Skip to main content
Top
Published in: Journal of Materials Science 10/2022

03-03-2022 | Metals & corrosion

Deformation twinning to dislocation slip transition in single-crystal tantalum under dynamic compression

Authors: M. X. Tang, C. Li, Y. Cai, S. N. Luo

Published in: Journal of Materials Science | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The deformation twinning to dislocation slip transition is observed in large-scale molecular dynamics simulations of single-crystal tantalum under dynamic loading, along with double plastic zones during the transition. The transition is accompanied by temperature rise and fast stress relaxation. Rapid nucleation and propagation of twins at the shock front give rise to a plastic precursor, followed by a dislocation-mediated plastic wave during the transition. These transient double plastic zones can be resolved via ultrafast x-ray or electron diffraction measurements and can help to improve time-dependent deformation models.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dewaele A, Mezouar M, Guignot N, Loubeyre P (2010) High melting points of tantalum in a laser-heated diamond anvil cell. Phys Rev Lett 104:255701CrossRef Dewaele A, Mezouar M, Guignot N, Loubeyre P (2010) High melting points of tantalum in a laser-heated diamond anvil cell. Phys Rev Lett 104:255701CrossRef
2.
go back to reference Cynn H, Yoo C-S (1999) Equation of state of tantalum to 174 GPA. Phys Rev B 59:8526-8529CrossRef Cynn H, Yoo C-S (1999) Equation of state of tantalum to 174 GPA. Phys Rev B 59:8526-8529CrossRef
3.
go back to reference Ravelo R, Germann TC, Guerrero O, An Q, Holian BL (2013) Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations. Phys Rev B 88:134101CrossRef Ravelo R, Germann TC, Guerrero O, An Q, Holian BL (2013) Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations. Phys Rev B 88:134101CrossRef
4.
go back to reference Lane JMD, Foiles SM, Lim H, Brown JL (2016) Strain-rate dependence of ramp-wave evolution and strength in tantalum. Phys Rev B 94:064301CrossRef Lane JMD, Foiles SM, Lim H, Brown JL (2016) Strain-rate dependence of ramp-wave evolution and strength in tantalum. Phys Rev B 94:064301CrossRef
5.
go back to reference Wang L, Zhao F, Zhao FP, Cai Y, An Q, Luo SN (2014) Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression. J Appl Phys 115:053528CrossRef Wang L, Zhao F, Zhao FP, Cai Y, An Q, Luo SN (2014) Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression. J Appl Phys 115:053528CrossRef
6.
go back to reference Tramontina D, Erhart P, Germann T, Hawreliak J, Higginbotham A, Park N, Ravelo R, Stukowski A, Suggit M, Tang Y, Wark J, Bringa E (2014) Molecular dynamics simulations of shock-induced plasticity in tantalum. High Energy Den Phys 10:9–15CrossRef Tramontina D, Erhart P, Germann T, Hawreliak J, Higginbotham A, Park N, Ravelo R, Stukowski A, Suggit M, Tang Y, Wark J, Bringa E (2014) Molecular dynamics simulations of shock-induced plasticity in tantalum. High Energy Den Phys 10:9–15CrossRef
7.
go back to reference Murr LE, Meyers MA, Niou CS, Chen YJ, Pappu S, Kennedy C (1997) Shock-induced deformation twinning in tantalum. Acta Mater 45:157–175CrossRef Murr LE, Meyers MA, Niou CS, Chen YJ, Pappu S, Kennedy C (1997) Shock-induced deformation twinning in tantalum. Acta Mater 45:157–175CrossRef
8.
go back to reference Wehrenberg CE, McGonegle D, Bolme C, Higginbotham A, Lazicki A, Lee HJ, Nagler B, Park HS, Remington BA, Rudd RE, Sliwa M, Suggit M, Swift D, Tavella F, Zepeda-Ruiz L, Wark JS (2017) in situ x-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 550:496–499CrossRef Wehrenberg CE, McGonegle D, Bolme C, Higginbotham A, Lazicki A, Lee HJ, Nagler B, Park HS, Remington BA, Rudd RE, Sliwa M, Suggit M, Swift D, Tavella F, Zepeda-Ruiz L, Wark JS (2017) in situ x-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 550:496–499CrossRef
9.
go back to reference Florando JN, Barton NR, El-Dasher BS, McNaney JM, Kumar M (2013) Analysis of deformation twinning in tantalum single crystals under shock loading conditions. J Appl Phys 113:083522CrossRef Florando JN, Barton NR, El-Dasher BS, McNaney JM, Kumar M (2013) Analysis of deformation twinning in tantalum single crystals under shock loading conditions. J Appl Phys 113:083522CrossRef
10.
go back to reference Hahn EN, Fensin SJ (2019) Influence of defects on the shock hugoniot of tantalum. J Appl Phys 125:215902CrossRef Hahn EN, Fensin SJ (2019) Influence of defects on the shock hugoniot of tantalum. J Appl Phys 125:215902CrossRef
11.
go back to reference Pang B, Jones IP, Millett JCF, Whiteman G, Chiu Y-L (2021) The defect evolution in 1D shocked tantalum single crystals. J Mater Sci 56:7142–7154CrossRef Pang B, Jones IP, Millett JCF, Whiteman G, Chiu Y-L (2021) The defect evolution in 1D shocked tantalum single crystals. J Mater Sci 56:7142–7154CrossRef
12.
go back to reference Hsiung LM, Lassila DH (2000) Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys. Acta Mater 48:4851–4865CrossRef Hsiung LM, Lassila DH (2000) Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys. Acta Mater 48:4851–4865CrossRef
13.
go back to reference Lu CH, Remington BA, Maddox BR, Kad B, Park HS, Prisbrey ST, Meyers MA (2012) Laser compression of monocrystalline tantalum. Acta Mater 60:6601–6620CrossRef Lu CH, Remington BA, Maddox BR, Kad B, Park HS, Prisbrey ST, Meyers MA (2012) Laser compression of monocrystalline tantalum. Acta Mater 60:6601–6620CrossRef
14.
go back to reference Lu C-H, Remington BA, Maddox BR, Kad B, Park H-S, Kawasaki M, Langdon TG, Meyers MA (2013) Laser compression of nanocrystalline tantalum. Acta Mater 61:7767–7780CrossRef Lu C-H, Remington BA, Maddox BR, Kad B, Park H-S, Kawasaki M, Langdon TG, Meyers MA (2013) Laser compression of nanocrystalline tantalum. Acta Mater 61:7767–7780CrossRef
15.
go back to reference Pang B, Case S, Jones IP, Millett JCF, Whiteman G, Chiu Y-L, Bronkhorst CA (2018) The defect evolution in shock loaded tantalum single crystals. Acta Mater 148:482–491CrossRef Pang B, Case S, Jones IP, Millett JCF, Whiteman G, Chiu Y-L, Bronkhorst CA (2018) The defect evolution in shock loaded tantalum single crystals. Acta Mater 148:482–491CrossRef
16.
go back to reference Sliwa M, McGonegle D, Wehrenberg CE, Bolme CA, Heighway PG, Higginbotham A, Lazicki A, Lee HJ, Nagler B, Park HS, Rudd RE, Suggit MJ, Swift D, Tavella F, Zepeda-Ruiz L, Remington BA, Wark JS (2018) Femtosecond x-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum. Phys Rev Lett 120:265502CrossRef Sliwa M, McGonegle D, Wehrenberg CE, Bolme CA, Heighway PG, Higginbotham A, Lazicki A, Lee HJ, Nagler B, Park HS, Rudd RE, Suggit MJ, Swift D, Tavella F, Zepeda-Ruiz L, Remington BA, Wark JS (2018) Femtosecond x-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum. Phys Rev Lett 120:265502CrossRef
17.
go back to reference Millett JCF, Avraam P, Whiteman G, Chapman DJ, Case S (2020) The role of orientation on the shock response of single crystal tantalum. J Appl Phys 128:035104CrossRef Millett JCF, Avraam P, Whiteman G, Chapman DJ, Case S (2020) The role of orientation on the shock response of single crystal tantalum. J Appl Phys 128:035104CrossRef
18.
go back to reference Comley AJ, Maddox BR, Rudd RE, Prisbrey ST, Hawreliak JA, Orlikowski DA, Peterson SC, Satcher JH, Elsholz AJ, Park HS, Rosen PA, Rothman SR, Higginbotham A, Suggit M, Wark JS (2013) Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband X-ray Laue diffraction. Phys Rev Lett 110:115501CrossRef Comley AJ, Maddox BR, Rudd RE, Prisbrey ST, Hawreliak JA, Orlikowski DA, Peterson SC, Satcher JH, Elsholz AJ, Park HS, Rosen PA, Rothman SR, Higginbotham A, Suggit M, Wark JS (2013) Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband X-ray Laue diffraction. Phys Rev Lett 110:115501CrossRef
19.
go back to reference Wehrenberg CE, Comley AJ, Barton NR, Coppari F, Fratanduono D, Huntington CM, Maddox BR, Park H-S, Plechaty C, Prisbrey ST, Remington BA, Rudd RE (2015) Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed ta using time-resolved in situ laue diffraction. Phys Rev B 92:104305CrossRef Wehrenberg CE, Comley AJ, Barton NR, Coppari F, Fratanduono D, Huntington CM, Maddox BR, Park H-S, Plechaty C, Prisbrey ST, Remington BA, Rudd RE (2015) Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed ta using time-resolved in situ laue diffraction. Phys Rev B 92:104305CrossRef
20.
go back to reference Albertazzi B, Ozaki N, Zhakhovsky V, Faenov A, Habara H, Harmand M, Hartley N, Ilnitsky D, Inogamov N, Inubushi Y et al (2017) Dynamic fracture of tantalum under extreme tensile stress. Sci Adv 3:e1602705CrossRef Albertazzi B, Ozaki N, Zhakhovsky V, Faenov A, Habara H, Harmand M, Hartley N, Ilnitsky D, Inogamov N, Inubushi Y et al (2017) Dynamic fracture of tantalum under extreme tensile stress. Sci Adv 3:e1602705CrossRef
21.
go back to reference Cheng M, Li C, Tang MX, Lu L, Li Z, Luo SN (2018) Intragranular void formation in shock-spalled tantalum: Mmchanisms and governing factors. Acta Mater 148:38–48CrossRef Cheng M, Li C, Tang MX, Lu L, Li Z, Luo SN (2018) Intragranular void formation in shock-spalled tantalum: Mmchanisms and governing factors. Acta Mater 148:38–48CrossRef
22.
go back to reference Higginbotham A, Suggit MJ, Bringa EM, Erhart P, Hawreliak JA, Mogni G, Park N, Remington BA, Wark JS (2013) Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal. Phys Rev B 88:104105CrossRef Higginbotham A, Suggit MJ, Bringa EM, Erhart P, Hawreliak JA, Mogni G, Park N, Remington BA, Wark JS (2013) Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal. Phys Rev B 88:104105CrossRef
23.
go back to reference Remington TP, Ruestes CJ, Bringa EM, Remington BA, Lu CH, Kad B, Meyers MA (2014) Plastic deformation in nanoindentation of tantalum: a new mechanism for prismatic loop formation. Acta Mater 78:378–393CrossRef Remington TP, Ruestes CJ, Bringa EM, Remington BA, Lu CH, Kad B, Meyers MA (2014) Plastic deformation in nanoindentation of tantalum: a new mechanism for prismatic loop formation. Acta Mater 78:378–393CrossRef
24.
go back to reference Huang C, Peng X, Fu T, Chen X, Xiang H, Li Q, Hu N (2017) Molecular dynamics simulation of bcc ta with coherent twin boundaries under nanoindentation. Mater Sci Eng A 700:609–616CrossRef Huang C, Peng X, Fu T, Chen X, Xiang H, Li Q, Hu N (2017) Molecular dynamics simulation of bcc ta with coherent twin boundaries under nanoindentation. Mater Sci Eng A 700:609–616CrossRef
25.
go back to reference Shi Z, Singh CV (2016) Competing twinning mechanisms in body-centered cubic metallic nanowires. Scr Mater 113:214–217CrossRef Shi Z, Singh CV (2016) Competing twinning mechanisms in body-centered cubic metallic nanowires. Scr Mater 113:214–217CrossRef
26.
go back to reference Goel S, Beake B, Chan C-W, Faisal NH, Dunne N (2015) Twinning anisotropy of tantalum during nanoindentation. Mater Sci Eng A 627:249–261CrossRef Goel S, Beake B, Chan C-W, Faisal NH, Dunne N (2015) Twinning anisotropy of tantalum during nanoindentation. Mater Sci Eng A 627:249–261CrossRef
27.
go back to reference Tang MX, E JC, Wang L, Luo SN (2017) Loading-path dependent deformation of nanocrystalline ta under single-and double-shock, and quasi-isentropic compression. J Appl Phys 121:115901CrossRef Tang MX, E JC, Wang L, Luo SN (2017) Loading-path dependent deformation of nanocrystalline ta under single-and double-shock, and quasi-isentropic compression. J Appl Phys 121:115901CrossRef
28.
go back to reference Hahn EN, Fensin SJ, Germann TC III, Gray III GT (2018) Orientation dependent spall strength of tantalum single crystals. Acta Mater 159:241–248CrossRef Hahn EN, Fensin SJ, Germann TC III, Gray III GT (2018) Orientation dependent spall strength of tantalum single crystals. Acta Mater 159:241–248CrossRef
29.
go back to reference Tang MX, Zhang YY, E JC, Luo SN (2018) Simulations of x-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources. J Synchrotron Rad 25:748–756CrossRef Tang MX, Zhang YY, E JC, Luo SN (2018) Simulations of x-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources. J Synchrotron Rad 25:748–756CrossRef
30.
go back to reference Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov VV (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550:492–495CrossRef Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov VV (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550:492–495CrossRef
31.
go back to reference Peng S, Wei Y, Jin Z, Yang W (2019) Supersonic screw dislocations gliding at the shear wave speed. Phys Rev Lett 122:045501CrossRef Peng S, Wei Y, Jin Z, Yang W (2019) Supersonic screw dislocations gliding at the shear wave speed. Phys Rev Lett 122:045501CrossRef
32.
go back to reference Shields JA, Goods SH, Gibala R, Mitchell TE (1975) Deformation of high purity tantalum single crystals at 4.2 k. Mater Sci Eng 20:71–81CrossRef Shields JA, Goods SH, Gibala R, Mitchell TE (1975) Deformation of high purity tantalum single crystals at 4.2 k. Mater Sci Eng 20:71–81CrossRef
33.
go back to reference Chen CQ, Hu G, Florando JN, Kumar M, Hemker KJ, Ramesh KT (2013) Interplay of dislocation slip and deformation twinning in tantalum at high strain rates. Scr Mater 69:709–712CrossRef Chen CQ, Hu G, Florando JN, Kumar M, Hemker KJ, Ramesh KT (2013) Interplay of dislocation slip and deformation twinning in tantalum at high strain rates. Scr Mater 69:709–712CrossRef
34.
go back to reference Chen CQ, Florando JN, Kumar M, Ramesh KT, Hemker KJ (2014) Incipient deformation twinning in dynamically sheared bcc tantalum. Acta Mater 69:114–125CrossRef Chen CQ, Florando JN, Kumar M, Ramesh KT, Hemker KJ (2014) Incipient deformation twinning in dynamically sheared bcc tantalum. Acta Mater 69:114–125CrossRef
35.
36.
go back to reference Lim H, Carroll JD, Michael JR, Battaile CC, Chen SR, Lane JMD (2020) Investigating active slip planes in tantalum under compressive load: crystal plasticity and slip trace analyses of single crystals. Acta Mater 185:1–12CrossRef Lim H, Carroll JD, Michael JR, Battaile CC, Chen SR, Lane JMD (2020) Investigating active slip planes in tantalum under compressive load: crystal plasticity and slip trace analyses of single crystals. Acta Mater 185:1–12CrossRef
37.
go back to reference Livescu V, Bingert JF, Mason TA (2012) Deformation twinning in explosive-driven tantalum. Mater Sci Eng A 556:155–163CrossRef Livescu V, Bingert JF, Mason TA (2012) Deformation twinning in explosive-driven tantalum. Mater Sci Eng A 556:155–163CrossRef
38.
go back to reference Rudd RE, Comley AJ, Hawreliak J, Maddox B, Park H-S, Remington BA (2012) Theory and simulation of 1D to 3D plastic relaxation in tantalum. AIP Conf Proc 1426:1379–1382CrossRef Rudd RE, Comley AJ, Hawreliak J, Maddox B, Park H-S, Remington BA (2012) Theory and simulation of 1D to 3D plastic relaxation in tantalum. AIP Conf Proc 1426:1379–1382CrossRef
39.
go back to reference Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19CrossRef
40.
go back to reference Tang MX, Huang JW, E JC, Zhang YY, Luo SN (2020) Full strain tensor measurements with x-ray diffraction and strain field mapping: a simulation study. J Synchrotron Rad 27:646–652CrossRef Tang MX, Huang JW, E JC, Zhang YY, Luo SN (2020) Full strain tensor measurements with x-ray diffraction and strain field mapping: a simulation study. J Synchrotron Rad 27:646–652CrossRef
41.
go back to reference Cai Y, Wang L, Wu HA, Zhu MH, Liu CL, Luo SN (2015) Homogeneous crystal nucleation in liquid copper under quasi-isentropic compression. Phys Rev B 92:014108CrossRef Cai Y, Wang L, Wu HA, Zhu MH, Liu CL, Luo SN (2015) Homogeneous crystal nucleation in liquid copper under quasi-isentropic compression. Phys Rev B 92:014108CrossRef
42.
go back to reference Wang L, E JC, Cai Y, Zhao F, Fan D, Luo SN (2015) Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction. J Appl Phys 117:084301CrossRef Wang L, E JC, Cai Y, Zhao F, Fan D, Luo SN (2015) Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction. J Appl Phys 117:084301CrossRef
43.
go back to reference Zhang YY, Tang MX, Zhong ZY, Luo SN (2018) Texture evolution of cu nanopowder under uniaxial compression. Materialia 1:236–243CrossRef Zhang YY, Tang MX, Zhong ZY, Luo SN (2018) Texture evolution of cu nanopowder under uniaxial compression. Materialia 1:236–243CrossRef
44.
go back to reference Hu SC, Huang JW, Zhong ZY, Zhang YY, Cai Y, Luo SN (2020) Texture evolution in nanocrystalline cu under shock compression. J Appl Phys 127:215106CrossRef Hu SC, Huang JW, Zhong ZY, Zhang YY, Cai Y, Luo SN (2020) Texture evolution in nanocrystalline cu under shock compression. J Appl Phys 127:215106CrossRef
45.
go back to reference Stukowski A (2009) Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Modell Simul Mater Sci Eng 18:015012CrossRef Stukowski A (2009) Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Modell Simul Mater Sci Eng 18:015012CrossRef
46.
go back to reference Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48:2923–2927 Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48:2923–2927
47.
go back to reference Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM (2001) Surface step effects on nanoindentation. Phys Rev Lett 87:165507CrossRef Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM (2001) Surface step effects on nanoindentation. Phys Rev Lett 87:165507CrossRef
48.
go back to reference Cai Y, Wu HA, Luo SN (2018) A loading-dependent model of critical resolved shear stress. Inter J Plasticity 109:1–17CrossRef Cai Y, Wu HA, Luo SN (2018) A loading-dependent model of critical resolved shear stress. Inter J Plasticity 109:1–17CrossRef
49.
go back to reference E JC, Wang L, Chen S, Zhang YY, Luo SN (2018) GPAD: a GPU-accelerated atom-based polychromatic diffraction simulation code. J Syn Rad 25:604–611CrossRef E JC, Wang L, Chen S, Zhang YY, Luo SN (2018) GPAD: a GPU-accelerated atom-based polychromatic diffraction simulation code. J Syn Rad 25:604–611CrossRef
50.
go back to reference Zhao F, Wang L, Fan D, Bie BX, Zhou XM, Suo T, Li YL, Chen MW, Liu CL, Qi ML, Zhu MH, Luo SN (2016) Macrodeformation twins in single-crystal aluminum. Phys Rev Lett 116:075501CrossRef Zhao F, Wang L, Fan D, Bie BX, Zhou XM, Suo T, Li YL, Chen MW, Liu CL, Qi ML, Zhu MH, Luo SN (2016) Macrodeformation twins in single-crystal aluminum. Phys Rev Lett 116:075501CrossRef
51.
go back to reference Hoge KG, Mukherjee AK (1977) The temperature and strain rate dependence of the flow stress of tantalum. J Mater Sci 12:1666–1672CrossRef Hoge KG, Mukherjee AK (1977) The temperature and strain rate dependence of the flow stress of tantalum. J Mater Sci 12:1666–1672CrossRef
52.
go back to reference Yang LH, Söderlind P, Moriarty JA (2001) Accurate atomistic simulation of (a/2) <111> screw dislocations and other defects in bcc tantalum. Philos Mag A 81:1355–1385CrossRef Yang LH, Söderlind P, Moriarty JA (2001) Accurate atomistic simulation of (a/2) <111> screw dislocations and other defects in bcc tantalum. Philos Mag A 81:1355–1385CrossRef
53.
go back to reference Mori H (2014) Peierls barrier of screw dislocation in bcc iron at finite temperature. Mater Trans 55:1531–1535 Mori H (2014) Peierls barrier of screw dislocation in bcc iron at finite temperature. Mater Trans 55:1531–1535
54.
go back to reference Nemat-Nasser S, Okinaka T, Ni L (1998) A physically-based constitutive model for bcc crystals with application to polycrystalline tantalum. J Mech Phys Solids 46:1009–1038CrossRef Nemat-Nasser S, Okinaka T, Ni L (1998) A physically-based constitutive model for bcc crystals with application to polycrystalline tantalum. J Mech Phys Solids 46:1009–1038CrossRef
55.
go back to reference Ters PE, Shehadeh MA (2019) Modeling the temperature and high strain rate sensitivity in bcc iron: atomistically informed multiscale dislocation dynamics simulations. Inter J Plasticity 112:257–277CrossRef Ters PE, Shehadeh MA (2019) Modeling the temperature and high strain rate sensitivity in bcc iron: atomistically informed multiscale dislocation dynamics simulations. Inter J Plasticity 112:257–277CrossRef
56.
go back to reference Chester SA, Bernier JV, Barton NR, Balogh L, Clausen B, Edmiston JK (2016) Direct numerical simulation of deformation twinning in polycrystals. Acta Mater 120:348–363CrossRef Chester SA, Bernier JV, Barton NR, Balogh L, Clausen B, Edmiston JK (2016) Direct numerical simulation of deformation twinning in polycrystals. Acta Mater 120:348–363CrossRef
57.
go back to reference Song SG, Gray GT (1995) Influence of temperature and strain rate on slip and twinning behavior of Zr. Metall Mater Trans A 26:2665–2675CrossRef Song SG, Gray GT (1995) Influence of temperature and strain rate on slip and twinning behavior of Zr. Metall Mater Trans A 26:2665–2675CrossRef
Metadata
Title
Deformation twinning to dislocation slip transition in single-crystal tantalum under dynamic compression
Authors
M. X. Tang
C. Li
Y. Cai
S. N. Luo
Publication date
03-03-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-06975-6

Other articles of this Issue 10/2022

Journal of Materials Science 10/2022 Go to the issue

Premium Partners