Skip to main content
Top
Published in: Colloid and Polymer Science 8/2017

20-03-2017 | Invited Article

Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers

Authors: Sergey K. Filippov, Natalya S. Vishnevetskaya, Bart-Jan Niebuur, Eva Koziolová, Ekaterina A. Lomkova, Petr Chytil, Tomas Etrych, Christine M. Papadakis

Published in: Colloid and Polymer Science | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present paper, we address the question to which extent the critical micellar concentration (cmc) value can be varied for clinically related drug delivery carriers if all crucial parameters needed for successful drug delivery are already preset. For this purpose, the cmc values of an amphiphilic polymer carrier based on N-(2-hydroxypropyl) methacrylamide (HPMA) with cholesterol side groups, differing in a variety of parameters, such as molar mass, dispersity, architecture (statistical vs. diblock copolymer), and spacer structure, were studied in detail. At this, we chose physiological conditions (phosphate buffered saline at pH 7.4) and investigated the formation of micelles using fluorescence correlation spectroscopy in dependence on polymer concentration. Moreover, conjugates where the cholesterol moieties are attached to the HPMA backbone by a pH-cleavable hydrazone bond were investigated in dependence on time with respect to their long-term stability at pH 7.4, and it was found that the nanoparticles change size in the course of a few weeks. After a pH change from 7.4 to 5.0 (typical for tumor cells), the nanoparticles grow during the first few hours, then shrink. A weak correlation between the cmc value and the content of the hydrophobic group was found for HPMA-based polymers, regardless their architecture, polydispersity, and spacer structure. A much stronger correlation was observed between the cmc value and the dispersity. This finding could be explained by the higher absolute number of hydrophobic groups located on the higher molar mass fractions of the HPMA copolymers, which initiate the micelle formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701CrossRef Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701CrossRef
2.
go back to reference Duncan R, Vicent MJ (2010) Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev 62:272–282CrossRef Duncan R, Vicent MJ (2010) Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev 62:272–282CrossRef
3.
go back to reference Kopeček J, Kopečková P (2010) HPMA copolymers: origins, early developments, present and future. Adv Drug Deliv Rev 62:122–149CrossRef Kopeček J, Kopečková P (2010) HPMA copolymers: origins, early developments, present and future. Adv Drug Deliv Rev 62:122–149CrossRef
4.
go back to reference Ulbrich K, Šubr V (2010) Structural and chemical aspects of HPMA copolymers as drug carriers. Adv Drug Deliv Rev 62:150–166CrossRef Ulbrich K, Šubr V (2010) Structural and chemical aspects of HPMA copolymers as drug carriers. Adv Drug Deliv Rev 62:150–166CrossRef
5.
go back to reference Duncan R, Vicent MJ (2013) Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65:60–70CrossRef Duncan R, Vicent MJ (2013) Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65:60–70CrossRef
6.
go back to reference Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431CrossRef Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431CrossRef
7.
go back to reference Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRef Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRef
8.
go back to reference Talelli M, Rijcken CJF, van Nostrum CF, Storm G, Hennink WE (2010) Micelles based on HPMA copolymers. Adv Drug Deliv Rev 62:231–239CrossRef Talelli M, Rijcken CJF, van Nostrum CF, Storm G, Hennink WE (2010) Micelles based on HPMA copolymers. Adv Drug Deliv Rev 62:231–239CrossRef
9.
go back to reference Chytil P, Etrych T, Koňák Č, Šírová M, Mrkvan T, Bouček J, Říhová B, Ulbrich K (2008) New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release 127:121–130CrossRef Chytil P, Etrych T, Koňák Č, Šírová M, Mrkvan T, Bouček J, Říhová B, Ulbrich K (2008) New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release 127:121–130CrossRef
10.
go back to reference Filippov SK, Chytil P, Konarev PV, Dyakonova M, Papadakis CM, Zhigunov A, Plestil J, Stepanek P, Etrych T, Ulbrich K, Svergun DI (2012) Macromolecular HPMA-based nanoparticles with cholesterol for solid-tumor targeting: detailed study of the inner structure of a highly efficient drug delivery system. Biomacromolecules 13:2594–2604CrossRef Filippov SK, Chytil P, Konarev PV, Dyakonova M, Papadakis CM, Zhigunov A, Plestil J, Stepanek P, Etrych T, Ulbrich K, Svergun DI (2012) Macromolecular HPMA-based nanoparticles with cholesterol for solid-tumor targeting: detailed study of the inner structure of a highly efficient drug delivery system. Biomacromolecules 13:2594–2604CrossRef
11.
go back to reference Chytil P, Etrych T, Kostka L, Ulbrich K (2012) Hydrolytically degradable polymer micelles for anticancer drug delivery to solid tumors. Macromol Chem Phys 213:858–867CrossRef Chytil P, Etrych T, Kostka L, Ulbrich K (2012) Hydrolytically degradable polymer micelles for anticancer drug delivery to solid tumors. Macromol Chem Phys 213:858–867CrossRef
12.
go back to reference Filippov SK, Franklin JM, Konarev PV, Chytil P, Etrych T, Bogomolova A, Dyakonova M, Papadakis CM, Radulescu A, Ulbrich K, Stepanek P, Svergun DI (2013) Biomacromolecules 14:4061–4070CrossRef Filippov SK, Franklin JM, Konarev PV, Chytil P, Etrych T, Bogomolova A, Dyakonova M, Papadakis CM, Radulescu A, Ulbrich K, Stepanek P, Svergun DI (2013) Biomacromolecules 14:4061–4070CrossRef
13.
go back to reference Scales CW, Vasilieva YA, Convertine AJ, Lowe AB, McCormick CL (2005) Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in aqueous media. Biomacromolecules 6:1846–1850CrossRef Scales CW, Vasilieva YA, Convertine AJ, Lowe AB, McCormick CL (2005) Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in aqueous media. Biomacromolecules 6:1846–1850CrossRef
14.
go back to reference Chytil P, Etrych T, Kříž J, Šubr V, Ulbrich K (2010) N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour-targeting. Synthesis by RAFT polymerisation and physicochemical characterization. Eur J Pharm Sci 41:473–482CrossRef Chytil P, Etrych T, Kříž J, Šubr V, Ulbrich K (2010) N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour-targeting. Synthesis by RAFT polymerisation and physicochemical characterization. Eur J Pharm Sci 41:473–482CrossRef
15.
go back to reference Schuch H, Klingler J, Rossmanith P, Frechen T, Gerst M, Feldthusen J, AHE M (2000) Characterization of micelles of polyisobutylene-block-poly(methacrylic acid) in aqueous medium. Macromolecules 33:1734–1740CrossRef Schuch H, Klingler J, Rossmanith P, Frechen T, Gerst M, Feldthusen J, AHE M (2000) Characterization of micelles of polyisobutylene-block-poly(methacrylic acid) in aqueous medium. Macromolecules 33:1734–1740CrossRef
16.
go back to reference Bonné TB, Lüdtke K, Jordan R, Štěpánek P, Papadakis CM (2004) Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy. Colloid Polym Sci 282:833–843CrossRef Bonné TB, Lüdtke K, Jordan R, Štěpánek P, Papadakis CM (2004) Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy. Colloid Polym Sci 282:833–843CrossRef
17.
go back to reference Loos K, Böker A, Zettl H, Zhang M, Krausch G, Müller AHE (2005) Micellar aggregates of amylose-block-polystyrene rod-coil block copolymers in water and THF. Macromolecules 38:873–879CrossRef Loos K, Böker A, Zettl H, Zhang M, Krausch G, Müller AHE (2005) Micellar aggregates of amylose-block-polystyrene rod-coil block copolymers in water and THF. Macromolecules 38:873–879CrossRef
18.
go back to reference Koynov K, Butt H-J (2012) Fluorescence correlation spectroscopy in colloid and interface science. Curr Opin Colloid Interface Sci 17:377–387CrossRef Koynov K, Butt H-J (2012) Fluorescence correlation spectroscopy in colloid and interface science. Curr Opin Colloid Interface Sci 17:377–387CrossRef
19.
go back to reference Wöll D (2014) Fluorescence correlation spectroscopy in polymer science. RSC Adv 4:2447–2465CrossRef Wöll D (2014) Fluorescence correlation spectroscopy in polymer science. RSC Adv 4:2447–2465CrossRef
20.
go back to reference Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169CrossRef Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169CrossRef
21.
go back to reference Papadakis CM, Košovan P, Richtering W, Wöll D (2014) Polymers in focus: fluorescence correlation spectroscopy. Colloid Polym Sci 292:2399–2411CrossRef Papadakis CM, Košovan P, Richtering W, Wöll D (2014) Polymers in focus: fluorescence correlation spectroscopy. Colloid Polym Sci 292:2399–2411CrossRef
22.
go back to reference Etrych T, Mrkvan T, Chytil P, Koňák Č, Říhová B, Ulbrich K (2008) N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin: I. New synthesis, physicochemical characterisation and preliminary biological evaluation. J Appl Polym Sci 109:3050–3061CrossRef Etrych T, Mrkvan T, Chytil P, Koňák Č, Říhová B, Ulbrich K (2008) N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin: I. New synthesis, physicochemical characterisation and preliminary biological evaluation. J Appl Polym Sci 109:3050–3061CrossRef
23.
go back to reference Ulbrich K, Etrych T, Chytil P, Jelínková M, Říhová B (2004) Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J Drug Target 12:477–489CrossRef Ulbrich K, Etrych T, Chytil P, Jelínková M, Říhová B (2004) Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J Drug Target 12:477–489CrossRef
24.
go back to reference Perrier S, Takolpuckdee P, Mars CA (2005) Reversible addition-fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules 38:2033–2036CrossRef Perrier S, Takolpuckdee P, Mars CA (2005) Reversible addition-fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules 38:2033–2036CrossRef
25.
go back to reference Widengren J, Mets Ü, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Chem Phys 99:13368–13379CrossRef Widengren J, Mets Ü, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Chem Phys 99:13368–13379CrossRef
26.
go back to reference Müller CB, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J (2008) Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. EPL 83:46001CrossRef Müller CB, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J (2008) Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. EPL 83:46001CrossRef
27.
go back to reference Lee KY, Jo WH, Kwon IC, Kim YH, Jeong SY (1998) Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water. Macromolecules 31:378–383CrossRef Lee KY, Jo WH, Kwon IC, Kim YH, Jeong SY (1998) Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water. Macromolecules 31:378–383CrossRef
28.
go back to reference Nichifor M, Lopes A, Carpov A, Melo E (1999) Aggregation in water of dextran hydrophobically modified with bile acids. Macromolecules 32:7078–7085CrossRef Nichifor M, Lopes A, Carpov A, Melo E (1999) Aggregation in water of dextran hydrophobically modified with bile acids. Macromolecules 32:7078–7085CrossRef
29.
go back to reference Philippova OE, Volkov EV, Sitnikova NL, Khokhlov AR, Desbrieres J, Rinaudo M (2001) Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2:483–490CrossRef Philippova OE, Volkov EV, Sitnikova NL, Khokhlov AR, Desbrieres J, Rinaudo M (2001) Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2:483–490CrossRef
30.
go back to reference Kang HS, Yang SR, Kim JD, Han SH, Chang IS (2001) Effects of grafted alkyl groups on aggregation behavior of amphiphilic poly(aspartic acid). Langmuir 17:7501–7506CrossRef Kang HS, Yang SR, Kim JD, Han SH, Chang IS (2001) Effects of grafted alkyl groups on aggregation behavior of amphiphilic poly(aspartic acid). Langmuir 17:7501–7506CrossRef
31.
go back to reference Filippov S, Lezov A, Sergeeva O, Olifirenko A, Lesnichin S, Domnina N, Komarova E, Almgren M, Karlsson G, Štĕpánek P (2008) Aggregation of dextran hydrophobically modified by sterically-hindered phenols in aqueous solutions: aggregates vs. single molecules. Eur Polym J 44:3361–3369CrossRef Filippov S, Lezov A, Sergeeva O, Olifirenko A, Lesnichin S, Domnina N, Komarova E, Almgren M, Karlsson G, Štĕpánek P (2008) Aggregation of dextran hydrophobically modified by sterically-hindered phenols in aqueous solutions: aggregates vs. single molecules. Eur Polym J 44:3361–3369CrossRef
Metadata
Title
Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers
Authors
Sergey K. Filippov
Natalya S. Vishnevetskaya
Bart-Jan Niebuur
Eva Koziolová
Ekaterina A. Lomkova
Petr Chytil
Tomas Etrych
Christine M. Papadakis
Publication date
20-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 8/2017
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-017-4027-7

Other articles of this Issue 8/2017

Colloid and Polymer Science 8/2017 Go to the issue

Premium Partners