Skip to main content
Top
Published in: Journal of Materials Science 12/2017

15-03-2017 | Original Paper

Influence of ethylene glycol vapor annealing on structure and property of wet-spun PVA/PEDOT:PSS blend fiber

Authors: Xinyue Wang, Gu-yu Feng, Ming-qiao Ge

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, blend fibers composed of poly(vinyl alcohol) and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were prepared via wet-spinning technology. Ethylene glycol (EG) vapor annealing was employed to improve the electrical conductivity and tensile properties of blend fibers. The effects of EG vapor annealing on structures and properties of blend fibers were investigated in detail by analyzing the changes in chemical constituent and structure, molecular structure, surface morphology, surface chemical composition, electrical conductivity, and tensile properties. FTIR spectroscopy indicates that EG vapor annealing does not change the chemical constituent and structure of blend fibers. Raman spectroscopy shows that vapor annealing leads to conformational changes of PEDOT chains from benzoid structure to quinoid structure. AFM and SEM images show that surface morphology of blend fibers become smoother after vapor annealing. XPS measurement shows that EG vapor annealing induces significant phase separation between PEDOT and PSS, forming an enriched PSS layer on the surface of blend fibers, thus leading to a thinner insulating PSS layer between PEDOT grains. This conformational change is beneficial to improve the electrical conductivity of blend fibers. The resultant blend fiber reached conductivity up to 20.4 S cm−1. The mechanical properties of blend fibers were also improved by EG vapor annealing, with the Young’s modulus and tensile strength increasing from 3.6 GPa and 112 MPa to 4.4 GPa and 132.7 MPa, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Na S-I, Kim S-S, Jo J et al (2008) Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv Mater 20:4061–4067CrossRef Na S-I, Kim S-S, Jo J et al (2008) Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv Mater 20:4061–4067CrossRef
2.
go back to reference Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088CrossRef Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088CrossRef
3.
go back to reference Groenendaal L, Jonas F, Freitag D et al (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494CrossRef Groenendaal L, Jonas F, Freitag D et al (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494CrossRef
4.
go back to reference Spinks GM, Mottaghitalab V, Bahrami-Samani M et al (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640CrossRef Spinks GM, Mottaghitalab V, Bahrami-Samani M et al (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640CrossRef
5.
go back to reference Jalili R, Razal JM, Innis PC et al (2011) One-step wet-spinning process of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21:3363–3370CrossRef Jalili R, Razal JM, Innis PC et al (2011) One-step wet-spinning process of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21:3363–3370CrossRef
6.
go back to reference Chan HSO, Ng SC (1998) Synthesis, characterization and applications of thiophene-based functional polymers. Prog Polym Sci 23:1167–1231CrossRef Chan HSO, Ng SC (1998) Synthesis, characterization and applications of thiophene-based functional polymers. Prog Polym Sci 23:1167–1231CrossRef
7.
go back to reference Crispin X, Marciniak S, Osikowicz W et al (2003) Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): a photoelectron spectroscopy study. Polym Sci B Polym Phys 41:2561–2583CrossRef Crispin X, Marciniak S, Osikowicz W et al (2003) Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): a photoelectron spectroscopy study. Polym Sci B Polym Phys 41:2561–2583CrossRef
8.
go back to reference Nardes AM, Kemerink M, de Kok MM et al (2008) Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org Electron 9:727–734CrossRef Nardes AM, Kemerink M, de Kok MM et al (2008) Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org Electron 9:727–734CrossRef
9.
go back to reference Chen CH, Torrents A, Kulinsky L et al (2011) Mechanical characterizations of cast poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/polyvinyl alcohol thin films. Synth Met 161:2259–2267CrossRef Chen CH, Torrents A, Kulinsky L et al (2011) Mechanical characterizations of cast poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/polyvinyl alcohol thin films. Synth Met 161:2259–2267CrossRef
10.
go back to reference Lang U, Naujoks N, Dual J (2009) Mechanical characterization of PEDOT: PSS thin films. Synth Met 159:473–479CrossRef Lang U, Naujoks N, Dual J (2009) Mechanical characterization of PEDOT: PSS thin films. Synth Met 159:473–479CrossRef
11.
go back to reference Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45:256–261CrossRef Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45:256–261CrossRef
12.
go back to reference Zhou J, Li EQ, Li RP et al (2015) Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J Mater Chem C 3:2528–2538CrossRef Zhou J, Li EQ, Li RP et al (2015) Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J Mater Chem C 3:2528–2538CrossRef
13.
go back to reference Cherenack K, Zysset C, Kinkeldei T et al (2010) Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater 22:5178–5182CrossRef Cherenack K, Zysset C, Kinkeldei T et al (2010) Woven electronic fibers with sensing and display functions for smart textiles. Adv Mater 22:5178–5182CrossRef
14.
go back to reference Abouraddy AF, Bayindir M, Benoit G et al (2007) Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat Mater 6:336–347CrossRef Abouraddy AF, Bayindir M, Benoit G et al (2007) Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat Mater 6:336–347CrossRef
15.
go back to reference Behabtu N, Young CC, Tsentalovich DE et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186CrossRef Behabtu N, Young CC, Tsentalovich DE et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186CrossRef
16.
go back to reference Egusa S, Wang Z, Chocat N et al (2010) Multimaterial piezoelectric fibres. Nat Mater 9:643–648CrossRef Egusa S, Wang Z, Chocat N et al (2010) Multimaterial piezoelectric fibres. Nat Mater 9:643–648CrossRef
18.
go back to reference Yang ZB, Deng J, Chen XL et al (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed Engl 52:13453–13457CrossRef Yang ZB, Deng J, Chen XL et al (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed Engl 52:13453–13457CrossRef
19.
go back to reference Miura H, Fukuyama Y, Sunda T et al (2014) Foldable textile electronic devices using all-organic conductive fibers. Adv Eng Mater 16:550–555CrossRef Miura H, Fukuyama Y, Sunda T et al (2014) Foldable textile electronic devices using all-organic conductive fibers. Adv Eng Mater 16:550–555CrossRef
20.
go back to reference Seyedin MZ, Razal JM, Innis PC et al (2014) Strain-responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity. Adv Funct Mater 24:2957–2966CrossRef Seyedin MZ, Razal JM, Innis PC et al (2014) Strain-responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity. Adv Funct Mater 24:2957–2966CrossRef
21.
go back to reference Andreatta A, Caod Y, Chiang JC et al (1988) Electrically-conductive fibers of polyaniline spun from solutions in concentrated sulfuric acid. Synth Met 26:383–389CrossRef Andreatta A, Caod Y, Chiang JC et al (1988) Electrically-conductive fibers of polyaniline spun from solutions in concentrated sulfuric acid. Synth Met 26:383–389CrossRef
22.
go back to reference Pomfret SJ, Adams PN, Comfort NP et al (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41:2265–2269CrossRef Pomfret SJ, Adams PN, Comfort NP et al (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41:2265–2269CrossRef
23.
go back to reference Mottaghitalab V, Xi B, Spinks GM et al (2006) Polyaniline fibres containing single walled carbon nanotubes: enhanced performance artificial muscles. Synth Met 156:796–803CrossRef Mottaghitalab V, Xi B, Spinks GM et al (2006) Polyaniline fibres containing single walled carbon nanotubes: enhanced performance artificial muscles. Synth Met 156:796–803CrossRef
24.
go back to reference Yamad T, Hayamizu Y, Yamamoto Y et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301CrossRef Yamad T, Hayamizu Y, Yamamoto Y et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301CrossRef
25.
go back to reference Paradiso R, Loriga G, Taccini N (2005) A wearable health care system based on knitted integrated sensors. Inf Technol Biomed IEEE Trans 9:337–344CrossRef Paradiso R, Loriga G, Taccini N (2005) A wearable health care system based on knitted integrated sensors. Inf Technol Biomed IEEE Trans 9:337–344CrossRef
26.
go back to reference Do H, Reinhard M, Vogeler H et al (2009) Polymeric anodes from poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) for 3.5% efficient organic solar cells. Thin Solid Films 517:5900–5902CrossRef Do H, Reinhard M, Vogeler H et al (2009) Polymeric anodes from poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) for 3.5% efficient organic solar cells. Thin Solid Films 517:5900–5902CrossRef
27.
go back to reference Zhou J, Lubineau G (2013) Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs. ACS Appl Mater Interfaces 5:6189–6200CrossRef Zhou J, Lubineau G (2013) Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs. ACS Appl Mater Interfaces 5:6189–6200CrossRef
28.
go back to reference Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24:2436–2440CrossRef Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24:2436–2440CrossRef
29.
go back to reference Xu Y, Wang Y, Liang J et al (2009) A hybrid material of graphene and poly(3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2:343–348CrossRef Xu Y, Wang Y, Liang J et al (2009) A hybrid material of graphene and poly(3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2:343–348CrossRef
30.
go back to reference Khan S, Narula AK (2016) Bio-hybrid blended transparent and conductive films PEDOT: PSS: chitosan exhibiting electro-active and antibacterial properties. Eur Polym J 81:161–172CrossRef Khan S, Narula AK (2016) Bio-hybrid blended transparent and conductive films PEDOT: PSS: chitosan exhibiting electro-active and antibacterial properties. Eur Polym J 81:161–172CrossRef
31.
go back to reference Zhang H, Xu J, Wen Y et al (2015) Conducting poly(3,4-ethylenedioxythiophene): poly(styrene-sulfonate) film electrode with superior long-term electrode stability in water and synergistically enhanced electrocatalytic ability for application in electrochemical sensors. Synth Met 204:39–47CrossRef Zhang H, Xu J, Wen Y et al (2015) Conducting poly(3,4-ethylenedioxythiophene): poly(styrene-sulfonate) film electrode with superior long-term electrode stability in water and synergistically enhanced electrocatalytic ability for application in electrochemical sensors. Synth Met 204:39–47CrossRef
32.
go back to reference Garreau S, Louran G, Buisson JP et al (1999) In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32:6807–6812CrossRef Garreau S, Louran G, Buisson JP et al (1999) In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32:6807–6812CrossRef
33.
go back to reference Łapkowski M, Proń A (2000) Electrochemical oxidation of poly(3,4-ethylenedioxythiophene)—“in situ” conductivity and spectroscopic investigations. Synth Met 110:79–83CrossRef Łapkowski M, Proń A (2000) Electrochemical oxidation of poly(3,4-ethylenedioxythiophene)—“in situ” conductivity and spectroscopic investigations. Synth Met 110:79–83CrossRef
34.
go back to reference Garreau S, Duvail JL, Louarn G (2002) Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium. Synth Met 125:325–329CrossRef Garreau S, Duvail JL, Louarn G (2002) Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium. Synth Met 125:325–329CrossRef
35.
go back to reference Ouyang J, Xu Q, Chu CW et al (2004) On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment. Polymer 45:8443–8450CrossRef Ouyang J, Xu Q, Chu CW et al (2004) On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment. Polymer 45:8443–8450CrossRef
36.
go back to reference Yeo JS, Yun JM, Kim DY et al (2012) Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. ACS Appl Mat Interfaces 4:2551–2560CrossRef Yeo JS, Yun JM, Kim DY et al (2012) Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. ACS Appl Mat Interfaces 4:2551–2560CrossRef
37.
go back to reference Flory PJ, McIntyre AD (1995) Mechanism of crystallization in polymers. J Polym Sci 18:592–594CrossRef Flory PJ, McIntyre AD (1995) Mechanism of crystallization in polymers. J Polym Sci 18:592–594CrossRef
38.
go back to reference Crispin X, Jakobsson FLE, Crispin A et al (2006) The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate)(PEDOT–PSS) plastic electrodes. Chem Mater 18:4354–4360CrossRef Crispin X, Jakobsson FLE, Crispin A et al (2006) The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate)(PEDOT–PSS) plastic electrodes. Chem Mater 18:4354–4360CrossRef
39.
go back to reference Zotti G, Zecchin S, Schiavon G et al (2003) Electrochemical and XPS studies toward the role of monomeric and polymeric sulfonate counterions in the synthesis, composition, and properties of poly(3,4-ethylenedioxythiophene). Macromolecules 36:3337–3344CrossRef Zotti G, Zecchin S, Schiavon G et al (2003) Electrochemical and XPS studies toward the role of monomeric and polymeric sulfonate counterions in the synthesis, composition, and properties of poly(3,4-ethylenedioxythiophene). Macromolecules 36:3337–3344CrossRef
40.
go back to reference Schaarschmidt A, Farah AA, Aby A et al (2009) Influence of nonadiabatic annealing on the morphology and molecular structure of PEDOT–PSS films. J Phys Chem B 113:9352–9355CrossRef Schaarschmidt A, Farah AA, Aby A et al (2009) Influence of nonadiabatic annealing on the morphology and molecular structure of PEDOT–PSS films. J Phys Chem B 113:9352–9355CrossRef
41.
go back to reference Kim GH, Shao L, Zhang K et al (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723CrossRef Kim GH, Shao L, Zhang K et al (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723CrossRef
42.
go back to reference Yan H, Okuzaki H (2009) Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synth Met 159:2225–2228CrossRef Yan H, Okuzaki H (2009) Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synth Met 159:2225–2228CrossRef
43.
go back to reference Dickey KC, Anthony JE, Loo Y-L (2006) Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv Mater 18:1721–1726CrossRef Dickey KC, Anthony JE, Loo Y-L (2006) Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv Mater 18:1721–1726CrossRef
44.
go back to reference Lee WH, Kim DH, Cho JH et al (2007) Change of molecular ordering in soluble acenes via solvent annealing and its effect on field-effect mobility. Appl Phys Lett 91:092105CrossRef Lee WH, Kim DH, Cho JH et al (2007) Change of molecular ordering in soluble acenes via solvent annealing and its effect on field-effect mobility. Appl Phys Lett 91:092105CrossRef
45.
go back to reference Okuzaki H, Ishihara M (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24:261–264CrossRef Okuzaki H, Ishihara M (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24:261–264CrossRef
46.
go back to reference Ouyang J (2013) “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices. Displays 34:423–436CrossRef Ouyang J (2013) “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices. Displays 34:423–436CrossRef
47.
go back to reference Wang XJ, Perzon E, Delgado JL et al (2004) Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Appl Phys Lett 85:5081–5083CrossRef Wang XJ, Perzon E, Delgado JL et al (2004) Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Appl Phys Lett 85:5081–5083CrossRef
Metadata
Title
Influence of ethylene glycol vapor annealing on structure and property of wet-spun PVA/PEDOT:PSS blend fiber
Authors
Xinyue Wang
Gu-yu Feng
Ming-qiao Ge
Publication date
15-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0756-8

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners