composites, Mater. Sci. Eng, 2006, A428(1–2), p 159–168CrossRef
4.
go back to reference R. Casati, F. Bonollo, D. Dellasega, A. Fabrizi, G. Timelli, A. Tuissi, and M. Vedani, Ex Situ Al-Al2O3 Ultrafine Grained Nanocomposites Produced Via Powder Metallurgy, J. Alloys Compd., 2014, 615, p S386–S388CrossRef R. Casati, F. Bonollo, D. Dellasega, A. Fabrizi, G. Timelli, A. Tuissi, and M. Vedani, Ex Situ Al-Al2O3 Ultrafine Grained Nanocomposites Produced Via Powder Metallurgy, J. Alloys Compd., 2014, 615, p S386–S388CrossRef
5.
go back to reference S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9(8), p 639–652CrossRef S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9(8), p 639–652CrossRef
6.
go back to reference Y.-C. Kang and S.L.-I. Chan, Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites, Mater. Chem. Phys., 2004, 85(2–3), p 438–443CrossRef Y.-C. Kang and S.L.-I. Chan, Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites, Mater. Chem. Phys., 2004, 85(2–3), p 438–443CrossRef
7.
go back to reference G. Sweet, M. Brochu, R. Hexemer, I. Donaldson, and D. Bishop, Consolidation of Aluminum-Based Metal Matrix Composites Via Spark Plasma Sintering, Mater. Sci. Eng., A, 2015, 648, p 123–133CrossRef G. Sweet, M. Brochu, R. Hexemer, I. Donaldson, and D. Bishop, Consolidation of Aluminum-Based Metal Matrix Composites Via Spark Plasma Sintering, Mater. Sci. Eng., A, 2015, 648, p 123–133CrossRef
8.
go back to reference N. Al-Aqeeli, G. Mendoza-Suarez, C. Suryanarayana, and R. Drew, Development of New Al-Based Nanocomposites by Mechanical Alloying, Mater. Sci. Eng., 2008, A480(1), p 392–396CrossRef N. Al-Aqeeli, G. Mendoza-Suarez, C. Suryanarayana, and R. Drew, Development of New Al-Based Nanocomposites by Mechanical Alloying, Mater. Sci. Eng., 2008, A480(1), p 392–396CrossRef
9.
go back to reference C. Suryanarayana, Synthesis of Nanocomposites by Mechanical Alloying, J. Alloys Compd., 2011, 509, p S229–S234CrossRef C. Suryanarayana, Synthesis of Nanocomposites by Mechanical Alloying, J. Alloys Compd., 2011, 509, p S229–S234CrossRef
10.
go back to reference S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng., 2000, R29(3), p 49–113CrossRef S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng., 2000, R29(3), p 49–113CrossRef
11.
go back to reference Y. Peng, M. Zhi, and S.C. Tjong, Structure, Thermal and Mechanical Properties of in Situ Al-Based Metal Matrix Composite Reinforced With Al2O3 and TiC Submicron Particles, Mater. Chem. Phys., 2005, 93(1), p 109–116CrossRef Y. Peng, M. Zhi, and S.C. Tjong, Structure, Thermal and Mechanical Properties of in Situ Al-Based Metal Matrix Composite Reinforced With Al2O3 and TiC Submicron Particles, Mater. Chem. Phys., 2005, 93(1), p 109–116CrossRef
12.
go back to reference R. German, Powder Metallurgy, 2nd ed., Wiley, New York, 1994 R. German, Powder Metallurgy, 2nd ed., Wiley, New York, 1994
13.
go back to reference F.A. Khalid, O. Beffort, U.E. Klotz, B.A. Keller, P. Gasser, and S. Vaucher, Study of Microstructure and Interfaces in an Aluminium-C60 Composite Material, Acta Mater., 2003, 51(15), p 4575–4582CrossRef F.A. Khalid, O. Beffort, U.E. Klotz, B.A. Keller, P. Gasser, and S. Vaucher, Study of Microstructure and Interfaces in an Aluminium-C60 Composite Material, Acta Mater., 2003, 51(15), p 4575–4582CrossRef
14.
go back to reference K. Dash, D. Chaira, and B.C. Ray, Synthesis and Characterization of Aluminium-Alumina Micro- and Nano-Composites by Spark Plasma Sintering, Mater. Res. Bull., 2013, 48, p 2535–2542CrossRef K. Dash, D. Chaira, and B.C. Ray, Synthesis and Characterization of Aluminium-Alumina Micro- and Nano-Composites by Spark Plasma Sintering, Mater. Res. Bull., 2013, 48, p 2535–2542CrossRef
15.
go back to reference E. Ghasali, M. Alizadeh, and T. Ebadzadeh, Mechanical and Microstructure Comparison Between Microwave and Spark Plasma Sintering of Al-B4C Composite, J. Alloys Compd., 2016, 655, p 93–98CrossRef E. Ghasali, M. Alizadeh, and T. Ebadzadeh, Mechanical and Microstructure Comparison Between Microwave and Spark Plasma Sintering of Al-B4C Composite, J. Alloys Compd., 2016, 655, p 93–98CrossRef
16.
go back to reference E. Ghasali, A. Pakseresht, A. Rahbari, H. Eslami-shahed, M. Alizadeh, and T. Ebadzadeh, Mechanical Properties and Microstructure Characterization of Spark Plasma and Conventional Sintering of AleSiCeTiC Composites, J. Alloys Compd., 2016, 666, p 366–371CrossRef E. Ghasali, A. Pakseresht, A. Rahbari, H. Eslami-shahed, M. Alizadeh, and T. Ebadzadeh, Mechanical Properties and Microstructure Characterization of Spark Plasma and Conventional Sintering of AleSiCeTiC Composites, J. Alloys Compd., 2016, 666, p 366–371CrossRef
17.
go back to reference C. Wolff, S. Mercier, H. Couque, and A. Molinari, Modeling of Conventional Hot Compaction and Spark Plasma Sintering based on Modified Micromechanical Models of Porous Materials, Mech. Mater., 2012, 49, p 72–91CrossRef C. Wolff, S. Mercier, H. Couque, and A. Molinari, Modeling of Conventional Hot Compaction and Spark Plasma Sintering based on Modified Micromechanical Models of Porous Materials, Mech. Mater., 2012, 49, p 72–91CrossRef
18.
go back to reference Z.-F. Liu, Z.-H. Zhang, J.-F. Lu, A.V. Korznikov, E. Korznikova, and F.-C. Wang, Effect of Sintering Temperature on Microstructures and Mechanical Properties of Spark Plasma Sintered Nanocrystalline Aluminum, Mater. Des., 2014, 64, p 625–630CrossRef Z.-F. Liu, Z.-H. Zhang, J.-F. Lu, A.V. Korznikov, E. Korznikova, and F.-C. Wang, Effect of Sintering Temperature on Microstructures and Mechanical Properties of Spark Plasma Sintered Nanocrystalline Aluminum, Mater. Des., 2014, 64, p 625–630CrossRef
19.
go back to reference Z.A. Munir, V. Dat, and A. Quach, Grain-Boundary Enthalpies of Cubic Yttria-Stabilized Zirconia, J. Am. Ceram. Soc., 2011, 94(7), p 1–19CrossRef Z.A. Munir, V. Dat, and A. Quach, Grain-Boundary Enthalpies of Cubic Yttria-Stabilized Zirconia, J. Am. Ceram. Soc., 2011, 94(7), p 1–19CrossRef
20.
go back to reference K.L. Firesteina, S. Corthay, A.E. Steinman, A.T. Matveev, A.M. Kovalskii, I.V. Sukhorukova, D. Golberg, and D.V. Shtansky, High-Strength Aluminum-Based Composites Reinforced with BN, AlB2 and AlN Particles Fabricated Via Reactive Spark Plasma Sintering of Al-BN Powder Mixtures, Mater. Sci. Eng., A, 2017, 681, p 1–9CrossRef K.L. Firesteina, S. Corthay, A.E. Steinman, A.T. Matveev, A.M. Kovalskii, I.V. Sukhorukova, D. Golberg, and D.V. Shtansky, High-Strength Aluminum-Based Composites Reinforced with BN, AlB2 and AlN Particles Fabricated Via Reactive Spark Plasma Sintering of Al-BN Powder Mixtures, Mater. Sci. Eng., A, 2017, 681, p 1–9CrossRef
21.
go back to reference N.K. Babu, K. Kallip, M. Leparoux, K.A. AlOgab, X. Maeder, and Y.A. Rojas, Dasilva, Influence of Microstructure and Strengthening Mechanism of AlMg5-Al2O3 Nanocomposites Prepared Via Spark Plasma Sintering, Mater. Des., 2016, 95, p 534–544CrossRef N.K. Babu, K. Kallip, M. Leparoux, K.A. AlOgab, X. Maeder, and Y.A. Rojas, Dasilva, Influence of Microstructure and Strengthening Mechanism of AlMg5-Al2O3 Nanocomposites Prepared Via Spark Plasma Sintering, Mater. Des., 2016, 95, p 534–544CrossRef
22.
go back to reference Z. Tan, L. Wang, Y. Xue, P. Zhang, T. Cao, and X. Cheng, High-Entropy Alloy Particle Reinforced Al-Based Amorphous Alloy Composite with Ultrahigh Strength Prepared by Spark Plasma Sintering, Mater. Des., 2016, 109, p 219–226CrossRef Z. Tan, L. Wang, Y. Xue, P. Zhang, T. Cao, and X. Cheng, High-Entropy Alloy Particle Reinforced Al-Based Amorphous Alloy Composite with Ultrahigh Strength Prepared by Spark Plasma Sintering, Mater. Des., 2016, 109, p 219–226CrossRef
23.
go back to reference S. Mula, K. Mondal, S. Ghosh, and S.K. Pabi, Structure and Mechanical Properties of Al-Ni-Ti Amorphous Powder Consolidated by Pressure-Less, Pressure-Assisted and Spark Plasma Sintering, Mater. Sci. Eng., A, 2010, 527, p 3757–3763CrossRef S. Mula, K. Mondal, S. Ghosh, and S.K. Pabi, Structure and Mechanical Properties of Al-Ni-Ti Amorphous Powder Consolidated by Pressure-Less, Pressure-Assisted and Spark Plasma Sintering, Mater. Sci. Eng., A, 2010, 527, p 3757–3763CrossRef
24.
go back to reference J. Zhanga, H. Shi, M. Cai, L. Liu, and P. Zhai, The Dynamic Properties of SiCp/Al Composites Fabricated by Spark Plasma Sintering with Powders Prepared by Mechanical Alloying Process, Mater. Sci. Eng., A, 2009, 527, p 218–224CrossRef J. Zhanga, H. Shi, M. Cai, L. Liu, and P. Zhai, The Dynamic Properties of SiCp/Al Composites Fabricated by Spark Plasma Sintering with Powders Prepared by Mechanical Alloying Process, Mater. Sci. Eng., A, 2009, 527, p 218–224CrossRef
25.
go back to reference G.A. Sweet, M. Brochu, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop, Consolidation of Aluminum-Based Metal Matrix Composites Via Spark Plasma Sintering, Mater. Sci. Eng., 2015, A648, p 123–133CrossRef G.A. Sweet, M. Brochu, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop, Consolidation of Aluminum-Based Metal Matrix Composites Via Spark Plasma Sintering, Mater. Sci. Eng., 2015, A648, p 123–133CrossRef
26.
go back to reference W. Daoush, A. Francis, Y. Lin, and R. German, An Exploratory Investigation on the In Situ Synthesis of SiC/AlN/Al Composites by Spark Plasma Sintering, J. Alloys Compd., 2015, 622, p 458–462CrossRef W. Daoush, A. Francis, Y. Lin, and R. German, An Exploratory Investigation on the In Situ Synthesis of SiC/AlN/Al Composites by Spark Plasma Sintering, J. Alloys Compd., 2015, 622, p 458–462CrossRef
27.
go back to reference Z. Sadeghian, B. Lotfi, M.H. Enayati, and P. Beiss, Microstructural and Mechanical Evaluation of Al-TiB2 Nanostructured Composite Fabricated by Mechanical Alloying, J. Alloys Compd., 2011, 509, p 7758–7763CrossRef Z. Sadeghian, B. Lotfi, M.H. Enayati, and P. Beiss, Microstructural and Mechanical Evaluation of Al-TiB2 Nanostructured Composite Fabricated by Mechanical Alloying, J. Alloys Compd., 2011, 509, p 7758–7763CrossRef
28.
go back to reference K. Mizuuchi, K. Inoue, Y. Agari, T. Nagaoka, M. Sugioka, M. Tanaka, T. Takeuchi, J. Tani, M. Kawahara, Y. Makino, and M. Ito, Processing and Thermal Properties of Al/AlN Composites in Continuous Solid-Liquid Co-Existent State by Spark Plasma Sintering, Compos. B, 2012, 43, p 1557–1563CrossRef K. Mizuuchi, K. Inoue, Y. Agari, T. Nagaoka, M. Sugioka, M. Tanaka, T. Takeuchi, J. Tani, M. Kawahara, Y. Makino, and M. Ito, Processing and Thermal Properties of Al/AlN Composites in Continuous Solid-Liquid Co-Existent State by Spark Plasma Sintering, Compos. B, 2012, 43, p 1557–1563CrossRef
29.
go back to reference M.O. Durowoju, E.R. Sadiku, S. Diouf, M.B. Shongwe, and P.A. Olubambi, Spark Plasma Sintering of Graphite-Aluminum Powder Reinforced with SiC/Si Particles, Powder Technol., 2015, 284, p 504–513CrossRef M.O. Durowoju, E.R. Sadiku, S. Diouf, M.B. Shongwe, and P.A. Olubambi, Spark Plasma Sintering of Graphite-Aluminum Powder Reinforced with SiC/Si Particles, Powder Technol., 2015, 284, p 504–513CrossRef
30.
go back to reference S. Diouf and A. Molinari, Densification Mechanisms in Spark Plasma Sintering: Effect of Particle Size and Pressure, Powder Technol., 2012, 221, p 220–227CrossRef S. Diouf and A. Molinari, Densification Mechanisms in Spark Plasma Sintering: Effect of Particle Size and Pressure, Powder Technol., 2012, 221, p 220–227CrossRef
31.
go back to reference S. Devaraj, S. Sankaran, and R. Kumar, Influence of Spark Plasma Sintering Temperature on the Densification, Microstructure and Mechanical Properties of Al-4.5wt.% Cu Alloy, Acta Metall. Sin., 2013, 26(6), p 761–771CrossRef S. Devaraj, S. Sankaran, and R. Kumar, Influence of Spark Plasma Sintering Temperature on the Densification, Microstructure and Mechanical Properties of Al-4.5wt.% Cu Alloy, Acta Metall. Sin., 2013, 26(6), p 761–771CrossRef
32.
go back to reference S. Decker, S. Martin, and L. Krüger, Influence of Powder Particle Size on the Compaction Behavior and Mechanical Properties of a High-Alloy Austenitic CrMnNi TRIP Steel During Spark Plasma Sintering, Metall. Mater. Trans., 2016, A47(1), p 170–177CrossRef S. Decker, S. Martin, and L. Krüger, Influence of Powder Particle Size on the Compaction Behavior and Mechanical Properties of a High-Alloy Austenitic CrMnNi TRIP Steel During Spark Plasma Sintering, Metall. Mater. Trans., 2016, A47(1), p 170–177CrossRef
33.
go back to reference E.A. Olevsky and L. Froyen, Impact of thermal diffusion on densification during SPS, J. Amer. Ceram. Soc., 2009, 92(s1). E.A. Olevsky and L. Froyen, Impact of thermal diffusion on densification during SPS, J. Amer. Ceram. Soc., 2009, 92(s1).
34.
go back to reference N. Saheb, M.S. Khan, and A.S. Hakeem, Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al2O3 Nanocomposites, J. Nanomater., 2015, 16(1), p 377 N. Saheb, M.S. Khan, and A.S. Hakeem, Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al2O3 Nanocomposites, J. Nanomater., 2015, 16(1), p 377
35.
go back to reference J.J. Grácio, C.R. Picu, G. Vincze, N. Mathew, T. Schubert, A. Lopes, and C. Buchheim, Mechanical Behavior of Al-SiC Nanocomposites Produced by Ball Milling and Spark Plasma Sintering, Metall. Mater. Trans., 2013, A44(11), p 5259–5269CrossRef J.J. Grácio, C.R. Picu, G. Vincze, N. Mathew, T. Schubert, A. Lopes, and C. Buchheim, Mechanical Behavior of Al-SiC Nanocomposites Produced by Ball Milling and Spark Plasma Sintering, Metall. Mater. Trans., 2013, A44(11), p 5259–5269CrossRef
36.
go back to reference J. Garay, Current-Activated, Pressure-Assisted Densification Of Materials, Annu. Rev. Mater. Res., 2010, 40, p 445–468CrossRef J. Garay, Current-Activated, Pressure-Assisted Densification Of Materials, Annu. Rev. Mater. Res., 2010, 40, p 445–468CrossRef
38.
go back to reference F. He, Q. Han, and M.J. Jackson, Nanoparticulate Reinforced Metal Matrix Nanocomposites—A Review, Int. J. Nanoparticles, 2008, 1(4), p 301–309CrossRef F. He, Q. Han, and M.J. Jackson, Nanoparticulate Reinforced Metal Matrix Nanocomposites—A Review, Int. J. Nanoparticles, 2008, 1(4), p 301–309CrossRef
39.
go back to reference H. Asgharzadeh, A. Simchi, and H.S. Kim, Microstructural Features, Texture and Strengthening Mechanisms of Nanostructured AA6063 Alloy Processed by Powder Metallurgy, Mater. Sci. Eng., 2011, A528(12), p 3981–3989CrossRef H. Asgharzadeh, A. Simchi, and H.S. Kim, Microstructural Features, Texture and Strengthening Mechanisms of Nanostructured AA6063 Alloy Processed by Powder Metallurgy, Mater. Sci. Eng., 2011, A528(12), p 3981–3989CrossRef
40.
go back to reference K. Deng, J. Shi, C. Wang, X. Wang, Y. Wu, K. Nie, and K. Wu, Microstructure and Strengthening Mechanism of Bimodal Size Particle Reinforced Magnesium Matrix Composite, Compos. A, 2012, 43(8), p 1280–1284CrossRef K. Deng, J. Shi, C. Wang, X. Wang, Y. Wu, K. Nie, and K. Wu, Microstructure and Strengthening Mechanism of Bimodal Size Particle Reinforced Magnesium Matrix Composite, Compos. A, 2012, 43(8), p 1280–1284CrossRef
41.
go back to reference J. Pelleg, Mechanical Properties of Materials, Springer, New York, 2012 J. Pelleg, Mechanical Properties of Materials, Springer, New York, 2012
Metadata
Title
Influence of Al2O3 Nanoparticles on Microstructure and Strengthening Mechanism of Al-Based Nanocomposites Produced via Spark Plasma Sintering
Authors
B. Sadeghi
M. Shamanian
F. Ashrafizadeh
P. Cavaliere
A. Rizzo
Publication date
26-04-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2699-2

Other articles of this Issue 6/2017

Journal of Materials Engineering and Performance 6/2017 Go to the issue

Premium Partners