Skip to main content
Top
Published in: Polymer Bulletin 11/2017

16-03-2017 | Original Paper

Influence of particle contiguity and interphase on the stiffness of particulate epoxy composites

Authors: Antonis Kampouroglou, Emilio P. Sideridis

Published in: Polymer Bulletin | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A theoretical model for the evaluation of the elastic modulus in particulate composites has been developed. The method takes into account the contiguity of the particles and also the existence of an interphase between main phases, which constitutes an important parameter influencing the behavior of a composite material. This layer between the matrix and filler develops different physico-chemical properties from those of the constituent phases and variables along its thickness. The effect of the progressive variation of the elastic modulus of the interphase on the modulus of the composite was estimated by assuming a law of variation. The theoretical values derived from the proposed model were compared with experimental results carried out on iron-particulate-filled epoxy composites and with theoretical values derived from models of other scientists. This comparison was proved to be satisfactory for our proposed model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Nielsen LE (1974) Mechanical properties of polymers and composites, vol 2. Marcel Dekker Inc., New York Nielsen LE (1974) Mechanical properties of polymers and composites, vol 2. Marcel Dekker Inc., New York
2.
go back to reference Kerner EH (1956) The elastic and thermo-elastic properties of composite media. Proc Phys Soc London B69(2):808–813CrossRef Kerner EH (1956) The elastic and thermo-elastic properties of composite media. Proc Phys Soc London B69(2):808–813CrossRef
3.
go back to reference Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11:127–140CrossRef Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11:127–140CrossRef
4.
go back to reference Hojo Z, Toyoshima W, Tamura M et al (1974) Short and longterm strength and characteristics of particulate-field cast epoxy resin. Polym Eng Sci 14:605CrossRef Hojo Z, Toyoshima W, Tamura M et al (1974) Short and longterm strength and characteristics of particulate-field cast epoxy resin. Polym Eng Sci 14:605CrossRef
5.
go back to reference Alter H (1966) Filler particle size and mechanical properties of Polymers. J Appl Polym Sci 9:1525–1531CrossRef Alter H (1966) Filler particle size and mechanical properties of Polymers. J Appl Polym Sci 9:1525–1531CrossRef
6.
go back to reference Baldin WM (1958) Yield strength of metalls as a funstion of grain size. Acta Mech 6:141 Baldin WM (1958) Yield strength of metalls as a funstion of grain size. Acta Mech 6:141
7.
go back to reference Bhattacharya SK, Basu S, De SK (1978) Effect of particle size on the mechanical properties of poly(vinyl chloride)—icoper particulate composites. J Mater Sci 13:2109CrossRef Bhattacharya SK, Basu S, De SK (1978) Effect of particle size on the mechanical properties of poly(vinyl chloride)—icoper particulate composites. J Mater Sci 13:2109CrossRef
8.
go back to reference Landon G, Lewis G, Boden GF (1977) The influence of particle size on the tensile strength of particulate-filled polymers. J Mater Sci 12:1605–1613CrossRef Landon G, Lewis G, Boden GF (1977) The influence of particle size on the tensile strength of particulate-filled polymers. J Mater Sci 12:1605–1613CrossRef
9.
go back to reference Benveniste Y (1985) The effective mechanical behavior of composite materials with imperfect contact between the constituents. Mech Mater 4:197–208CrossRef Benveniste Y (1985) The effective mechanical behavior of composite materials with imperfect contact between the constituents. Mech Mater 4:197–208CrossRef
10.
go back to reference Hashin Z (1990) Thermoelastic properties of fiber composites with imperfect interface. Mech Mater 8:333–348CrossRef Hashin Z (1990) Thermoelastic properties of fiber composites with imperfect interface. Mech Mater 8:333–348CrossRef
11.
go back to reference Papanicolaou GC, Paipetis SA, Theocaris PS (1978) The concept of boundary interphase in composite mechanics. Kolloid Zeit und Zeit fur Polymere 256(7):625–630 Papanicolaou GC, Paipetis SA, Theocaris PS (1978) The concept of boundary interphase in composite mechanics. Kolloid Zeit und Zeit fur Polymere 256(7):625–630
12.
go back to reference Papanicolaou GC, Theocaris PS (1979) Thermal properties and volume fraction of the boundary interphase in metal-filled epoxies. Kolloid Zeit und Zeit fur Polymere 257(3):239–246 Papanicolaou GC, Theocaris PS (1979) Thermal properties and volume fraction of the boundary interphase in metal-filled epoxies. Kolloid Zeit und Zeit fur Polymere 257(3):239–246
13.
go back to reference Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekuldimensionen. Ann Phys 34:591–592CrossRef Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekuldimensionen. Ann Phys 34:591–592CrossRef
14.
go back to reference Paul B (1960) Prediction of elastic constants of multiphase materials. Trans Metallurg Soc AIME 218:36–41 Paul B (1960) Prediction of elastic constants of multiphase materials. Trans Metallurg Soc AIME 218:36–41
15.
16.
go back to reference Smallwood HM (1944) Limiting law of the reinforcement of rubber. J Appl Phys 15:758–766CrossRef Smallwood HM (1944) Limiting law of the reinforcement of rubber. J Appl Phys 15:758–766CrossRef
17.
go back to reference Counto UJ (1964) The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete. Mag Concr Res 16:129CrossRef Counto UJ (1964) The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete. Mag Concr Res 16:129CrossRef
18.
go back to reference Takahashi K, Ikeda M, Harakawa K et al (1978) Analysis of the effect of the interfacial slippage on the elastic moduli of a particle filled polymer. J Polym Sci Part B Polym Phys 16:415CrossRef Takahashi K, Ikeda M, Harakawa K et al (1978) Analysis of the effect of the interfacial slippage on the elastic moduli of a particle filled polymer. J Polym Sci Part B Polym Phys 16:415CrossRef
19.
go back to reference Torquato SJ (1998) Effective stiffness tensor of composite media. II Applications to isotropic dispersions. J Mech Phys Solids 46(8):1411CrossRef Torquato SJ (1998) Effective stiffness tensor of composite media. II Applications to isotropic dispersions. J Mech Phys Solids 46(8):1411CrossRef
20.
go back to reference Gibianski LV, Torquato SJ (1998) New method to generate free-point bounds on effective properties of composites: application to viscoelasticity. J Mech Phys Solids 46(4):749–783CrossRef Gibianski LV, Torquato SJ (1998) New method to generate free-point bounds on effective properties of composites: application to viscoelasticity. J Mech Phys Solids 46(4):749–783CrossRef
21.
go back to reference O’Rourke JP, Ingber MS, Weiser MW (1997) The effective elastic constants of solids containing spherical exclusions. J Compos Mater 31(9):910–934CrossRef O’Rourke JP, Ingber MS, Weiser MW (1997) The effective elastic constants of solids containing spherical exclusions. J Compos Mater 31(9):910–934CrossRef
22.
go back to reference Kachanov M, Sevostianov I (2005) On quantitative characterization of microstructures and effective properties. Int J Solids Struct 42:309–336CrossRef Kachanov M, Sevostianov I (2005) On quantitative characterization of microstructures and effective properties. Int J Solids Struct 42:309–336CrossRef
23.
go back to reference Wang W, Jasiuk I (1998) Effective elastic constants of particulate composites with inhomogeneous interphases. J Compos Mater 32(15):1391–1424CrossRef Wang W, Jasiuk I (1998) Effective elastic constants of particulate composites with inhomogeneous interphases. J Compos Mater 32(15):1391–1424CrossRef
24.
go back to reference Khan KA, Muliana AH (2010) Effective thermal properties of viscoelastic composites having field-dependent constituent properties. Acta Mech 209:153–178CrossRef Khan KA, Muliana AH (2010) Effective thermal properties of viscoelastic composites having field-dependent constituent properties. Acta Mech 209:153–178CrossRef
25.
go back to reference Sevostianov I (2012) On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech Mater 45:20–33CrossRef Sevostianov I (2012) On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech Mater 45:20–33CrossRef
26.
go back to reference Lombardo N. Research Report No (2004) 2004/01. RMIT University, School of Mathematical and Geospatial Sciences, Melbourne Lombardo N. Research Report No (2004) 2004/01. RMIT University, School of Mathematical and Geospatial Sciences, Melbourne
27.
go back to reference Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech Trans ASME 84 Ser E 29:143–150CrossRef Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech Trans ASME 84 Ser E 29:143–150CrossRef
28.
go back to reference Torquato SJ (1991) Random heterogeneous media: microstructure and improved bounds on effective properties. Appl Mech Rev 44:37–76CrossRef Torquato SJ (1991) Random heterogeneous media: microstructure and improved bounds on effective properties. Appl Mech Rev 44:37–76CrossRef
29.
go back to reference Ponte Castaneda P, Willis JR (1995) The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43:1919CrossRef Ponte Castaneda P, Willis JR (1995) The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43:1919CrossRef
30.
go back to reference Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571CrossRef
31.
go back to reference Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222CrossRef Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222CrossRef
32.
go back to reference Budianski B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223CrossRef Budianski B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223CrossRef
33.
go back to reference Mc Langhlin R (1977) A study of the differential scheme for composite materials. Int J Eng Sci 15:237CrossRef Mc Langhlin R (1977) A study of the differential scheme for composite materials. Int J Eng Sci 15:237CrossRef
34.
go back to reference Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. Mech Phys Solids 27:315CrossRef Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. Mech Phys Solids 27:315CrossRef
35.
go back to reference Eshelby JD (1957) The Determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241(1226):376–396CrossRef Eshelby JD (1957) The Determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241(1226):376–396CrossRef
36.
go back to reference Chen HS, Acrivos A (1978) The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. Int. J. Solids and Struct. 14:349–364CrossRef Chen HS, Acrivos A (1978) The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. Int. J. Solids and Struct. 14:349–364CrossRef
37.
go back to reference Ju JW, Chen TM (1994) Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech 103:123–144CrossRef Ju JW, Chen TM (1994) Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech 103:123–144CrossRef
38.
go back to reference Nemat-Nasser S, Iwakuma T, Hejazi M (1982) On composites with periodic structure. M Mech Mater 1(3):239–267CrossRef Nemat-Nasser S, Iwakuma T, Hejazi M (1982) On composites with periodic structure. M Mech Mater 1(3):239–267CrossRef
39.
go back to reference Walker KP, Jordan EH, Freed AD (1990) Equivalence of green’s function and the fourier series representation of composites with periodic microstructure. In: Micromechanics and inhomogeneity—The Toshio Mura 65th anniversary volume; Selected papers from the symposium, ASME Winter Annual Meeting, San Francisco, CA, 10–15 Dec 1989 (A91-16876 04-39). Springer, New York, pp 535–558 Walker KP, Jordan EH, Freed AD (1990) Equivalence of green’s function and the fourier series representation of composites with periodic microstructure. In: Micromechanics and inhomogeneity—The Toshio Mura 65th anniversary volume; Selected papers from the symposium, ASME Winter Annual Meeting, San Francisco, CA, 10–15 Dec 1989 (A91-16876 04-39). Springer, New York, pp 535–558
40.
go back to reference Nunan KC, Keller JBJ (1984) Effective elasticity tensor of a periodic composite. Mech Phys Solids 32:259–280CrossRef Nunan KC, Keller JBJ (1984) Effective elasticity tensor of a periodic composite. Mech Phys Solids 32:259–280CrossRef
41.
go back to reference Sangani AS, Lu JW (1987) Elastic coefficients of composites containing spherical inclusions in a periodic array. J Mech Phys Solids 35:1–21CrossRef Sangani AS, Lu JW (1987) Elastic coefficients of composites containing spherical inclusions in a periodic array. J Mech Phys Solids 35:1–21CrossRef
42.
go back to reference Rodin GJ (1993) The overall elastic response of materials containing spherical inhomogeneities. Int J Solids Struct 30:1849–1863CrossRef Rodin GJ (1993) The overall elastic response of materials containing spherical inhomogeneities. Int J Solids Struct 30:1849–1863CrossRef
43.
go back to reference Kushch VI (1997) Microstresses and effective elastic moduli of a solid reinforced by periodically distributed spheroidal particles. Int J Solids Struct 34:1353–1366CrossRef Kushch VI (1997) Microstresses and effective elastic moduli of a solid reinforced by periodically distributed spheroidal particles. Int J Solids Struct 34:1353–1366CrossRef
44.
go back to reference Cohen I, Bergman DJ (2003) Effective elastic properties of periodic composite medium. Int J Solids Struct 51:1433–1457 Cohen I, Bergman DJ (2003) Effective elastic properties of periodic composite medium. Int J Solids Struct 51:1433–1457
45.
go back to reference Yin HM, Sun LZ (2005) Elastic modelling of periodic composites with particle interactions. Philos Mag Lett 85(4):163–173CrossRef Yin HM, Sun LZ (2005) Elastic modelling of periodic composites with particle interactions. Philos Mag Lett 85(4):163–173CrossRef
46.
go back to reference Venetis J, Sideridis E (2016) A mathematical model for thermal conductivity of homogeneous composite materials. Indian J Pure Appl Phys 54(5):313–320 Venetis J, Sideridis E (2016) A mathematical model for thermal conductivity of homogeneous composite materials. Indian J Pure Appl Phys 54(5):313–320
47.
go back to reference Sideridis E, Venetis J (2014) The stiffness and thermal expansion coefficient of iron particulate epoxy composites defined by considering the particle contiguity. Int Rev Modell Simul 7:671–681 Sideridis E, Venetis J (2014) The stiffness and thermal expansion coefficient of iron particulate epoxy composites defined by considering the particle contiguity. Int Rev Modell Simul 7:671–681
48.
go back to reference Roudini G, Tavangar R, Weber L, Mortensen A (2010) Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites. Int J Mat Res 101:1113–1120CrossRef Roudini G, Tavangar R, Weber L, Mortensen A (2010) Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites. Int J Mat Res 101:1113–1120CrossRef
49.
go back to reference Venetis J, Sideridis E (2015) Thermal conductivity coefficient of particulate composites as defined by the particle arrangement. Int J Appl Eng Res 10(14):34230–34237 Venetis J, Sideridis E (2015) Thermal conductivity coefficient of particulate composites as defined by the particle arrangement. Int J Appl Eng Res 10(14):34230–34237
50.
go back to reference Sideridis E, Venetis J (2014) Thermal expansion coefficient of particulate composites defined by the particle contiguity. Int J Microstruct Mater Prop 9:292–313 Sideridis E, Venetis J (2014) Thermal expansion coefficient of particulate composites defined by the particle contiguity. Int J Microstruct Mater Prop 9:292–313
51.
go back to reference Kanaun SK, Kudriavtseva LT (1986) Spherically layered inclusions in a homogeneous elastic medium. Appl Math Mech 50:483–491CrossRef Kanaun SK, Kudriavtseva LT (1986) Spherically layered inclusions in a homogeneous elastic medium. Appl Math Mech 50:483–491CrossRef
52.
go back to reference Garboczi EJ, Bentz DP (1997) Analytical formulas for interfacial transition zone properties. Adv Cement-Based Mater 6:99–108CrossRef Garboczi EJ, Bentz DP (1997) Analytical formulas for interfacial transition zone properties. Adv Cement-Based Mater 6:99–108CrossRef
53.
go back to reference Lutz MP, Ferrari M (1993) Compression of a sphere with radially varying elastic moduli. Compos Eng 3:873–884CrossRef Lutz MP, Ferrari M (1993) Compression of a sphere with radially varying elastic moduli. Compos Eng 3:873–884CrossRef
54.
go back to reference Lutz MP, Zimmerman RW (1996) Effect of the interphase zone on the bulk modulus of a particulate composite. J Appl Mech 63:855–861CrossRef Lutz MP, Zimmerman RW (1996) Effect of the interphase zone on the bulk modulus of a particulate composite. J Appl Mech 63:855–861CrossRef
55.
go back to reference Lutz MP, Zimmerman RW (2005) Effect of an inhomogeneous interphase zone on the bulk modulus and conductivity of a particulate composite. Int J Solids Struct 42:429–437CrossRef Lutz MP, Zimmerman RW (2005) Effect of an inhomogeneous interphase zone on the bulk modulus and conductivity of a particulate composite. Int J Solids Struct 42:429–437CrossRef
56.
go back to reference Shen L, Li J (2003) Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase. Int J Solids Struct 40:1393–1409CrossRef Shen L, Li J (2003) Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase. Int J Solids Struct 40:1393–1409CrossRef
57.
go back to reference Sevostianov I, Kachanov M (2006) Homogenization of a nanoparticle with graded interface. M Int J Fract 139:121–127CrossRef Sevostianov I, Kachanov M (2006) Homogenization of a nanoparticle with graded interface. M Int J Fract 139:121–127CrossRef
58.
go back to reference Sevostianov I, Kachanov M (2007) Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int J Solids Struct 44:1304–1315CrossRef Sevostianov I, Kachanov M (2007) Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int J Solids Struct 44:1304–1315CrossRef
59.
go back to reference Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842CrossRef Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842CrossRef
60.
go back to reference Zhou TH, Ruan WH, Mai YL, Rong MZ, Zhang MQ (2008) Performance of nanosilica/polypropylene composites through in situ cross-linking approach. Compos Sci Technol 68:2858–2863CrossRef Zhou TH, Ruan WH, Mai YL, Rong MZ, Zhang MQ (2008) Performance of nanosilica/polypropylene composites through in situ cross-linking approach. Compos Sci Technol 68:2858–2863CrossRef
61.
go back to reference Thorvaldsen T, Johnsen BB, Olsen T, Hansen FK (2015) Investigation of theoretical models for the elastic stiffness of nanoparticle-modified polymer composites. J Nanomater 4:1–17CrossRef Thorvaldsen T, Johnsen BB, Olsen T, Hansen FK (2015) Investigation of theoretical models for the elastic stiffness of nanoparticle-modified polymer composites. J Nanomater 4:1–17CrossRef
62.
go back to reference Zaimova D, Bayraktar E, Miskioglu I, Katundi D, Hamouche Z (2014) Manufacturing and damage analysis of filler reinforced epoxy-based composites. Int J Mater Product Technol 48(1/2/3/4):47–65CrossRef Zaimova D, Bayraktar E, Miskioglu I, Katundi D, Hamouche Z (2014) Manufacturing and damage analysis of filler reinforced epoxy-based composites. Int J Mater Product Technol 48(1/2/3/4):47–65CrossRef
63.
go back to reference Ye J, Chu C, Zhai Z, Wang Y, Shi B, Qiu Y (2017) The interphase influences on the particle-reinforced composites with periodic particle configuration. Appl Sci 7(1):102CrossRef Ye J, Chu C, Zhai Z, Wang Y, Shi B, Qiu Y (2017) The interphase influences on the particle-reinforced composites with periodic particle configuration. Appl Sci 7(1):102CrossRef
64.
go back to reference Lipatov YS (1977) Physical chemistry of filled polymers, published by Khimiya (Moscow 1977). Translated from the Russian by R. J. Moseley. International polymer science and technology, monograph no. 2 (see also Lipatov YS., Adv Polym Sci 22:I-59) Lipatov YS (1977) Physical chemistry of filled polymers, published by Khimiya (Moscow 1977). Translated from the Russian by R. J. Moseley. International polymer science and technology, monograph no. 2 (see also Lipatov YS., Adv Polym Sci 22:I-59)
65.
go back to reference Nielsen LE (1967) Mechanical properties of particulate-filled systems. J Compos Mat 1:100–119CrossRef Nielsen LE (1967) Mechanical properties of particulate-filled systems. J Compos Mat 1:100–119CrossRef
66.
go back to reference Nicolais L, Mashelkar RA (1976) The strength of polymeric composites containing spherical fillers. J Appl Polym Sci 20:561–563CrossRef Nicolais L, Mashelkar RA (1976) The strength of polymeric composites containing spherical fillers. J Appl Polym Sci 20:561–563CrossRef
67.
go back to reference Schrager M (1978) The effect of spherical inclusions on the ultimate strength of polymer composites. J Appl Polym Sci 22(8):2379–2381CrossRef Schrager M (1978) The effect of spherical inclusions on the ultimate strength of polymer composites. J Appl Polym Sci 22(8):2379–2381CrossRef
Metadata
Title
Influence of particle contiguity and interphase on the stiffness of particulate epoxy composites
Authors
Antonis Kampouroglou
Emilio P. Sideridis
Publication date
16-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 11/2017
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-1964-8

Other articles of this Issue 11/2017

Polymer Bulletin 11/2017 Go to the issue

Premium Partners