Skip to main content
Top

2020 | OriginalPaper | Chapter

Influence of Microstructure of Geopolymer Concrete on Its Mechanical Properties—A Review

Authors : Amer Hassan, Mohammed Arif, M. Shariq

Published in: Advances in Sustainable Construction Materials and Geotechnical Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Geopolymer concrete (GPC) has been researched during the past few decades as a viable sustainable construction material, which can minimise CO2 emission for its use of industrial by-products. Past research on GPC shows that GPC is best suited for structural application with workable slump and strength as compared to ordinary Portland cement concrete (OPCC). The microstructure of GPC and OPCC has been investigated to understand its influence on engineering properties. It has been observed that GPC contained more amorphous phases, less porosity and more pores in the mesopores range than OPCC. Review of the literature revealed that the production of geopolymer concrete requires great care and correct material compositions. During the activation process in making the geopolymer, high alkalinity also requires safety risk and enhanced energy consumption and generation of greenhouse gases. Furthermore, the production of GPC is also affected by the curing time and curing temperature. Few studies have also been carried out to observe the effect of curing temperature on the polymerisation reaction of GPC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29:5294–5306CrossRef Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29:5294–5306CrossRef
2.
go back to reference Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158CrossRef Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158CrossRef
3.
go back to reference Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41:923–931CrossRef Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41:923–931CrossRef
4.
go back to reference Criado M, Fernández-Jiménez A, Palomo A (2007) Alkali activation of fly ash: effect of the SiO2/Na2O ratio. Part I: FTIR study. Microporous Mesoporous Mater 106:180–191CrossRef Criado M, Fernández-Jiménez A, Palomo A (2007) Alkali activation of fly ash: effect of the SiO2/Na2O ratio. Part I: FTIR study. Microporous Mesoporous Mater 106:180–191CrossRef
5.
go back to reference Criado M et al (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR survey. Microporous Mesoporous 109:525–534CrossRef Criado M et al (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR survey. Microporous Mesoporous 109:525–534CrossRef
6.
go back to reference Puertas F et al (2011) A model for the C-A-S-H gel formed in alkali- activated slag cements. J Eur Ceram Soc 31:2043–2056CrossRef Puertas F et al (2011) A model for the C-A-S-H gel formed in alkali- activated slag cements. J Eur Ceram Soc 31:2043–2056CrossRef
7.
go back to reference van Deventer JS et al (2015) Microstructure and durability of alkali- activated materials as key parameters for standardization. J Sustain Cem Mater 4:116–128 van Deventer JS et al (2015) Microstructure and durability of alkali- activated materials as key parameters for standardization. J Sustain Cem Mater 4:116–128
9.
go back to reference Lu S, Landis EN, Keane DT (2006) X-ray microtomographic studies of pore structure and permeability in Portland cement concrete. Mater Struct Constr 39:611–620CrossRef Lu S, Landis EN, Keane DT (2006) X-ray microtomographic studies of pore structure and permeability in Portland cement concrete. Mater Struct Constr 39:611–620CrossRef
10.
go back to reference Häkkinen T (1993) The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties. Cem Concr Res 23:407–421CrossRef Häkkinen T (1993) The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties. Cem Concr Res 23:407–421CrossRef
11.
go back to reference Collins F, Sanjayan JG (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem Concr Res 30:1401–1406CrossRef Collins F, Sanjayan JG (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem Concr Res 30:1401–1406CrossRef
12.
go back to reference Häkkinen T (1993) The influence of slag content on the microstructure, permeability and mechanical properties of concrete. Part 2 technical properties and theoretical examinations. Cem Concr Res 23:518–530CrossRef Häkkinen T (1993) The influence of slag content on the microstructure, permeability and mechanical properties of concrete. Part 2 technical properties and theoretical examinations. Cem Concr Res 23:518–530CrossRef
13.
go back to reference Mokhtarzadeh A, French C (2000) Time-dependent properties of high-strength concrete with consideration for precast applications. ACI Mater J 97:263–271 Mokhtarzadeh A, French C (2000) Time-dependent properties of high-strength concrete with consideration for precast applications. ACI Mater J 97:263–271
14.
go back to reference Roy DM, Idorn GM (1982) Hydration, structure, and properties of blast furnace slag cements, mortar, and concrete. J Am Concr Inst 79:444–457 Roy DM, Idorn GM (1982) Hydration, structure, and properties of blast furnace slag cements, mortar, and concrete. J Am Concr Inst 79:444–457
15.
go back to reference Aligizaki KK (2006) Pore structure of cement-based materials. Taylor & Franics, New York Aligizaki KK (2006) Pore structure of cement-based materials. Taylor & Franics, New York
16.
go back to reference Beaudoin JJ, Feldman RF, Tumidajski PJ (1994) Pore structure of hardened portland cement pastes and its influence on properties. Adv Cem Based Mater 1:224–236CrossRef Beaudoin JJ, Feldman RF, Tumidajski PJ (1994) Pore structure of hardened portland cement pastes and its influence on properties. Adv Cem Based Mater 1:224–236CrossRef
17.
go back to reference Jennings HM et al (2008) Characterization and modeling of pores and surfaces in cement paste: Correlations to processing and properties. J Adv Concr Technol 6:5–29CrossRef Jennings HM et al (2008) Characterization and modeling of pores and surfaces in cement paste: Correlations to processing and properties. J Adv Concr Technol 6:5–29CrossRef
18.
go back to reference Rößler M, Odler I (1985) Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity. Cem Concr Res 15:320–330CrossRef Rößler M, Odler I (1985) Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity. Cem Concr Res 15:320–330CrossRef
19.
go back to reference Shi C (1996) Strength, pore structure and permeability of alkali-activated slag mortars. Cem Concr Res 26:1789–1799MathSciNetCrossRef Shi C (1996) Strength, pore structure and permeability of alkali-activated slag mortars. Cem Concr Res 26:1789–1799MathSciNetCrossRef
20.
go back to reference Aydın S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383CrossRef Aydın S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383CrossRef
21.
go back to reference Jambunathan N et al (2013) The role of alumina on performance of alkali-activated slag paste exposed to 50 °C. Cem Concr Res 54:143–150CrossRef Jambunathan N et al (2013) The role of alumina on performance of alkali-activated slag paste exposed to 50 °C. Cem Concr Res 54:143–150CrossRef
22.
go back to reference Collins F, Sanjayan JG (2001) Microcracking and strength development of alkali activated slag concrete. Cem Concr Compos 23:345–352CrossRef Collins F, Sanjayan JG (2001) Microcracking and strength development of alkali activated slag concrete. Cem Concr Compos 23:345–352CrossRef
23.
go back to reference Brough AR, Atkinson A (2002) Sodium silicate-based, alkali—activated slag mortars: Part I. Strength, hydration and microstructure. Cem Concr Res 32:865–879CrossRef Brough AR, Atkinson A (2002) Sodium silicate-based, alkali—activated slag mortars: Part I. Strength, hydration and microstructure. Cem Concr Res 32:865–879CrossRef
24.
go back to reference San Nicolas R, Provis JL (2015) The interfacial transition zone in alkali-activated slag mortars. Front Mater 2:70CrossRef San Nicolas R, Provis JL (2015) The interfacial transition zone in alkali-activated slag mortars. Front Mater 2:70CrossRef
25.
go back to reference Byfors K et al (1989) Durability of concrete made with alkali activated slag. In: Malhotra VM (ed) 3rd international conference proceedings fly ash, silica fume, slag, and natural pozzolans in concrete. Trondheim, Norway, pp 1429–1466 Byfors K et al (1989) Durability of concrete made with alkali activated slag. In: Malhotra VM (ed) 3rd international conference proceedings fly ash, silica fume, slag, and natural pozzolans in concrete. Trondheim, Norway, pp 1429–1466
26.
go back to reference Douglas E, Bilodeau A, Malhotra VM (1992) Properties and durability of alkali-activated slag concrete. ACI Mater J 89:509–516 Douglas E, Bilodeau A, Malhotra VM (1992) Properties and durability of alkali-activated slag concrete. ACI Mater J 89:509–516
27.
go back to reference Bakharev T, Sanjayan JG, Cheng YB (2002) Sulfate attack on alkali-activated slag concrete. Cem Concr Res 32:211–216CrossRef Bakharev T, Sanjayan JG, Cheng YB (2002) Sulfate attack on alkali-activated slag concrete. Cem Concr Res 32:211–216CrossRef
28.
go back to reference Dellinghausen LM et al (2012) Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag. Constr Build Mater 37:652–659CrossRef Dellinghausen LM et al (2012) Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag. Constr Build Mater 37:652–659CrossRef
29.
go back to reference Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali- activated slag concrete to acid attack. Cem Concr Res 33:1607–1611CrossRef Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali- activated slag concrete to acid attack. Cem Concr Res 33:1607–1611CrossRef
30.
go back to reference Wang S-D, Pu X-C, Scrivener KL, Pratt PL (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res 7:93–102CrossRef Wang S-D, Pu X-C, Scrivener KL, Pratt PL (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res 7:93–102CrossRef
31.
go back to reference Roy DM, Jiang W, Silsbee MR (2000) Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem Concr Res 30:1879–1884CrossRef Roy DM, Jiang W, Silsbee MR (2000) Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem Concr Res 30:1879–1884CrossRef
32.
go back to reference Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to carbonation. Cem Concr Res 31:1277–1283CrossRef Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to carbonation. Cem Concr Res 31:1277–1283CrossRef
33.
go back to reference Bernal SA et al (2014) Durability and testing—degradation via mass transport. In: Provis JL, Van Deventer JSJ (eds) Alkali activated materials. Springer, London Bernal SA et al (2014) Durability and testing—degradation via mass transport. In: Provis JL, Van Deventer JSJ (eds) Alkali activated materials. Springer, London
34.
go back to reference Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to alkali–aggregate reaction. Cem Concr Res 31:331–334CrossRef Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to alkali–aggregate reaction. Cem Concr Res 31:331–334CrossRef
35.
go back to reference Fernández-Jiménez A, Puertas F (2002) The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem Concr Res 32:1019–1024CrossRef Fernández-Jiménez A, Puertas F (2002) The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem Concr Res 32:1019–1024CrossRef
36.
go back to reference Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produce by granulated blast furnace slag. Miner Eng 16:205–210CrossRef Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produce by granulated blast furnace slag. Miner Eng 16:205–210CrossRef
37.
go back to reference Kong DLY, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40:334–339CrossRef Kong DLY, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40:334–339CrossRef
38.
go back to reference Zhao R, Sanjayan JG (2011) Geopolymer and Portland cement concretes in simulated fire. Mag Concr Res 63:163–173CrossRef Zhao R, Sanjayan JG (2011) Geopolymer and Portland cement concretes in simulated fire. Mag Concr Res 63:163–173CrossRef
39.
go back to reference Pan Z, Sanjayan JG, Kong DLY (2012) Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Constr Build Mater 36:365–372CrossRef Pan Z, Sanjayan JG, Kong DLY (2012) Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Constr Build Mater 36:365–372CrossRef
40.
go back to reference Fu Y, Cai L, Yonggen W (2011) Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr Build Mater 25:3144–3148CrossRef Fu Y, Cai L, Yonggen W (2011) Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr Build Mater 25:3144–3148CrossRef
41.
go back to reference Powers TC, Mann H, Copeland LE (1958) The flow of water in hardened-portland cement paste, Highway Research Board Special Report Powers TC, Mann H, Copeland LE (1958) The flow of water in hardened-portland cement paste, Highway Research Board Special Report
42.
go back to reference Olson RA, Neubauer CM, Jennings HM (1997) Damage to the pore structure of hardened portland cement paste by mercury intrusion. J Am Ceram Soc 80:2454–2458CrossRef Olson RA, Neubauer CM, Jennings HM (1997) Damage to the pore structure of hardened portland cement paste by mercury intrusion. J Am Ceram Soc 80:2454–2458CrossRef
43.
go back to reference Neithalath N, Sumanasooriya MS, Deo O (2010) Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater Charact 61:802–813CrossRef Neithalath N, Sumanasooriya MS, Deo O (2010) Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater Charact 61:802–813CrossRef
44.
go back to reference Hu J, Stroeven P (2005) Size characterisation of pore structure for estimating transport properties of cement paste. Heron 50:41–54 Hu J, Stroeven P (2005) Size characterisation of pore structure for estimating transport properties of cement paste. Heron 50:41–54
45.
go back to reference Kondraivendhan B, Divsholi BS, Teng S (2013) Estimation of strength, permeability and hydraulic diffusivity of pozzolana blended concrete through pore size distribution. J Adv Concr Technol 11:230–237CrossRef Kondraivendhan B, Divsholi BS, Teng S (2013) Estimation of strength, permeability and hydraulic diffusivity of pozzolana blended concrete through pore size distribution. J Adv Concr Technol 11:230–237CrossRef
46.
go back to reference Garci Juenger MC, Jennings HM (2001) The use of nitrogen adsorption to assess the microstructure of cement paste. Cem Concr Res 31:883–892CrossRef Garci Juenger MC, Jennings HM (2001) The use of nitrogen adsorption to assess the microstructure of cement paste. Cem Concr Res 31:883–892CrossRef
47.
go back to reference Feldman RF (1987) Diffusion measurements in cement paste by water replacement using Propan-2-OL. Cem Concr Res 17:602–612CrossRef Feldman RF (1987) Diffusion measurements in cement paste by water replacement using Propan-2-OL. Cem Concr Res 17:602–612CrossRef
48.
go back to reference Holly J, Hampton D, Thomas MDA (1993) Modelling relationships between permeability and cement paste pore microstructures. Cem Concr Res 23:1317–1330CrossRef Holly J, Hampton D, Thomas MDA (1993) Modelling relationships between permeability and cement paste pore microstructures. Cem Concr Res 23:1317–1330CrossRef
49.
go back to reference Bažant ZP, Najjar LJ (1971) Drying of concrete as a nonlinear diffusion problem. Cem Concr Res 1:461–473CrossRef Bažant ZP, Najjar LJ (1971) Drying of concrete as a nonlinear diffusion problem. Cem Concr Res 1:461–473CrossRef
50.
go back to reference Ulm FJ, Coussy O (1995) Modeling of thermo chemo mechanical couplings of concrete at early ages. J Eng Mech 121:785–794CrossRef Ulm FJ, Coussy O (1995) Modeling of thermo chemo mechanical couplings of concrete at early ages. J Eng Mech 121:785–794CrossRef
51.
go back to reference Xi Y, Bažant ZP, Molina L, Jennings HM (1994) Moisture diffusion in cementitious materials Moisture capacity and diffusivity. Adv Cem Based Mater 1:258–266CrossRef Xi Y, Bažant ZP, Molina L, Jennings HM (1994) Moisture diffusion in cementitious materials Moisture capacity and diffusivity. Adv Cem Based Mater 1:258–266CrossRef
52.
go back to reference Collins FG, Sanjayan JG (1999) Workability and mechanical properties of alkali activated slag concrete. Cem Concr Res 29:455–458CrossRef Collins FG, Sanjayan JG (1999) Workability and mechanical properties of alkali activated slag concrete. Cem Concr Res 29:455–458CrossRef
53.
go back to reference Bažant ZP, Chern JC (1985) Concrete creep at variable humidity: constitutive law and mechanism. Mater Struct 18:1–20CrossRef Bažant ZP, Chern JC (1985) Concrete creep at variable humidity: constitutive law and mechanism. Mater Struct 18:1–20CrossRef
54.
go back to reference de Sa C, Benboudjema F, Thiery M, Sicard J (2008) Analysis of microcracking induced by differential drying shrinkage. Cem Concr Compos 30:947–956CrossRef de Sa C, Benboudjema F, Thiery M, Sicard J (2008) Analysis of microcracking induced by differential drying shrinkage. Cem Concr Compos 30:947–956CrossRef
55.
go back to reference Bissonnette B, Pierre P, Pigeon M (1999) Influence of key parameters on drying shrinkage of cementitious materials. Cem Concr Res 29:1655–1662CrossRef Bissonnette B, Pierre P, Pigeon M (1999) Influence of key parameters on drying shrinkage of cementitious materials. Cem Concr Res 29:1655–1662CrossRef
Metadata
Title
Influence of Microstructure of Geopolymer Concrete on Its Mechanical Properties—A Review
Authors
Amer Hassan
Mohammed Arif
M. Shariq
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-7480-7_10