Skip to main content
Top
Published in: Metallography, Microstructure, and Analysis 3/2019

07-05-2019 | Technical Article

Influence of DC Heat Treatments on Microstructure, Residual Stress, and Hardness of Ti–6Al–4V Alloy

Authors: Hui Shao, Di Shan, Kaixuan Wang, Guojun Zhang, Yongqing Zhao

Published in: Metallography, Microstructure, and Analysis | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ti–6Al–4V alloy has been subjected to direct current heat treatments at 850, 900, and 950 °C, respectively. The results indicate that the α-phase coarsening could be effectively prevented by the high Joule heating rate and the short hold time. In addition, the tensile residual stress became a compressive stress, which increased with an increased hold time. A high hardness was obtained due to phase strengthening and the release of tensile stress.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Iijima, T. Muguruma, W.A. Brantley, M. Okayama, T. Yuasa, Torsional properties and microstructures of miniscrew implants. Am. J. Orthod. Dentofac. 134, 33–334 (2008) M. Iijima, T. Muguruma, W.A. Brantley, M. Okayama, T. Yuasa, Torsional properties and microstructures of miniscrew implants. Am. J. Orthod. Dentofac. 134, 33–334 (2008)
2.
go back to reference T. Muguruma, M. Iijima, W.A. Brantley, T. Yuasa, H. Ohno, I. Mizoguchi, Relationship between the metallurgical structure of experimental titanium miniscrew implants and their torsional properties. Eur. J. Orthod. 33, 293–297 (2011)CrossRef T. Muguruma, M. Iijima, W.A. Brantley, T. Yuasa, H. Ohno, I. Mizoguchi, Relationship between the metallurgical structure of experimental titanium miniscrew implants and their torsional properties. Eur. J. Orthod. 33, 293–297 (2011)CrossRef
3.
go back to reference C.T. Wang, N. Gao, M.G. Gee et al., Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear 280, 28–35 (2012)CrossRef C.T. Wang, N. Gao, M.G. Gee et al., Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear 280, 28–35 (2012)CrossRef
4.
go back to reference T.G. Langdon, Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater. 61, 7035–7059 (2013)CrossRef T.G. Langdon, Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater. 61, 7035–7059 (2013)CrossRef
5.
go back to reference M.B. Ivanov, Y.R. Kolobov, E.V. Golosov, I.N. Kuzmenko, V.P. Veinov, D.A. Nechaenko, E.S. Kungurtsev, Mechanical properties of mass-produced nanostructured titanium. Nanotechnol. Russ. 6, 370–378 (2011)CrossRef M.B. Ivanov, Y.R. Kolobov, E.V. Golosov, I.N. Kuzmenko, V.P. Veinov, D.A. Nechaenko, E.S. Kungurtsev, Mechanical properties of mass-produced nanostructured titanium. Nanotechnol. Russ. 6, 370–378 (2011)CrossRef
6.
go back to reference R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881–981 (2006)CrossRef R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881–981 (2006)CrossRef
7.
go back to reference D. Orlov, Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 59(1), 375–385 (2011)CrossRef D. Orlov, Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 59(1), 375–385 (2011)CrossRef
8.
go back to reference S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva, G. Salishchev, Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging. Mater. Sci. Eng. A 536, 190–196 (2012)CrossRef S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva, G. Salishchev, Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging. Mater. Sci. Eng. A 536, 190–196 (2012)CrossRef
9.
go back to reference X. Li, J. Li, W. Ding et al., Stress relaxation in tensile deformation of 304 stainless steel. J. Mater. Eng. Perform. 26, 630–635 (2017)CrossRef X. Li, J. Li, W. Ding et al., Stress relaxation in tensile deformation of 304 stainless steel. J. Mater. Eng. Perform. 26, 630–635 (2017)CrossRef
10.
go back to reference Z.S. Xu, X.C. Yong, Effect of electric current on the recrystallization behavior of cold worked α-Ti. Scr. Metall. 22, 187–190 (1988)CrossRef Z.S. Xu, X.C. Yong, Effect of electric current on the recrystallization behavior of cold worked α-Ti. Scr. Metall. 22, 187–190 (1988)CrossRef
11.
go back to reference H. Conrad, Enhanced phenomena in metals with electric and magnetic fields: I electric fields. Mater. Trans. 46, 1083–1087 (2005)CrossRef H. Conrad, Enhanced phenomena in metals with electric and magnetic fields: I electric fields. Mater. Trans. 46, 1083–1087 (2005)CrossRef
12.
go back to reference L. He, A. Dehghan-Manshadi, R.J. Dippenaar, The evolution of microstructure of Ti–6Al–4V alloy during concurrent hot deformation and phase transformation. Mater. Sci. Eng. A 549, 163–167 (2012)CrossRef L. He, A. Dehghan-Manshadi, R.J. Dippenaar, The evolution of microstructure of Ti–6Al–4V alloy during concurrent hot deformation and phase transformation. Mater. Sci. Eng. A 549, 163–167 (2012)CrossRef
13.
go back to reference Z. Yan et al., Effect of electropulsing on deformation behavior of Ti–6Al–4V alloy during cold drawing. Trans. Nonferr. Metal. Soc. 24, 1012–1021 (2014)CrossRef Z. Yan et al., Effect of electropulsing on deformation behavior of Ti–6Al–4V alloy during cold drawing. Trans. Nonferr. Metal. Soc. 24, 1012–1021 (2014)CrossRef
14.
go back to reference R.S. Sorbello, Theory of electromigration. Phys. Rev. 51, 159–231 (1997) R.S. Sorbello, Theory of electromigration. Phys. Rev. 51, 159–231 (1997)
15.
go back to reference H. Conrad, Effects of electric current on solid state phase transformations in metals. Mater. Sci. Eng. A 287, 227–237 (2000)CrossRef H. Conrad, Effects of electric current on solid state phase transformations in metals. Mater. Sci. Eng. A 287, 227–237 (2000)CrossRef
16.
go back to reference C.D. Ross, J.K. Thomas, T.R. John, Effect of Dc on the formability of Ti–6Al–4V. J. Eng. Mater. 131, 031004 (2009) C.D. Ross, J.K. Thomas, T.R. John, Effect of Dc on the formability of Ti–6Al–4V. J. Eng. Mater. 131, 031004 (2009)
17.
go back to reference B. Mehdi, R. Badji, V. Ji et al., Microstructure and residual stresses in Ti–6Al–4V alloy pulsed and unpulsed TIG welds. J. Mater. Process. Technol. 231, 441–448 (2016)CrossRef B. Mehdi, R. Badji, V. Ji et al., Microstructure and residual stresses in Ti–6Al–4V alloy pulsed and unpulsed TIG welds. J. Mater. Process. Technol. 231, 441–448 (2016)CrossRef
18.
go back to reference D. Fabrègue, B. Mouawad, C.R. Hutchinson, Enhanced recovery and recrystallization of metals due to an applied current. Scr. Mater. 92, 3–6 (2014)CrossRef D. Fabrègue, B. Mouawad, C.R. Hutchinson, Enhanced recovery and recrystallization of metals due to an applied current. Scr. Mater. 92, 3–6 (2014)CrossRef
19.
go back to reference Q. Chao, P.D. Hodgson, H. Beladi, Thermal stability of an ultrafine grained Ti–6Al–4V alloy during post-deformation annealing. Mater. Sci. Eng. A 694, 13–23 (2017)CrossRef Q. Chao, P.D. Hodgson, H. Beladi, Thermal stability of an ultrafine grained Ti–6Al–4V alloy during post-deformation annealing. Mater. Sci. Eng. A 694, 13–23 (2017)CrossRef
20.
go back to reference C.H. Johnson, S.K. Richter, C.H. Hamilton et al., Static grain growth in a microduplex Ti–6Al–4V alloy. Acta Mater. 47(1), 23–29 (1998)CrossRef C.H. Johnson, S.K. Richter, C.H. Hamilton et al., Static grain growth in a microduplex Ti–6Al–4V alloy. Acta Mater. 47(1), 23–29 (1998)CrossRef
21.
go back to reference Y.M. Liu, G.H. Wu, Z.Y. Xiu, G.Q. Chen, Analysis on kinetic process of Ti and Al reaction. Rare Metal Mater. Eng. 3, 601–602 (2015) Y.M. Liu, G.H. Wu, Z.Y. Xiu, G.Q. Chen, Analysis on kinetic process of Ti and Al reaction. Rare Metal Mater. Eng. 3, 601–602 (2015)
22.
go back to reference D. Ao, X. Chu, Y. Yang et al., Effect of electropulsing treatment on microstructure and mechanical behavior of Ti–6Al–4V alloy sheet under argon gas protection. Vacuum 148, 230–238 (2018)CrossRef D. Ao, X. Chu, Y. Yang et al., Effect of electropulsing treatment on microstructure and mechanical behavior of Ti–6Al–4V alloy sheet under argon gas protection. Vacuum 148, 230–238 (2018)CrossRef
23.
go back to reference S. Banumathy, P. Ghosal, A.K. Singh, On the structure of the Ti3Al phase in Ti–Al and Ti–Al–Nb alloys. J. Alloy. Compd. 394, 181–185 (2005)CrossRef S. Banumathy, P. Ghosal, A.K. Singh, On the structure of the Ti3Al phase in Ti–Al and Ti–Al–Nb alloys. J. Alloy. Compd. 394, 181–185 (2005)CrossRef
24.
go back to reference H. Wu, G. Fan, L. Geng et al., Nanoscale origins of the oriented precipitation of Ti3Al in TiAl systems. Scr. Mater. 125, 34–38 (2016)CrossRef H. Wu, G. Fan, L. Geng et al., Nanoscale origins of the oriented precipitation of Ti3Al in TiAl systems. Scr. Mater. 125, 34–38 (2016)CrossRef
25.
go back to reference D.G. Lee, Y.H. Lee, S. Lee et al., Dynamic deformation behavior and ballistic impact properties of Ti–6Al–4V alloy having equiaxed and bimodal microstructures. Metall. Mater. Trans. A 35, 3103–3112 (2004)CrossRef D.G. Lee, Y.H. Lee, S. Lee et al., Dynamic deformation behavior and ballistic impact properties of Ti–6Al–4V alloy having equiaxed and bimodal microstructures. Metall. Mater. Trans. A 35, 3103–3112 (2004)CrossRef
26.
go back to reference R. Castro, L. Seraphin, Contribution to metallographic and structural study of titanium alloy Ta6v. Mem. Sci. Rev. Metall. 63, 1025–1058 (1966)CrossRef R. Castro, L. Seraphin, Contribution to metallographic and structural study of titanium alloy Ta6v. Mem. Sci. Rev. Metall. 63, 1025–1058 (1966)CrossRef
27.
go back to reference J.W. Elmer et al., Low temperature relaxation of residual stress in Ti–6Al–4V. Scr. Mater. 52, 1051–1056 (2005)CrossRef J.W. Elmer et al., Low temperature relaxation of residual stress in Ti–6Al–4V. Scr. Mater. 52, 1051–1056 (2005)CrossRef
28.
go back to reference J.W. Elmer et al., In situ observations of lattice expansion and transformation rates of α and β phases in Ti–6Al–4V. Mater. Sci. Eng. A 391, 104–113 (2005)CrossRef J.W. Elmer et al., In situ observations of lattice expansion and transformation rates of α and β phases in Ti–6Al–4V. Mater. Sci. Eng. A 391, 104–113 (2005)CrossRef
29.
go back to reference M.I. Kaganov, Y.V. Kravchenko, V.D. Natsik, Dislocation dragging by electrons in metals. Sov. Phys. Usp. 16, 878 (1974)CrossRef M.I. Kaganov, Y.V. Kravchenko, V.D. Natsik, Dislocation dragging by electrons in metals. Sov. Phys. Usp. 16, 878 (1974)CrossRef
30.
go back to reference N.S. Thirumalai, Low temperature creep of titanium alloys: microstructure, deformation mechanisms and modeling, Ph.D. Dissertation, The Ohio State University, Columbus, Ohio (2000) N.S. Thirumalai, Low temperature creep of titanium alloys: microstructure, deformation mechanisms and modeling, Ph.D. Dissertation, The Ohio State University, Columbus, Ohio (2000)
31.
go back to reference L. Xiao, Y. Umakoshi, Planar dislocation bands formed in Ti-5at.% Al single crystals deforming by double prism slips. J. Mater. Sci. Lett. 21(7), 517–519 (2002)CrossRef L. Xiao, Y. Umakoshi, Planar dislocation bands formed in Ti-5at.% Al single crystals deforming by double prism slips. J. Mater. Sci. Lett. 21(7), 517–519 (2002)CrossRef
32.
go back to reference H. Wu, L. Geng, G. Fan et al., Nanoscale strain characterization of Ti3Al precipitate-reinforced Ti alloys. Mater. Lett. 209, 182–184 (2017)CrossRef H. Wu, L. Geng, G. Fan et al., Nanoscale strain characterization of Ti3Al precipitate-reinforced Ti alloys. Mater. Lett. 209, 182–184 (2017)CrossRef
Metadata
Title
Influence of DC Heat Treatments on Microstructure, Residual Stress, and Hardness of Ti–6Al–4V Alloy
Authors
Hui Shao
Di Shan
Kaixuan Wang
Guojun Zhang
Yongqing Zhao
Publication date
07-05-2019
Publisher
Springer US
Published in
Metallography, Microstructure, and Analysis / Issue 3/2019
Print ISSN: 2192-9262
Electronic ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-019-00542-3

Other articles of this Issue 3/2019

Metallography, Microstructure, and Analysis 3/2019 Go to the issue

Premium Partners