Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2017

24-07-2017

Influence of Pore Characteristics on Electrochemical and Biological Behavior of Ti Foams

Authors: Akram Salehi, Faezeh Barzegar, Hossein Amini Mashhadi, Samira Nokhasteh, Mohammad Sadegh Abravi

Published in: Journal of Materials Engineering and Performance | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study reports on titanium (Ti) foams produced using the powder metallurgy technique. During the investigation, the cross-sectional area and perimeter distributions of the pores within the foam were measured. Metallographic image processing analysis software combined with scanning electron microscopic images demonstrated that the pore size and circularity were affected by varying the volume percentage of the space-holder material. The corrosion resistance was investigated using electrochemical impedance spectroscopy and cyclic polarization tests. MG-63 osteoblast-like cells were used to study the biocompatibility and to evaluate the cell attachment, viability, and alkaline phosphatase activity. Analytical results indicated that 50 and 60 vol.% samples were suitable for biomedical applications. Because of the high degree of interconnectivity in the 60 and 70% porosity samples, the electrochemical parameters produced similar results. The corrosion rate of the porous samples showed that the amount of dissolved Ti was at an acceptable level that can be ejected by the body. Applying a fluoridated hydroxyapatite coating significantly increased the osteoblast cell functions on the porous surface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Nouri, C. Wen, and P.D. Hodgson, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, INTECH Open Access Publisher, Vukovar, 2010CrossRef A. Nouri, C. Wen, and P.D. Hodgson, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, INTECH Open Access Publisher, Vukovar, 2010CrossRef
2.
go back to reference I.-H. Oh, N. Nomura, and S. Hanada, Microstructures and Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering, Mater. Trans., 2002, 43(3), p 443–446CrossRef I.-H. Oh, N. Nomura, and S. Hanada, Microstructures and Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering, Mater. Trans., 2002, 43(3), p 443–446CrossRef
3.
go back to reference I. Mutlu and E. Oktay, Influence of Fluoride Content of Artificial Saliva on Metal Release from 17-4 PH Stainless Steel Foam for Dental Implant Applications, J. Mater. Sci. Technol., 2013, 29(6), p 582–588CrossRef I. Mutlu and E. Oktay, Influence of Fluoride Content of Artificial Saliva on Metal Release from 17-4 PH Stainless Steel Foam for Dental Implant Applications, J. Mater. Sci. Technol., 2013, 29(6), p 582–588CrossRef
4.
go back to reference S. Wisutmethangoon, P. Nu-Young, L. Sikong, and T. Plookphol, Synthesis and Characterization of Porous Titanium, Songklanakarin J. Sci. Technol., 2008, 30(4), p 509 S. Wisutmethangoon, P. Nu-Young, L. Sikong, and T. Plookphol, Synthesis and Characterization of Porous Titanium, Songklanakarin J. Sci. Technol., 2008, 30(4), p 509
5.
go back to reference H.-C. Hsu, S.-K. Hsu, S.-C. Wu, P.-H. Wang, and W.-F. Ho, Design and Characterization of Highly Porous Titanium Foams with Bioactive Surface Sintering in Air, J. Alloy. Compd., 2013, 575, p 326–332CrossRef H.-C. Hsu, S.-K. Hsu, S.-C. Wu, P.-H. Wang, and W.-F. Ho, Design and Characterization of Highly Porous Titanium Foams with Bioactive Surface Sintering in Air, J. Alloy. Compd., 2013, 575, p 326–332CrossRef
6.
go back to reference G. Ryan, A. Pandit, and D.P. Apatsidis, Fabrication Methods of Porous Metals for Use in Orthopaedic Applications, Biomaterials, 2006, 27(13), p 2651–2670CrossRef G. Ryan, A. Pandit, and D.P. Apatsidis, Fabrication Methods of Porous Metals for Use in Orthopaedic Applications, Biomaterials, 2006, 27(13), p 2651–2670CrossRef
7.
go back to reference H. Anawati, H. Tanigawa, H. Asoh, T. Ohno, M. Kubota, and S. Ono, Electrochemical Corrosion and Bioactivity of Titanium–Hydroxyapatite Composites Prepared by Spark Plasma Sintering, Corros. Sci., 2013, 70, p 212–220CrossRef H. Anawati, H. Tanigawa, H. Asoh, T. Ohno, M. Kubota, and S. Ono, Electrochemical Corrosion and Bioactivity of Titanium–Hydroxyapatite Composites Prepared by Spark Plasma Sintering, Corros. Sci., 2013, 70, p 212–220CrossRef
8.
go back to reference L.-J. Chen, L. Ting, Y.-M. Li, H. Hao, and Y.-H. Hu, Porous Titanium Implants Fabricated by Metal Injection Molding, Trans. Nonferr. Metals Soc. China, 2009, 19(5), p 1174–1179CrossRef L.-J. Chen, L. Ting, Y.-M. Li, H. Hao, and Y.-H. Hu, Porous Titanium Implants Fabricated by Metal Injection Molding, Trans. Nonferr. Metals Soc. China, 2009, 19(5), p 1174–1179CrossRef
9.
go back to reference L.M.R. de Vasconcellos, C.A.A. Cairo, L.G.O. de Vasconcellos, M.L. de Alencastro Graça, R.F. do Prado, and Y.R. Carvalho, Porous Titanium by Powder Metallurgy for Biomedical Application: Characterization, Cell Citotoxity and In Vivo Tests of Osseointegration, INTECH Open Access Publisher, Vukovar, 2012 L.M.R. de Vasconcellos, C.A.A. Cairo, L.G.O. de Vasconcellos, M.L. de Alencastro Graça, R.F. do Prado, and Y.R. Carvalho, Porous Titanium by Powder Metallurgy for Biomedical Application: Characterization, Cell Citotoxity and In Vivo Tests of Osseointegration, INTECH Open Access Publisher, Vukovar, 2012
10.
go back to reference Y. Xiong, C. Qian, and J. Sun, Fabrication of Porous Titanium Implants by Three-Dimensional Printing and Sintering at Different Temperatures, Dent. Mater. J., 2012, 31(5), p 815–820CrossRef Y. Xiong, C. Qian, and J. Sun, Fabrication of Porous Titanium Implants by Three-Dimensional Printing and Sintering at Different Temperatures, Dent. Mater. J., 2012, 31(5), p 815–820CrossRef
11.
go back to reference S.-W. Yook, H.-D. Jung, C.-H. Park, K.-H. Shin, Y.-H. Koh, Y. Estrin, and H.-E. Kim, Reverse Freeze Casting: A New Method for Fabricating Highly Porous Titanium Scaffolds with Aligned Large Pores, Acta Biomater., 2012, 8(6), p 2401–2410CrossRef S.-W. Yook, H.-D. Jung, C.-H. Park, K.-H. Shin, Y.-H. Koh, Y. Estrin, and H.-E. Kim, Reverse Freeze Casting: A New Method for Fabricating Highly Porous Titanium Scaffolds with Aligned Large Pores, Acta Biomater., 2012, 8(6), p 2401–2410CrossRef
12.
go back to reference Y. Wang, S. Zhang, X. Zeng, L.L. Ma, W. Weng, W. Yan, and M. Qian, Osteoblastic Cell Response on Fluoridated Hydroxyapatite Coatings, Acta Biomater., 2007, 3(2), p 191–197CrossRef Y. Wang, S. Zhang, X. Zeng, L.L. Ma, W. Weng, W. Yan, and M. Qian, Osteoblastic Cell Response on Fluoridated Hydroxyapatite Coatings, Acta Biomater., 2007, 3(2), p 191–197CrossRef
13.
go back to reference P. Sreejith, P.K. Yarlagadda, Cell Attachment on Ion Implanted Titanium Surface (Global Congress on Manufacturing and Management (GCMM) Board, 2008) P. Sreejith, P.K. Yarlagadda, Cell Attachment on Ion Implanted Titanium Surface (Global Congress on Manufacturing and Management (GCMM) Board, 2008)
14.
go back to reference N. Jha, D. Mondal, J.D. Majumdar, A. Badkul, A. Jha, and A. Khare, Highly Porous Open Cell Ti-Foam Using NaCl as Temporary Space Holder Through Powder Metallurgy Route, Mater. Des., 2013, 47, p 810–819CrossRef N. Jha, D. Mondal, J.D. Majumdar, A. Badkul, A. Jha, and A. Khare, Highly Porous Open Cell Ti-Foam Using NaCl as Temporary Space Holder Through Powder Metallurgy Route, Mater. Des., 2013, 47, p 810–819CrossRef
15.
go back to reference I. Unver, H.O. Gulsoy, and B. Aydemir, Ni-625 Superalloy Foam Processed by Powder Space-Holder Technique, J. Mater. Eng. Perform., 2013, 22(12), p 3735–3741CrossRef I. Unver, H.O. Gulsoy, and B. Aydemir, Ni-625 Superalloy Foam Processed by Powder Space-Holder Technique, J. Mater. Eng. Perform., 2013, 22(12), p 3735–3741CrossRef
16.
go back to reference B. Lee, T. Lee, Y. Lee, D.J. Lee, J. Jeong, J. Yuh, S.H. Oh, H.S. Kim, and C.S. Lee, Space-Holder Effect on Designing Pore Structure and Determining Mechanical Properties in Porous Titanium, Mater. Des., 2014, 57, p 712–718CrossRef B. Lee, T. Lee, Y. Lee, D.J. Lee, J. Jeong, J. Yuh, S.H. Oh, H.S. Kim, and C.S. Lee, Space-Holder Effect on Designing Pore Structure and Determining Mechanical Properties in Porous Titanium, Mater. Des., 2014, 57, p 712–718CrossRef
17.
go back to reference X. Wang, Z. Li, Y. Huang, K. Wang, X. Wang, and F. Han, Processing of Magnesium Foams by Weakly Corrosive and Highly Flexible Space Holder Materials, Mater. Des., 2014, 64, p 324–329CrossRef X. Wang, Z. Li, Y. Huang, K. Wang, X. Wang, and F. Han, Processing of Magnesium Foams by Weakly Corrosive and Highly Flexible Space Holder Materials, Mater. Des., 2014, 64, p 324–329CrossRef
18.
go back to reference O. Smorygo, A. Marukovich, V. Mikutski, A. Gokhale, G.J. Reddy, and J.V. Kumar, High-Porosity Titanium Foams by Powder Coated Space Holder Compaction Method, Mater. Lett., 2012, 83, p 17–19CrossRef O. Smorygo, A. Marukovich, V. Mikutski, A. Gokhale, G.J. Reddy, and J.V. Kumar, High-Porosity Titanium Foams by Powder Coated Space Holder Compaction Method, Mater. Lett., 2012, 83, p 17–19CrossRef
19.
go back to reference J. Jakubowicz, G. Adamek, and M. Dewidar, Titanium Foam Made with Saccharose as a Space Holder, J. Porous Mater., 2013, 20(5), p 1137–1141CrossRef J. Jakubowicz, G. Adamek, and M. Dewidar, Titanium Foam Made with Saccharose as a Space Holder, J. Porous Mater., 2013, 20(5), p 1137–1141CrossRef
20.
go back to reference C. Xiang, Y. Zhang, Z. Li, H. Zhang, Y. Huang, and H. Tang, Preparation and Compressive Behavior of Porous Titanium Prepared by Space Holder Sintering Process, Procedia Eng., 2012, 27, p 768–774CrossRef C. Xiang, Y. Zhang, Z. Li, H. Zhang, Y. Huang, and H. Tang, Preparation and Compressive Behavior of Porous Titanium Prepared by Space Holder Sintering Process, Procedia Eng., 2012, 27, p 768–774CrossRef
21.
go back to reference R.L. Cabrini, M.B. Guglielmotti, and J.C. Almagro, Histomorphometry of Initial Bone Healing Around Zirconium Implants in Rats, Implant Dent., 1993, 2(4), p 264–268CrossRef R.L. Cabrini, M.B. Guglielmotti, and J.C. Almagro, Histomorphometry of Initial Bone Healing Around Zirconium Implants in Rats, Implant Dent., 1993, 2(4), p 264–268CrossRef
22.
go back to reference B. Kasemo, Biocompatibility of Titanium Implants: Surface Science Aspects, J. Prosthet. Dent., 1983, 49(6), p 832–837CrossRef B. Kasemo, Biocompatibility of Titanium Implants: Surface Science Aspects, J. Prosthet. Dent., 1983, 49(6), p 832–837CrossRef
23.
go back to reference I. Mutlu, S. Yeniyol, and E. Oktay, Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications, J. Mater. Eng. Perform., 2016, 25(4), p 1586–1593CrossRef I. Mutlu, S. Yeniyol, and E. Oktay, Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications, J. Mater. Eng. Perform., 2016, 25(4), p 1586–1593CrossRef
24.
go back to reference C. Anandan and L. Mohan, In Vitro Corrosion Behavior and Apatite Growth of Oxygen Plasma Ion Implanted Titanium Alloy β-21S, J. Mater. Eng. Perform., 2013, 22(11), p 3507–3516CrossRef C. Anandan and L. Mohan, In Vitro Corrosion Behavior and Apatite Growth of Oxygen Plasma Ion Implanted Titanium Alloy β-21S, J. Mater. Eng. Perform., 2013, 22(11), p 3507–3516CrossRef
25.
go back to reference F. Xie, X. He, S. Cao, M. Mei, and X. Qu, Influence of Pore Characteristics on Microstructure, Mechanical Properties and Corrosion Resistance of Selective Laser Sintered Porous Ti-Mo Alloys for Biomedical Applications, Electrochim. Acta, 2013, 105, p 121–129CrossRef F. Xie, X. He, S. Cao, M. Mei, and X. Qu, Influence of Pore Characteristics on Microstructure, Mechanical Properties and Corrosion Resistance of Selective Laser Sintered Porous Ti-Mo Alloys for Biomedical Applications, Electrochim. Acta, 2013, 105, p 121–129CrossRef
26.
go back to reference K. Seah, R. Thampuran, and S. Teoh, The Influence of Pore Morphology on Corrosion, Corros. Sci., 1998, 40(4), p 547–556CrossRef K. Seah, R. Thampuran, and S. Teoh, The Influence of Pore Morphology on Corrosion, Corros. Sci., 1998, 40(4), p 547–556CrossRef
27.
go back to reference D. Blackwood and S. Chooi, Stability of Protective Oxide Films Formed on a Porous Titanium, Corros. Sci., 2002, 44(3), p 395–405CrossRef D. Blackwood and S. Chooi, Stability of Protective Oxide Films Formed on a Porous Titanium, Corros. Sci., 2002, 44(3), p 395–405CrossRef
28.
go back to reference M. Handbook, ASM Handbook—Formerly Ninth Edition, Metals Handbook: Volume 13: Corrosion (ASM International, 584, 1415, 1987) M. Handbook, ASM Handbook—Formerly Ninth Edition, Metals Handbook: Volume 13: Corrosion (ASM International, 584, 1415, 1987)
29.
go back to reference D. Blackwood, A. Chua, K. Seah, R. Thampuran, and S. Teoh, Corrosion Behaviour of Porous Titanium–Graphite Composites Designed for Surgical Implants, Corros. Sci., 2000, 42(3), p 481–503CrossRef D. Blackwood, A. Chua, K. Seah, R. Thampuran, and S. Teoh, Corrosion Behaviour of Porous Titanium–Graphite Composites Designed for Surgical Implants, Corros. Sci., 2000, 42(3), p 481–503CrossRef
30.
go back to reference Y.-H. Li, G.-B. Rao, L.-J. Rong, and Y.-Y. Li, The Influence of Porosity on Corrosion Characteristics of Porous NiTi Alloy in Simulated Body Fluid, Mater. Lett., 2002, 57(2), p 448–451CrossRef Y.-H. Li, G.-B. Rao, L.-J. Rong, and Y.-Y. Li, The Influence of Porosity on Corrosion Characteristics of Porous NiTi Alloy in Simulated Body Fluid, Mater. Lett., 2002, 57(2), p 448–451CrossRef
31.
go back to reference X. Sun, Z. Kang, X. Zhang, H. Jiang, R. Guan, and X. Zhang, A Comparative Study on the Corrosion Behavior of Porous and Dense NiTi Shape Memory Alloys in NaCl Solution, Electrochim. Acta, 2011, 56(18), p 6389–6396CrossRef X. Sun, Z. Kang, X. Zhang, H. Jiang, R. Guan, and X. Zhang, A Comparative Study on the Corrosion Behavior of Porous and Dense NiTi Shape Memory Alloys in NaCl Solution, Electrochim. Acta, 2011, 56(18), p 6389–6396CrossRef
32.
go back to reference C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater Sci., 2001, 46(1), p 1–184CrossRef C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater Sci., 2001, 46(1), p 1–184CrossRef
33.
go back to reference J. Fojt, L. Joska, and J. Málek, Corrosion Behaviour of Porous Ti-39Nb Alloy for Biomedical Applications, Corros. Sci., 2013, 71, p 78–83CrossRef J. Fojt, L. Joska, and J. Málek, Corrosion Behaviour of Porous Ti-39Nb Alloy for Biomedical Applications, Corros. Sci., 2013, 71, p 78–83CrossRef
34.
go back to reference G. Xie, F. Qin, S. Zhu, and D. Louzguine-Lugzin, Corrosion Behaviour of Porous Ni-Free Ti-Based Bulk Metallic Glass Produced by Spark Plasma Sintering in Hanks’ Solution, Intermetallics, 2014, 44, p 55–59CrossRef G. Xie, F. Qin, S. Zhu, and D. Louzguine-Lugzin, Corrosion Behaviour of Porous Ni-Free Ti-Based Bulk Metallic Glass Produced by Spark Plasma Sintering in Hanks’ Solution, Intermetallics, 2014, 44, p 55–59CrossRef
35.
go back to reference L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo, Powder Metallurgy CP-Ti Performances: Hydride–Dehydride Versus Sponge, Mater. Des., 2014, 60, p 226–232CrossRef L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo, Powder Metallurgy CP-Ti Performances: Hydride–Dehydride Versus Sponge, Mater. Des., 2014, 60, p 226–232CrossRef
36.
go back to reference A. Braem, A. Chaudhari, M.V. Cardoso, J. Schrooten, J. Duyck, and J. Vleugels, Peri-and Intra-Implant Bone Response to Microporous Ti Coatings with Surface Modification, Acta Biomater., 2014, 10(2), p 986–995CrossRef A. Braem, A. Chaudhari, M.V. Cardoso, J. Schrooten, J. Duyck, and J. Vleugels, Peri-and Intra-Implant Bone Response to Microporous Ti Coatings with Surface Modification, Acta Biomater., 2014, 10(2), p 986–995CrossRef
37.
go back to reference Y.-J. Park, Y.-H. Song, J.-H. An, H.-J. Song, and K.J. Anusavice, Cytocompatibility of Pure Metals and Experimental Binary Titanium Alloys for Implant Materials, J. Dent., 2013, 41(12), p 1251–1258CrossRef Y.-J. Park, Y.-H. Song, J.-H. An, H.-J. Song, and K.J. Anusavice, Cytocompatibility of Pure Metals and Experimental Binary Titanium Alloys for Implant Materials, J. Dent., 2013, 41(12), p 1251–1258CrossRef
38.
go back to reference R. Solar, Corrosion Resistance of Titanium Surgical Implant Alloys: a Review, Corrosion and Degradation of Implant Materials, ASTM STP, 1979, 684, p 259–273 R. Solar, Corrosion Resistance of Titanium Surgical Implant Alloys: a Review, Corrosion and Degradation of Implant Materials, ASTM STP, 1979, 684, p 259–273
39.
go back to reference B. Norma, 600–91 Standard Guide for Descaling and Cleaning Titanium and Titanium Alloy Surfaces (ASTM, 2002) B. Norma, 600–91 Standard Guide for Descaling and Cleaning Titanium and Titanium Alloy Surfaces (ASTM, 2002)
40.
go back to reference A. Salehi, H.A. Mashhadi, M. Abravi, and H. Jafarian, An Ultrasound-assisted Method on the Formation of Nanocrystalline Fluorohydroxyapatite Coatings on Titanium Scaffold by Dip Coating Process, Procedia Mater. Sci., 2015, 11, p 137–141CrossRef A. Salehi, H.A. Mashhadi, M. Abravi, and H. Jafarian, An Ultrasound-assisted Method on the Formation of Nanocrystalline Fluorohydroxyapatite Coatings on Titanium Scaffold by Dip Coating Process, Procedia Mater. Sci., 2015, 11, p 137–141CrossRef
41.
go back to reference Y. Torres, S. Lascano, J. Bris, J. Pavón, and J.A. Rodriguez, Development of Porous Titanium for Biomedical Applications: A Comparison Between Loose Sintering and Space-Holder Techniques, Mater. Sci. Eng. C, 2014, 37, p 148–155CrossRef Y. Torres, S. Lascano, J. Bris, J. Pavón, and J.A. Rodriguez, Development of Porous Titanium for Biomedical Applications: A Comparison Between Loose Sintering and Space-Holder Techniques, Mater. Sci. Eng. C, 2014, 37, p 148–155CrossRef
42.
go back to reference Z. Esen and Ş. Bor, Characterization of Ti-6Al-4V Alloy Foams Synthesized by Space Holder Technique, Mater. Sci. Eng. A, 2011, 528(7–8), p 3200–3209CrossRef Z. Esen and Ş. Bor, Characterization of Ti-6Al-4V Alloy Foams Synthesized by Space Holder Technique, Mater. Sci. Eng. A, 2011, 528(7–8), p 3200–3209CrossRef
43.
go back to reference B. Wysocki, J. Idaszek, K. Szlązak, K. Strzelczyk, T. Brynk, K. Kurzydłowski, and W. Święszkowski, Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering, Materials, 2016, 9(3), p 197CrossRef B. Wysocki, J. Idaszek, K. Szlązak, K. Strzelczyk, T. Brynk, K. Kurzydłowski, and W. Święszkowski, Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering, Materials, 2016, 9(3), p 197CrossRef
44.
go back to reference H.P. Tang, J. Wang, and M. Qian, 28 - Porous Titanium Structures and Applications, Titanium Powder Metallurgy: Science, Technology and Applications. Butterworth-Heinemann, 2015, p 533–554 H.P. Tang, J. Wang, and M. Qian, 28 - Porous Titanium Structures and Applications, Titanium Powder Metallurgy: Science, Technology and Applications. Butterworth-Heinemann, 2015, p 533–554
45.
go back to reference F. Zhang, G.-L. Yang, F.-M. He, L.-J. Zhang, and S.-F. Zhao, Cell Response of Titanium Implant with a Roughened Surface Containing Titanium Hydride: An In Vitro Study, J. Oral Maxillofac. Surg., 2010, 68(5), p 1131–1139CrossRef F. Zhang, G.-L. Yang, F.-M. He, L.-J. Zhang, and S.-F. Zhao, Cell Response of Titanium Implant with a Roughened Surface Containing Titanium Hydride: An In Vitro Study, J. Oral Maxillofac. Surg., 2010, 68(5), p 1131–1139CrossRef
46.
go back to reference R. Surace, L. De Filippis, A. Ludovico, and G. Boghetich, Influence of Processing Parameters on Aluminium Foam Produced by Space Holder Technique, Mater. Des., 2009, 30(6), p 1878–1885CrossRef R. Surace, L. De Filippis, A. Ludovico, and G. Boghetich, Influence of Processing Parameters on Aluminium Foam Produced by Space Holder Technique, Mater. Des., 2009, 30(6), p 1878–1885CrossRef
47.
go back to reference J. Rivard, V. Brailovski, S. Dubinskiy, and S. Prokoshkin, Fabrication, Morphology and Mechanical Properties of Ti and Metastable Ti-Based Alloy Foams for Biomedical Applications, Mater. Sci. Eng. C, 2014, 45, p 421–433CrossRef J. Rivard, V. Brailovski, S. Dubinskiy, and S. Prokoshkin, Fabrication, Morphology and Mechanical Properties of Ti and Metastable Ti-Based Alloy Foams for Biomedical Applications, Mater. Sci. Eng. C, 2014, 45, p 421–433CrossRef
48.
go back to reference L. de Vasconcellos, D. Leite, F.-O. Nascimento, L. de Vasconcellos, M. Graça, Y.-R. Carvalho, and C. Cairo, Porous Titanium for Biomedical Applications: An Experimental Study on Rabbits, Medicina oral, patologia oral y cirugia bucal, 2010, 15(2), p e407–e412CrossRef L. de Vasconcellos, D. Leite, F.-O. Nascimento, L. de Vasconcellos, M. Graça, Y.-R. Carvalho, and C. Cairo, Porous Titanium for Biomedical Applications: An Experimental Study on Rabbits, Medicina oral, patologia oral y cirugia bucal, 2010, 15(2), p e407–e412CrossRef
49.
go back to reference V.K. Balla, S. Bodhak, S. Bose, and A. Bandyopadhyay, Porous Tantalum Structures for Bone Implants: Fabrication, Mechanical and In Vitro Biological Properties, Acta Biomater., 2010, 6(8), p 3349–3359CrossRef V.K. Balla, S. Bodhak, S. Bose, and A. Bandyopadhyay, Porous Tantalum Structures for Bone Implants: Fabrication, Mechanical and In Vitro Biological Properties, Acta Biomater., 2010, 6(8), p 3349–3359CrossRef
50.
go back to reference X. Rao, C. Chu, and Y. Zheng, Phase Composition, Microstructure, and Mechanical Properties of Porous Ti-Nb-Zr Alloys Prepared by a two-Step Foaming Powder Metallurgy Method, J. Mech. Behav. Biomed. Mater., 2014, 34, p 27–36CrossRef X. Rao, C. Chu, and Y. Zheng, Phase Composition, Microstructure, and Mechanical Properties of Porous Ti-Nb-Zr Alloys Prepared by a two-Step Foaming Powder Metallurgy Method, J. Mech. Behav. Biomed. Mater., 2014, 34, p 27–36CrossRef
51.
go back to reference M. Arciniegas, C. Aparicio, J. Manero, and F. Gil, Low Elastic Modulus Metals for Joint Prosthesis: Tantalum and Nickel–Titanium Foams, J. Eur. Ceram. Soc., 2007, 27(11), p 3391–3398CrossRef M. Arciniegas, C. Aparicio, J. Manero, and F. Gil, Low Elastic Modulus Metals for Joint Prosthesis: Tantalum and Nickel–Titanium Foams, J. Eur. Ceram. Soc., 2007, 27(11), p 3391–3398CrossRef
52.
go back to reference Y. Bai, S. Li, F. Prima, Y. Hao, and R. Yang, Electrochemical Corrosion Behavior of Ti-24Nb-4Zr-8Sn Alloy in a Simulated Physiological Environment, Appl. Surf. Sci., 2012, 258(8), p 4035–4040CrossRef Y. Bai, S. Li, F. Prima, Y. Hao, and R. Yang, Electrochemical Corrosion Behavior of Ti-24Nb-4Zr-8Sn Alloy in a Simulated Physiological Environment, Appl. Surf. Sci., 2012, 258(8), p 4035–4040CrossRef
53.
go back to reference C. Vasilescu, S. Drob, E. Neacsu, and J.M. Rosca, Surface Analysis and Corrosion Resistance of a New Titanium Base Alloy in Simulated Body Fluids, Corros. Sci., 2012, 65, p 431–440CrossRef C. Vasilescu, S. Drob, E. Neacsu, and J.M. Rosca, Surface Analysis and Corrosion Resistance of a New Titanium Base Alloy in Simulated Body Fluids, Corros. Sci., 2012, 65, p 431–440CrossRef
54.
go back to reference M. Aziz-Kerrzo, K.G. Conroy, A.M. Fenelon, S.T. Farrell, and C.B. Breslin, Electrochemical Studies on the Stability and Corrosion Resistance of Titanium-Based Implant Materials, Biomaterials, 2001, 22(12), p 1531–1539CrossRef M. Aziz-Kerrzo, K.G. Conroy, A.M. Fenelon, S.T. Farrell, and C.B. Breslin, Electrochemical Studies on the Stability and Corrosion Resistance of Titanium-Based Implant Materials, Biomaterials, 2001, 22(12), p 1531–1539CrossRef
55.
go back to reference R. Lange, F. Lüthen, U. Beck, J. Rychly, A. Baumann, and B. Nebe, Cell-Extracellular Matrix Interaction and Physico-Chemical Characteristics of Titanium Surfaces Depend on the Roughness of the Material, Biomol. Eng., 2002, 19(2), p 255–261CrossRef R. Lange, F. Lüthen, U. Beck, J. Rychly, A. Baumann, and B. Nebe, Cell-Extracellular Matrix Interaction and Physico-Chemical Characteristics of Titanium Surfaces Depend on the Roughness of the Material, Biomol. Eng., 2002, 19(2), p 255–261CrossRef
56.
go back to reference J. Pan, D. Thierry, and C. Leygraf, Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application, Electrochim. Acta, 1996, 41(7), p 1143–1153CrossRef J. Pan, D. Thierry, and C. Leygraf, Electrochemical Impedance Spectroscopy Study of the Passive Oxide Film on Titanium for Implant Application, Electrochim. Acta, 1996, 41(7), p 1143–1153CrossRef
57.
go back to reference Y. Huang and D. Blackwood, Characterisation of Titanium Oxide Film Grown in 0.9% NaCl at Different Sweep Rates, Electrochim. Acta, 2005, 51(6), p 1099–1107CrossRef Y. Huang and D. Blackwood, Characterisation of Titanium Oxide Film Grown in 0.9% NaCl at Different Sweep Rates, Electrochim. Acta, 2005, 51(6), p 1099–1107CrossRef
58.
go back to reference R. Menini, M.-J. Dion, S.K. So, M. Gauthier, and L.-P. Lefebvre, Surface and corrosion Electrochemical Characterization of Titanium Foams for Implant Applications, J. Electrochem. Soc., 2006, 153(1), p B13–B21CrossRef R. Menini, M.-J. Dion, S.K. So, M. Gauthier, and L.-P. Lefebvre, Surface and corrosion Electrochemical Characterization of Titanium Foams for Implant Applications, J. Electrochem. Soc., 2006, 153(1), p B13–B21CrossRef
59.
go back to reference A. Lasia, Study of Electrode Activities Towards the Hydrogen Evolution Reaction by ac Impedance Spectroscopy, Int. J. Hydrogen Energy, 1993, 18(7), p 557–560CrossRef A. Lasia, Study of Electrode Activities Towards the Hydrogen Evolution Reaction by ac Impedance Spectroscopy, Int. J. Hydrogen Energy, 1993, 18(7), p 557–560CrossRef
60.
go back to reference D. Blackwood, Influence of the Space-Charge Region on Electrochemical Impedance Measurements on Passive Oxide Films on Titanium, Electrochim. Acta, 2000, 46(4), p 563–569CrossRef D. Blackwood, Influence of the Space-Charge Region on Electrochemical Impedance Measurements on Passive Oxide Films on Titanium, Electrochim. Acta, 2000, 46(4), p 563–569CrossRef
61.
go back to reference M. Hoseinpoor, M. Momeni, M.H. Moayed, and A. Davoodi, EIS Assessment of Critical Pitting Temperature of 2205 Duplex Stainless Steel in Acidified Ferric Chloride Solution, Corros. Sci., 2014, 80, p 197–204CrossRef M. Hoseinpoor, M. Momeni, M.H. Moayed, and A. Davoodi, EIS Assessment of Critical Pitting Temperature of 2205 Duplex Stainless Steel in Acidified Ferric Chloride Solution, Corros. Sci., 2014, 80, p 197–204CrossRef
62.
go back to reference N. Ebrahimi, M. Momeni, A. Kosari, M. Zakeri, and M.H. Moayed, A Comparative Study of Critical Pitting Temperature (CPT) of Stainless Steels by Electrochemical Impedance Spectroscopy (EIS), Potentiodynamic and Potentiostatic Techniques, Corros. Sci., 2012, 59, p 96–102CrossRef N. Ebrahimi, M. Momeni, A. Kosari, M. Zakeri, and M.H. Moayed, A Comparative Study of Critical Pitting Temperature (CPT) of Stainless Steels by Electrochemical Impedance Spectroscopy (EIS), Potentiodynamic and Potentiostatic Techniques, Corros. Sci., 2012, 59, p 96–102CrossRef
63.
go back to reference M. Khan, R. Williams, and D. Williams, In-Vitro Corrosion and Wear of Titanium Alloys in the Biological Environment, Biomaterials, 1996, 17(22), p 2117–2126CrossRef M. Khan, R. Williams, and D. Williams, In-Vitro Corrosion and Wear of Titanium Alloys in the Biological Environment, Biomaterials, 1996, 17(22), p 2117–2126CrossRef
64.
go back to reference Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R Rep., 2015, 87, p 1–57CrossRef Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R Rep., 2015, 87, p 1–57CrossRef
65.
66.
go back to reference M. Roy, A. Bandyopadhyay, and S. Bose, Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants, Surf. Coat. Technol., 2011, 205(8–9), p 2785–2792CrossRef M. Roy, A. Bandyopadhyay, and S. Bose, Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants, Surf. Coat. Technol., 2011, 205(8–9), p 2785–2792CrossRef
67.
go back to reference X.-B. Chen, Y.-C. Li, J.D. Plessis, and P.D. Hodgson, C.e. Wen, Influence of Calcium Ion Deposition on Apatite-Inducing Ability of Porous Titanium for Biomedical Applications, Acta Biomater., 2009, 5(5), p 1808–1820CrossRef X.-B. Chen, Y.-C. Li, J.D. Plessis, and P.D. Hodgson, C.e. Wen, Influence of Calcium Ion Deposition on Apatite-Inducing Ability of Porous Titanium for Biomedical Applications, Acta Biomater., 2009, 5(5), p 1808–1820CrossRef
68.
go back to reference J. Chen, Z. Yu, P. Zhu, J. Wang, Z. Gan, J. Wei, Y. Zhao, and S. Wei, Effects of Fluorine on the Structure of Fluorohydroxyapatite: A Study by XRD, Solid-State NMR and Raman Spectroscopy, J. Mater. Chem. B, 2015, 3(1), p 34–38CrossRef J. Chen, Z. Yu, P. Zhu, J. Wang, Z. Gan, J. Wei, Y. Zhao, and S. Wei, Effects of Fluorine on the Structure of Fluorohydroxyapatite: A Study by XRD, Solid-State NMR and Raman Spectroscopy, J. Mater. Chem. B, 2015, 3(1), p 34–38CrossRef
69.
go back to reference D.M. Dohan Ehrenfest, P.G. Coelho, B.-S. Kang, Y.-T. Sul, and T. Albrektsson, Classification of Osseointegrated Implant Surfaces: Materials, Chemistry and Topography, Trends Biotechnol., 2010, 28(4), p 198–206CrossRef D.M. Dohan Ehrenfest, P.G. Coelho, B.-S. Kang, Y.-T. Sul, and T. Albrektsson, Classification of Osseointegrated Implant Surfaces: Materials, Chemistry and Topography, Trends Biotechnol., 2010, 28(4), p 198–206CrossRef
70.
go back to reference M.H. Parsa, C. Zamani, A. Babaei, S. Sheibani, A. Salehi, H.A. Mashhadi, M.S. Abravi, H.R. Jafarian, in 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15An Ultrasound-Assisted Method on the Formation of Nanocrystalline Fluorohydroxyapatite Coatings on Titanium Scaffold by Dip Coating Process, Procedia Materials Science, vol. 11, pp. 137–141, 2015 M.H. Parsa, C. Zamani, A. Babaei, S. Sheibani, A. Salehi, H.A. Mashhadi, M.S. Abravi, H.R. Jafarian, in 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15An Ultrasound-Assisted Method on the Formation of Nanocrystalline Fluorohydroxyapatite Coatings on Titanium Scaffold by Dip Coating Process, Procedia Materials Science, vol. 11, pp. 137–141, 2015
71.
go back to reference H. Zhou and J. Lee, Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering, Acta Biomater., 2011, 7(7), p 2769–2781CrossRef H. Zhou and J. Lee, Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering, Acta Biomater., 2011, 7(7), p 2769–2781CrossRef
72.
go back to reference R. Stangl, B. Rinne, S. Kastl, and C. Hendrich, The Influence of Pore Geometry in cp Ti-Implants—A Cell Culture Investigation, Eur. Cells Mater., 2001, 2, p 1–9CrossRef R. Stangl, B. Rinne, S. Kastl, and C. Hendrich, The Influence of Pore Geometry in cp Ti-Implants—A Cell Culture Investigation, Eur. Cells Mater., 2001, 2, p 1–9CrossRef
73.
go back to reference H.-W. Kim, H.-E. Kim, V. Salih, and J.C. Knowles, Dissolution Control and Cellular Responses of Calcium Phosphate Coatings on Zirconia Porous Scaffold, J. Biomed. Mater. Res. Part A, 2004, 68A(3), p 522–530CrossRef H.-W. Kim, H.-E. Kim, V. Salih, and J.C. Knowles, Dissolution Control and Cellular Responses of Calcium Phosphate Coatings on Zirconia Porous Scaffold, J. Biomed. Mater. Res. Part A, 2004, 68A(3), p 522–530CrossRef
Metadata
Title
Influence of Pore Characteristics on Electrochemical and Biological Behavior of Ti Foams
Authors
Akram Salehi
Faezeh Barzegar
Hossein Amini Mashhadi
Samira Nokhasteh
Mohammad Sadegh Abravi
Publication date
24-07-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2829-x

Other articles of this Issue 8/2017

Journal of Materials Engineering and Performance 8/2017 Go to the issue

Premium Partners