Skip to main content
Top
Published in: Journal of Materials Science 10/2022

03-03-2022 | Composites & nanocomposites

Influence of the chemical functionalization of titanium oxide nanotubes on the non-isothermal crystallization of polypropylene nanocomposites

Authors: J. A. Gonzalez-Calderon, J. C. Fierro-Gonzalez, M. G. Peña-Juarez, Elias Perez, A. Almendarez-Camarillo

Published in: Journal of Materials Science | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The surface of titanium oxide nanotubes (TiNTs) was chemically modified after synthesis to determine their influence on the non-isothermal crystallization of polypropylene nanocomposites compared to pristine titanium oxide nanotube-reinforced systems. Pimelic acid (PA) was used to carry out the chemical functionalization (TiNT-PA). The FTIR spectrum revealed that PA successfully bound to the TiNT surface due to the appearance of new vibrational bands at 29834, 2868, 1578, and 1407 cm−1. After the functionalization process, the morphology of TiNT remained unchanged according to TEM images. In addition, the new filler showed high thermal stability when subjected to TGA (between 320 and 450 °C). DSC studies were carried out to investigate the influence of this chemical functionalization on the crystallization behavior of the nanocomposites. The nanocomposites with the modified TiNTs showed more significant shifts of the crystallization temperature peaks with large heterogeneous nucleation. According to Jeziorny's analysis, the effect of fillers was only observed for the functionalized nanotubes with the lowest crystallization times, while the systems with pristine TiNT practically remained the same. This behavior is attributable to the fact that the acid's presence reduced agglomeration and improved the efficiency of the nucleation activity. Mo's model results confirmed that the heat flux requirements of the crystallization process were lower for the nanocomposites reinforced with TiNT-PA as they act better as heterogeneous nuclei. Then, they provide the surface area to serve as a nucleation center and help crystallize the polypropylene due to the aliphatic chain of the organic molecule.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sekino T (2010) Synthesis and applications of titanium oxide nanotubes. Inorganic and metallic nanotubular materials. Springer, Berlin, Heidelberg, pp 17–32CrossRef Sekino T (2010) Synthesis and applications of titanium oxide nanotubes. Inorganic and metallic nanotubular materials. Springer, Berlin, Heidelberg, pp 17–32CrossRef
2.
go back to reference Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, Zhigunov A (2014) Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull 71(4):795–818CrossRef Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, Zhigunov A (2014) Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull 71(4):795–818CrossRef
3.
go back to reference Ou HH, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58(1):179–191CrossRef Ou HH, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58(1):179–191CrossRef
4.
go back to reference Plodinec M, Gajović A, Iveković D, Tomašić N, Zimmermann B, Macan J, Willinger M (2014) Study of thermal stability of (3-aminopropyl) trimethoxy silane-grafted titanate nanotubes for application as nanofillers in polymers. Nanotechnol 25(43):435601CrossRef Plodinec M, Gajović A, Iveković D, Tomašić N, Zimmermann B, Macan J, Willinger M (2014) Study of thermal stability of (3-aminopropyl) trimethoxy silane-grafted titanate nanotubes for application as nanofillers in polymers. Nanotechnol 25(43):435601CrossRef
5.
go back to reference Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K (2013) A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene. Compos A Appl Sci Manuf 49:1–8CrossRef Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K (2013) A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene. Compos A Appl Sci Manuf 49:1–8CrossRef
6.
go back to reference Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. William Andrew, Newyork, USA Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. William Andrew, Newyork, USA
7.
go back to reference Nelson JK (2007) Overview of nanodielectrics: insulating materials of the future. 2007 Electrical insulation conference and electrical manufacturing expo. IEEE, New Jersey, USA, pp 229–235CrossRef Nelson JK (2007) Overview of nanodielectrics: insulating materials of the future. 2007 Electrical insulation conference and electrical manufacturing expo. IEEE, New Jersey, USA, pp 229–235CrossRef
8.
go back to reference Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M (2016) Properties of polymer composites used in high-voltage applications. Polymers 8(5):173CrossRef Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M (2016) Properties of polymer composites used in high-voltage applications. Polymers 8(5):173CrossRef
9.
go back to reference Han, J., & Garrett, R. (2008). Overview of polymer nanocomposites as dielectrics and electrical insulation materials for large high voltage rotating machines. In: NSTI-Nanotech, vol 2, 727–732 Han, J., & Garrett, R. (2008). Overview of polymer nanocomposites as dielectrics and electrical insulation materials for large high voltage rotating machines. In: NSTI-Nanotech, vol 2, 727–732
10.
go back to reference Matthews FL, Rawlings RD (1999) Composite materials: engineering and science. CRC Press Matthews FL, Rawlings RD (1999) Composite materials: engineering and science. CRC Press
11.
go back to reference Yoshida R, Suzuki Y, Yoshikawa S (2005) Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater Chem Phys 91:409–416CrossRef Yoshida R, Suzuki Y, Yoshikawa S (2005) Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater Chem Phys 91:409–416CrossRef
12.
go back to reference Morgado E Jr, de Abreu MA, Moure GT, Marinkovic BA, Jardim PM, Araujo AS (2007) Effects of thermal treatment of nanostructured trititanates on their crystallographic and textural properties. Mater Res Bull 42(9):1748–1760CrossRef Morgado E Jr, de Abreu MA, Moure GT, Marinkovic BA, Jardim PM, Araujo AS (2007) Effects of thermal treatment of nanostructured trititanates on their crystallographic and textural properties. Mater Res Bull 42(9):1748–1760CrossRef
13.
go back to reference Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Inhibition of polyimide photodegradation by incorporation of titanate nanotubes into a composite. J Polym Environ 27(7):1505–1515CrossRef Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Inhibition of polyimide photodegradation by incorporation of titanate nanotubes into a composite. J Polym Environ 27(7):1505–1515CrossRef
14.
go back to reference Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163CrossRef Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163CrossRef
15.
go back to reference Ma Y, Lin Y, Xiao X, Zhou X, Li X (2006) Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors. Mater Res Bull 41(2):237–243CrossRef Ma Y, Lin Y, Xiao X, Zhou X, Li X (2006) Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors. Mater Res Bull 41(2):237–243CrossRef
16.
go back to reference Viriya-empikul N, Charinpanitkul T, Sano N, Soottitantawat A, Kikuchi T, Faungnawakij K, Tanthapanichakoon W (2009) Effect of preparation variables on morphology and anatase–brookite phase transition in sonication assisted hydrothermal reaction for synthesis of titanate nanostructures. Mater Chem Phys 118(1):254–258CrossRef Viriya-empikul N, Charinpanitkul T, Sano N, Soottitantawat A, Kikuchi T, Faungnawakij K, Tanthapanichakoon W (2009) Effect of preparation variables on morphology and anatase–brookite phase transition in sonication assisted hydrothermal reaction for synthesis of titanate nanostructures. Mater Chem Phys 118(1):254–258CrossRef
17.
go back to reference Zhu Y, Li H, Koltypin Y, Hacohen YR, Gedanken A (2001) Sonochemical synthesis of titania whiskers and nanotubes. Chem Commun 24:2616–2617CrossRef Zhu Y, Li H, Koltypin Y, Hacohen YR, Gedanken A (2001) Sonochemical synthesis of titania whiskers and nanotubes. Chem Commun 24:2616–2617CrossRef
18.
19.
go back to reference Gonzalez-Calderon JA, Castrejon-Gonzalez EO, Medellin-Rodriguez FJ, Stribeck N, Almendarez-Camarillo A (2015) Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. J Mater Sci 50:1457–1468. https://doi.org/10.1007/s10853-014-8706-1CrossRef Gonzalez-Calderon JA, Castrejon-Gonzalez EO, Medellin-Rodriguez FJ, Stribeck N, Almendarez-Camarillo A (2015) Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. J Mater Sci 50:1457–1468. https://​doi.​org/​10.​1007/​s10853-014-8706-1CrossRef
20.
go back to reference Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM, Pérez E, Almendarez-Camarillo A (2015) Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. J Mater Sci 50:7998–8006. https://doi.org/10.1007/s10853-015-9365-6CrossRef Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM, Pérez E, Almendarez-Camarillo A (2015) Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. J Mater Sci 50:7998–8006. https://​doi.​org/​10.​1007/​s10853-015-9365-6CrossRef
21.
go back to reference Mendoza G, Peña-Juárez MG, Gonzalez-Calderon JA, Perez E (2020) Use of chemically modified titanium dioxide particles to mediate the non-isothermal cold crystallization of poly (latic acid). J Mex Chem Soc 64(2):117–136 Mendoza G, Peña-Juárez MG, Gonzalez-Calderon JA, Perez E (2020) Use of chemically modified titanium dioxide particles to mediate the non-isothermal cold crystallization of poly (latic acid). J Mex Chem Soc 64(2):117–136
22.
go back to reference Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19(10):1142–1144CrossRef Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19(10):1142–1144CrossRef
23.
go back to reference Liu T, Mo Z, Zhang H (1998) Non-isothermal crystallization behavior of a novel poly (aryl ether ketone): PEDEKmK. J Appl Polym Sci 67(5):815–821CrossRef Liu T, Mo Z, Zhang H (1998) Non-isothermal crystallization behavior of a novel poly (aryl ether ketone): PEDEKmK. J Appl Polym Sci 67(5):815–821CrossRef
24.
go back to reference Wang J, Dou Q (2007) Non-isothermal crystallization kinetics and morphology of isotactic polypropylene (iPP) nucleated with rosin-based nucleating agents. J Macromol Sci Part B Phys 46(5):987–1001CrossRef Wang J, Dou Q (2007) Non-isothermal crystallization kinetics and morphology of isotactic polypropylene (iPP) nucleated with rosin-based nucleating agents. J Macromol Sci Part B Phys 46(5):987–1001CrossRef
25.
go back to reference Friedman, H. L. (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. In: Journal of polymer science part C: polymer symposia, New York: Wiley Subscription Services, Inc., A Wiley Company, 6(1): 183–195 Friedman, H. L. (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. In: Journal of polymer science part C: polymer symposia, New York: Wiley Subscription Services, Inc., A Wiley Company, 6(1): 183–195
26.
go back to reference Liang GG, Cook WD, Tcharkhtchi A, Sautereau H (2011) Epoxy as a reactive plasticizer for improving polycarbonate processibility. Eur Polymer J 47(8):1578–1588CrossRef Liang GG, Cook WD, Tcharkhtchi A, Sautereau H (2011) Epoxy as a reactive plasticizer for improving polycarbonate processibility. Eur Polymer J 47(8):1578–1588CrossRef
27.
go back to reference Bavykin DV, Kulak AN, Shvalagin VV, Andryushina NS, Stroyuk OL (2011) Photocatalytic properties of rutile nanoparticles obtained via low temperature route from titanate nanotubes. J Photochem Photobiol, A Chem 218(2–3):231–238CrossRef Bavykin DV, Kulak AN, Shvalagin VV, Andryushina NS, Stroyuk OL (2011) Photocatalytic properties of rutile nanoparticles obtained via low temperature route from titanate nanotubes. J Photochem Photobiol, A Chem 218(2–3):231–238CrossRef
28.
go back to reference Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9(10):2229–2238CrossRef Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9(10):2229–2238CrossRef
29.
go back to reference Mitra T, Sailakshmi G, Gnanamani A, Mandal AB (2013) The effect of pimelic acid interaction on the mechanical and thermal properties of chitosan and collagen. Int J Polym Mater Polym Biomater 62(11):572–582CrossRef Mitra T, Sailakshmi G, Gnanamani A, Mandal AB (2013) The effect of pimelic acid interaction on the mechanical and thermal properties of chitosan and collagen. Int J Polym Mater Polym Biomater 62(11):572–582CrossRef
30.
go back to reference Shi L, Cao L, Gao R, Zhao Y, Zhang H, Xia C (2014) Synthesis and characterization of gadolinium-doped nanotubular titania for enhanced photocatalysis. J Alloy Compd 617:756–762CrossRef Shi L, Cao L, Gao R, Zhao Y, Zhang H, Xia C (2014) Synthesis and characterization of gadolinium-doped nanotubular titania for enhanced photocatalysis. J Alloy Compd 617:756–762CrossRef
31.
go back to reference Rendón-Rivera A, Toledo-Antonio JA, Cortés-Jácome MA, Angeles-Chávez C (2011) Generation of highly reactive OH groups at the surface of TiO2 nanotubes. Catal Today 166(1):18–24CrossRef Rendón-Rivera A, Toledo-Antonio JA, Cortés-Jácome MA, Angeles-Chávez C (2011) Generation of highly reactive OH groups at the surface of TiO2 nanotubes. Catal Today 166(1):18–24CrossRef
32.
go back to reference Sarceviča I, Kons A, Orola L (2016) Isoniazid cocrystallisation with dicarboxylic acids: vapochemical, mechanochemical and thermal methods. CrystEngComm 18(9):1625–1635CrossRef Sarceviča I, Kons A, Orola L (2016) Isoniazid cocrystallisation with dicarboxylic acids: vapochemical, mechanochemical and thermal methods. CrystEngComm 18(9):1625–1635CrossRef
33.
go back to reference Karunanithi AT, Acquah C, Achenie LE, Sithambaram S, Suib SL (2009) Solvent design for crystallization of carboxylic acids. Comput Chem Eng 33(5):1014–1021CrossRef Karunanithi AT, Acquah C, Achenie LE, Sithambaram S, Suib SL (2009) Solvent design for crystallization of carboxylic acids. Comput Chem Eng 33(5):1014–1021CrossRef
34.
go back to reference Muniyappan S, Solaiyammal T, Sudhakar K, Karthigeyan A, Murugakoothan P (2017) Conventional hydrothermal synthesis of titanate nanotubes: systematic discussions on structural, optical, thermal and morphological properties. Mod Electron Mater 3(4):174–178CrossRef Muniyappan S, Solaiyammal T, Sudhakar K, Karthigeyan A, Murugakoothan P (2017) Conventional hydrothermal synthesis of titanate nanotubes: systematic discussions on structural, optical, thermal and morphological properties. Mod Electron Mater 3(4):174–178CrossRef
35.
go back to reference Ding Q, Zhang Z, Wang C, Jiang J, Li G, Mai K (2012) Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochim Acta 536:47–54CrossRef Ding Q, Zhang Z, Wang C, Jiang J, Li G, Mai K (2012) Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochim Acta 536:47–54CrossRef
36.
go back to reference Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R (2007) Non-isothermal melt-crystallization and mechanical properties of titanium (IV) oxide nanoparticle-filled isotactic polypropylene. Polym Testing 26(1):20–37CrossRef Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R (2007) Non-isothermal melt-crystallization and mechanical properties of titanium (IV) oxide nanoparticle-filled isotactic polypropylene. Polym Testing 26(1):20–37CrossRef
37.
go back to reference Ma W, Wang X, Zhang J (2011) Crystallization kinetics of poly (vinylidene fluoride)/MMT, SiO2, CaCO3, or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim 103(1):319–327CrossRef Ma W, Wang X, Zhang J (2011) Crystallization kinetics of poly (vinylidene fluoride)/MMT, SiO2, CaCO3, or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim 103(1):319–327CrossRef
38.
go back to reference Sánchez MS, Ribelles JG, Sánchez FH, Mano JF (2005) On the kinetics of melting and crystallization of poly (l-lactic acid) by TMDSC. Thermochim Acta 430(1–2):201–210CrossRef Sánchez MS, Ribelles JG, Sánchez FH, Mano JF (2005) On the kinetics of melting and crystallization of poly (l-lactic acid) by TMDSC. Thermochim Acta 430(1–2):201–210CrossRef
39.
go back to reference Esthappan SK, Kuttappan SK, Joseph R (2012) Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des 37:537–542CrossRef Esthappan SK, Kuttappan SK, Joseph R (2012) Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des 37:537–542CrossRef
40.
go back to reference Marco C, Gómez MA, Ellis G, Arribas JM (2002) Highly efficient nucleating additive for isotactic polypropylene studied by differential scanning calorimetry. J Appl Polym Sci 84(9):1669–1679CrossRef Marco C, Gómez MA, Ellis G, Arribas JM (2002) Highly efficient nucleating additive for isotactic polypropylene studied by differential scanning calorimetry. J Appl Polym Sci 84(9):1669–1679CrossRef
41.
go back to reference González-Calderón JA, Peña-Juárez M, Zarraga R, Contreras-López D, Vallejo-Montesinos J (2021) The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites. Revista Mexicana De Ingeniería Química 20(1):435–452CrossRef González-Calderón JA, Peña-Juárez M, Zarraga R, Contreras-López D, Vallejo-Montesinos J (2021) The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites. Revista Mexicana De Ingeniería Química 20(1):435–452CrossRef
42.
go back to reference Rasana N, Jayanarayanan K, Pegoretti A (2018) Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites. RSC Adv 8(68):39127–39139CrossRef Rasana N, Jayanarayanan K, Pegoretti A (2018) Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites. RSC Adv 8(68):39127–39139CrossRef
43.
go back to reference Coburn N, Douglas P, Kaya D, Gupta J, McNally T (2018) Isothermal and non-isothermal crystallization kinetics of composites of poly (propylene) and MWCNTs. Adv Ind Eng Polym Res 1(1):99–110 Coburn N, Douglas P, Kaya D, Gupta J, McNally T (2018) Isothermal and non-isothermal crystallization kinetics of composites of poly (propylene) and MWCNTs. Adv Ind Eng Polym Res 1(1):99–110
44.
go back to reference Papageorgiou GZ, Panayiotou C (2011) Crystallization and melting of biodegradable poly (propylene suberate). Thermochim Acta 523(1–2):187–199CrossRef Papageorgiou GZ, Panayiotou C (2011) Crystallization and melting of biodegradable poly (propylene suberate). Thermochim Acta 523(1–2):187–199CrossRef
45.
go back to reference Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K (2004) Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polym Int 53(2):176–183CrossRef Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K (2004) Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polym Int 53(2):176–183CrossRef
Metadata
Title
Influence of the chemical functionalization of titanium oxide nanotubes on the non-isothermal crystallization of polypropylene nanocomposites
Authors
J. A. Gonzalez-Calderon
J. C. Fierro-Gonzalez
M. G. Peña-Juarez
Elias Perez
A. Almendarez-Camarillo
Publication date
03-03-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-07009-x

Other articles of this Issue 10/2022

Journal of Materials Science 10/2022 Go to the issue

Premium Partners