Skip to main content
Top
Published in: Computational Mechanics 5/2018

13-04-2018 | Original Paper

Influence of stochastic geometric imperfections on the load-carrying behaviour of thin-walled structures using constrained random fields

Authors: S. Lauterbach, M. Fina, W. Wagner

Published in: Computational Mechanics | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since structural engineering requires highly developed and optimized structures, the thickness dependency is one of the most controversially debated topics. This paper deals with stability analysis of lightweight thin structures combined with arbitrary geometrical imperfections. Generally known design guidelines only consider imperfections for simple shapes and loading, whereas for complex structures the lower-bound design philosophy still holds. Herein, uncertainties are considered with an empirical knockdown factor representing a lower bound of existing measurements. To fully understand and predict expected bearable loads, numerical investigations are essential, including geometrical imperfections. These are implemented into a stand-alone program code with a stochastic approach to compute random fields as geometric imperfections that are applied to nodes of the finite element mesh of selected structural examples. The stochastic approach uses the Karhunen–Loève expansion for the random field discretization. For this approach, the so-called correlation length \(l_c\) controls the random field in a powerful way. This parameter has a major influence on the buckling shape, and also on the stability load. First, the impact of the correlation length is studied for simple structures. Second, since most structures for engineering devices are more complex and combined structures, these are intensively discussed with the focus on constrained random fields for e.g. flange–web-intersections. Specific constraints for those random fields are pointed out with regard to the finite element model. Further, geometrical imperfections vanish where the structure is supported.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Koiter W (1970) The stability of elastic equilibrium. Tech. rep., DTIC document Koiter W (1970) The stability of elastic equilibrium. Tech. rep., DTIC document
2.
go back to reference Thompson J, Hunt G (1973) A general theory of elastic stability, vol 5. Wiley, LondonMATH Thompson J, Hunt G (1973) A general theory of elastic stability, vol 5. Wiley, LondonMATH
3.
go back to reference Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9):1031–1051CrossRef Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9):1031–1051CrossRef
4.
go back to reference Argyris J, Papadrakakis M, Stefanou G (2002) Stochastic finite element analysis of shells. Comput Methods Appl Mech Eng 191(41):4781–4804CrossRef Argyris J, Papadrakakis M, Stefanou G (2002) Stochastic finite element analysis of shells. Comput Methods Appl Mech Eng 191(41):4781–4804CrossRef
5.
go back to reference Ghanem R (1996) Numerical solution of spectral stochastic finite element systems. Comput Methods Appl Mech Eng 129:289–303CrossRef Ghanem R (1996) Numerical solution of spectral stochastic finite element systems. Comput Methods Appl Mech Eng 129:289–303CrossRef
6.
go back to reference Ghanem R (1999) Ingredients for a general purpose stochastic finite elements implementation. Comput Methods Appl Mech Eng 168:19–34MathSciNetCrossRef Ghanem R (1999) Ingredients for a general purpose stochastic finite elements implementation. Comput Methods Appl Mech Eng 168:19–34MathSciNetCrossRef
7.
go back to reference Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, BerlinCrossRef Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, BerlinCrossRef
8.
go back to reference Kleiber M, Hien T (1992) The stochastic finite element method—basic perturbation technique and computer implementation. Whiley, New YorkMATH Kleiber M, Hien T (1992) The stochastic finite element method—basic perturbation technique and computer implementation. Whiley, New YorkMATH
9.
go back to reference Schuëller G (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773CrossRef Schuëller G (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773CrossRef
10.
go back to reference Papadopoulos V, Papadrakakis M (2004) Finite-element analysis of cylindrical panels with random initial imperfections. J Eng Mech 130(8):867–876CrossRef Papadopoulos V, Papadrakakis M (2004) Finite-element analysis of cylindrical panels with random initial imperfections. J Eng Mech 130(8):867–876CrossRef
11.
go back to reference Papadopoulos V, Papadrakakis M (2005) The effect of material and thickness variability on the buckling load of shells with random initial imperfections. Comput Methods Appl Mech Eng 194:1405–1426CrossRef Papadopoulos V, Papadrakakis M (2005) The effect of material and thickness variability on the buckling load of shells with random initial imperfections. Comput Methods Appl Mech Eng 194:1405–1426CrossRef
12.
go back to reference Papadopoulos V, Soimiris G, Papadrakakis M (2013) Buckling analysis of I-section portal frames with stochastic imperfections. Eng Struct 47:54–66CrossRef Papadopoulos V, Soimiris G, Papadrakakis M (2013) Buckling analysis of I-section portal frames with stochastic imperfections. Eng Struct 47:54–66CrossRef
13.
go back to reference Kepple J, Herath M, Pearce G, Prusty G, Thomson R, Degenhardt R (2015) Improved stochastic methods for modelling imperfections for buckling analysis of composite cylindrical shells. Eng Struct 100:385–398CrossRef Kepple J, Herath M, Pearce G, Prusty G, Thomson R, Degenhardt R (2015) Improved stochastic methods for modelling imperfections for buckling analysis of composite cylindrical shells. Eng Struct 100:385–398CrossRef
14.
go back to reference Schenk C, Schüller G (2003) Buckling analysis of cylindrical shells with random geometric imperfections. Int J Non-Linear Mech 38(7):1119–1132CrossRef Schenk C, Schüller G (2003) Buckling analysis of cylindrical shells with random geometric imperfections. Int J Non-Linear Mech 38(7):1119–1132CrossRef
15.
go back to reference Broggi M, Calvi A, Schuëller G (2011) Reliability assessment of axially compressed composite cylindrical shells with random imperfections. Int J Struct Stab Dyn 11(02):215–236MathSciNetCrossRef Broggi M, Calvi A, Schuëller G (2011) Reliability assessment of axially compressed composite cylindrical shells with random imperfections. Int J Struct Stab Dyn 11(02):215–236MathSciNetCrossRef
16.
go back to reference Baitsch M, Hartmann D (2006) Optimization of slender structures considering geometrical imperfections. Inverse Probl Sci Eng 14(6):623–637CrossRef Baitsch M, Hartmann D (2006) Optimization of slender structures considering geometrical imperfections. Inverse Probl Sci Eng 14(6):623–637CrossRef
17.
go back to reference Ditlevsen O (1991) Random field interpolation between point by point measured properties. In: Spanos PD, Brebbia CA (eds) Computational Stochastic Mechanics. Springer, Netherlands, pp 801 – 812CrossRef Ditlevsen O (1991) Random field interpolation between point by point measured properties. In: Spanos PD, Brebbia CA (eds) Computational Stochastic Mechanics. Springer, Netherlands, pp 801 – 812CrossRef
18.
go back to reference Zhang J, Ellingwood B (1994) Orthogonal series expansions of random fields in reliability analysis. J Eng Mech 120(12):2660–2677CrossRef Zhang J, Ellingwood B (1994) Orthogonal series expansions of random fields in reliability analysis. J Eng Mech 120(12):2660–2677CrossRef
19.
20.
go back to reference Oja E, Karhunen J (1985) On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J Math Anal Appl 106:69–84MathSciNetCrossRef Oja E, Karhunen J (1985) On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J Math Anal Appl 106:69–84MathSciNetCrossRef
21.
go back to reference Shang S, Yun G (2013) Stochastic finite element with material uncertainties: implementation in a general purpose simulation program. Finite Elem Anal Des 64:65–78MathSciNetCrossRef Shang S, Yun G (2013) Stochastic finite element with material uncertainties: implementation in a general purpose simulation program. Finite Elem Anal Des 64:65–78MathSciNetCrossRef
22.
go back to reference Polizzi E (2009) Density-matrix-based algorithms for solving eigenvalue problems. Phys Rev B 79:115112CrossRef Polizzi E (2009) Density-matrix-based algorithms for solving eigenvalue problems. Phys Rev B 79:115112CrossRef
23.
24.
25.
go back to reference Brenner C (1995) Ein Beitrag zur Zuverlässigkeit von Strukturen unter Berücksichtigung von Systemunsicherheiten mit Hilfe der Methode der stochastischen Finite Elemente. PhD thesis, Universität Innsbruck Brenner C (1995) Ein Beitrag zur Zuverlässigkeit von Strukturen unter Berücksichtigung von Systemunsicherheiten mit Hilfe der Methode der stochastischen Finite Elemente. PhD thesis, Universität Innsbruck
26.
go back to reference Phoon K-K (1995) Reliability-based design of foundations for transmission line structures. PhD thesis, Cornell University Phoon K-K (1995) Reliability-based design of foundations for transmission line structures. PhD thesis, Cornell University
28.
go back to reference Gruttmann F, Wagner W (2005) A linear quadrilateral shell element with fast stiffness computation. Comput Methods Appl Mech Eng 194(39):4279–4300CrossRef Gruttmann F, Wagner W (2005) A linear quadrilateral shell element with fast stiffness computation. Comput Methods Appl Mech Eng 194(39):4279–4300CrossRef
29.
go back to reference Wagner W, Gruttmann F (1994) A simple finite rotation formulation for composite shell elements. Eng Comput 11:145–176MathSciNetCrossRef Wagner W, Gruttmann F (1994) A simple finite rotation formulation for composite shell elements. Eng Comput 11:145–176MathSciNetCrossRef
30.
go back to reference Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666CrossRef Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666CrossRef
31.
go back to reference Dvorkin E, Bathe K-J (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1(1):77–88CrossRef Dvorkin E, Bathe K-J (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1(1):77–88CrossRef
32.
go back to reference Taylor R (1988) Finite element analysis of linear shell problems, ‘The mathematics of finite elements and applications VI. MAFELAP 1987’. Academic Press, London, pp 191–204 Taylor R (1988) Finite element analysis of linear shell problems, ‘The mathematics of finite elements and applications VI. MAFELAP 1987’. Academic Press, London, pp 191–204
33.
go back to reference Wagner W, Wriggers P (1988) A simple method for the calculation of postcritical branches. Eng Comput 5:103–109CrossRef Wagner W, Wriggers P (1988) A simple method for the calculation of postcritical branches. Eng Comput 5:103–109CrossRef
34.
go back to reference Usami T (1993) Effective width of locally buckled plates in compression and bending. J Struct Eng 119(5):1358–1373CrossRef Usami T (1993) Effective width of locally buckled plates in compression and bending. J Struct Eng 119(5):1358–1373CrossRef
35.
go back to reference Hot-rolled steel plates 3mm thick or above—tolerances on dimensions and shape. EN 10029 (02 2011) Hot-rolled steel plates 3mm thick or above—tolerances on dimensions and shape. EN 10029 (02 2011)
36.
go back to reference Eurcode 3: design of steel structures—part 1-5: plated structural elements, EN 1993-1-5 (12 2010) Eurcode 3: design of steel structures—part 1-5: plated structural elements, EN 1993-1-5 (12 2010)
37.
go back to reference Driver R, Kulak G, Elwi A, Kennedy D (1998) FE and simplified models of steel plate shear wall. J Struct Eng 124(2):121–130CrossRef Driver R, Kulak G, Elwi A, Kennedy D (1998) FE and simplified models of steel plate shear wall. J Struct Eng 124(2):121–130CrossRef
38.
go back to reference Driver R, Kulak G, Kennedy D, Elwi A (1998) Cyclic test of four-story steel plate shear wall. J Struct Eng 124(2):112–120CrossRef Driver R, Kulak G, Kennedy D, Elwi A (1998) Cyclic test of four-story steel plate shear wall. J Struct Eng 124(2):112–120CrossRef
39.
go back to reference Kennedy D, Kulak G, Driver R (1994) Discussion of postbuckling behavior of steel-plate shear wall under cyclic loads. J Struct Eng 120(7):2250–2251CrossRef Kennedy D, Kulak G, Driver R (1994) Discussion of postbuckling behavior of steel-plate shear wall under cyclic loads. J Struct Eng 120(7):2250–2251CrossRef
40.
go back to reference Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 35(1):63–94CrossRef Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 35(1):63–94CrossRef
41.
go back to reference Eurocode 3: design of steel structures, EN 1993 (2010) Eurocode 3: design of steel structures, EN 1993 (2010)
42.
go back to reference Reddy J, Chandrashekhara K (1985) Nonlinear analysis of laminated shells including transverse shear strains. AIAA J 23(3):440–441CrossRef Reddy J, Chandrashekhara K (1985) Nonlinear analysis of laminated shells including transverse shear strains. AIAA J 23(3):440–441CrossRef
43.
go back to reference Kriegesmann B, Rolfes R, Hühne C, Teßmer J, Arbocz J (2010) Probabilistic design of axaxial compressed composite cylinders with geometric and loading imperfections. Int J Strucut Stab Dyn 10:623–644CrossRef Kriegesmann B, Rolfes R, Hühne C, Teßmer J, Arbocz J (2010) Probabilistic design of axaxial compressed composite cylinders with geometric and loading imperfections. Int J Strucut Stab Dyn 10:623–644CrossRef
44.
go back to reference National Aeronautics and Space Administration (1965) Buckling of thin-walled circular cylinders National Aeronautics and Space Administration (1965) Buckling of thin-walled circular cylinders
45.
go back to reference Hühne C, Rolfes R, Breitbach E, Teßmer J (2008) Robust design of composite cylindrical shells under axial compression—simulation and validation. Thin-Walled Struct 46:947–962CrossRef Hühne C, Rolfes R, Breitbach E, Teßmer J (2008) Robust design of composite cylindrical shells under axial compression—simulation and validation. Thin-Walled Struct 46:947–962CrossRef
46.
go back to reference Arbocz J, Starnes J Jr (2002) Future directions and challenges in shell stability analysis. Thin-Walled Struct 40(9):729–754CrossRef Arbocz J, Starnes J Jr (2002) Future directions and challenges in shell stability analysis. Thin-Walled Struct 40(9):729–754CrossRef
Metadata
Title
Influence of stochastic geometric imperfections on the load-carrying behaviour of thin-walled structures using constrained random fields
Authors
S. Lauterbach
M. Fina
W. Wagner
Publication date
13-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 5/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1554-0

Other articles of this Issue 5/2018

Computational Mechanics 5/2018 Go to the issue