Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2020

19-02-2020

Influence of Y2O3 and Ta2O5 Co-doping on Microstructure and Thermal Conductivity of Gd2Zr2O7 Ceramics

Authors: Zhaolu Xue, Shuqin Wu, Lihong Qian, Eungsun Byon, Shihong Zhang

Published in: Journal of Materials Engineering and Performance | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rare earth zirconates (RE2Zr2O7) are considered as a class of potential high-temperature structural materials. In this paper, a series of Y2O3 and Ta2O5 co-doped Gd2Zr2O7 [(Gd1−xYx)2(Zr1−xTax)2O7+x, x = 0, 0.1, 0.2, 0.3, 0.4] ceramics were prepared by solid-state reaction sintering in order to clarify the influence of Y2O3 and Ta2O5 co-doped on microstructure, Young’s modulus and thermal conductivity. The results showed that Y2O3 and Ta2O5 co-doped Gd2Zr2O7 exhibited a single pyrochlore structure, and a small amount of Y3+ ions were doped into the Zr4+ ions lattice. The Young’s moduli of doped Gd2Zr2O7 ceramics slightly change with the increase in Y2O3 and Ta2O5 doping concentration. The minimum thermal conductivities of the specimens were obtained at 800 °C. The thermal conductivity of doped Gd2Zr2O7 with x = 0.3 is lower than that of others among the doped specimens, which is around 1.41 W m−1 K−1 at 800 °C. In addition, (Gd0.7Y0.3)2(Zr0.7Ta0.3)2O7.3 ceramic exhibits excellent phase stability from room temperature to 1550 °C.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Minervini, R.W. Grimes, and K.E. Sickafus, Disorder in Pyrochlore Oxides, J. Am. Ceram. Soc., 2010, 83(8), p 1873–1878CrossRef L. Minervini, R.W. Grimes, and K.E. Sickafus, Disorder in Pyrochlore Oxides, J. Am. Ceram. Soc., 2010, 83(8), p 1873–1878CrossRef
2.
go back to reference Robert Vaßen, M.O. Jarligo, T. Steinke et al., Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938–942CrossRef Robert Vaßen, M.O. Jarligo, T. Steinke et al., Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938–942CrossRef
3.
go back to reference Y. Zhang, M. Xie, F. Zhou et al., Influence of Er Substitution for La on the Thermal Conductivity of (La1−xErx)2Zr2O7 Pyrochlores, Mater. Res. Bull., 2015, 64, p 175–181CrossRef Y. Zhang, M. Xie, F. Zhou et al., Influence of Er Substitution for La on the Thermal Conductivity of (La1−xErx)2Zr2O7 Pyrochlores, Mater. Res. Bull., 2015, 64, p 175–181CrossRef
4.
go back to reference Z.G. Liu, J.H. Ouyang, Y. Zhou et al., Influence of Ytterbium- and Samarium-Oxides Codoping on Structure and Thermal Conductivity of Zirconate Ceramics, J. Eur. Ceram. Soc., 2009, 29(4), p 647–652CrossRef Z.G. Liu, J.H. Ouyang, Y. Zhou et al., Influence of Ytterbium- and Samarium-Oxides Codoping on Structure and Thermal Conductivity of Zirconate Ceramics, J. Eur. Ceram. Soc., 2009, 29(4), p 647–652CrossRef
5.
go back to reference C. Wang, L. Guo, Y. Zhang et al., Enhanced Thermal Expansion and Fracture Toughness of Sc2O3-doped Gd2Zr2O7 Ceramics, Ceram. Int., 2015, 41(9), p 10730–10735CrossRef C. Wang, L. Guo, Y. Zhang et al., Enhanced Thermal Expansion and Fracture Toughness of Sc2O3-doped Gd2Zr2O7 Ceramics, Ceram. Int., 2015, 41(9), p 10730–10735CrossRef
6.
go back to reference C.A. Taylor, M.K. Patel, J.A. Aguiar et al., Bubble Formation and Lattice Parameter Changes Resulting from He Irradiation of Defect-Fluorite Gd2Zr2O7, Acta Mater., 2016, 115, p 115–122CrossRef C.A. Taylor, M.K. Patel, J.A. Aguiar et al., Bubble Formation and Lattice Parameter Changes Resulting from He Irradiation of Defect-Fluorite Gd2Zr2O7, Acta Mater., 2016, 115, p 115–122CrossRef
7.
go back to reference F.N. Sayed, B.P. Mandal, D. Jain et al., Improved Ionic Conductivity in NdGdZr2O7: Influence of Sc3+ Substitution, J. Eur. Ceram. Soc., 2012, 32(12), p 3221–3228CrossRef F.N. Sayed, B.P. Mandal, D. Jain et al., Improved Ionic Conductivity in NdGdZr2O7: Influence of Sc3+ Substitution, J. Eur. Ceram. Soc., 2012, 32(12), p 3221–3228CrossRef
8.
go back to reference L. Guo, H. Guo, H. Peng et al., Thermophysical Properties of Yb2O3 Doped Gd2Zr2O7 and Thermal Cycling Durability of (Gd0.9Yb0.1)2Zr2O7/YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34(5), p 1255–1263CrossRef L. Guo, H. Guo, H. Peng et al., Thermophysical Properties of Yb2O3 Doped Gd2Zr2O7 and Thermal Cycling Durability of (Gd0.9Yb0.1)2Zr2O7/YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34(5), p 1255–1263CrossRef
9.
go back to reference J.M. Drexler, A.L. Ortiz, and N.P. Padture, Composition Effects of Thermal Barrier Coating Ceramics on Their Interaction with Molten Ca–Mg–Al–silicate (CMAS) Glass, Acta Mater., 2012, 60(15), p 5437–5447CrossRef J.M. Drexler, A.L. Ortiz, and N.P. Padture, Composition Effects of Thermal Barrier Coating Ceramics on Their Interaction with Molten Ca–Mg–Al–silicate (CMAS) Glass, Acta Mater., 2012, 60(15), p 5437–5447CrossRef
10.
go back to reference X. Wang, L. Guo, H. Zhang et al., Structural Evolution and Thermal Conductivities of (Gd1−xYbx)2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) Ceramics for Thermal Barrier Coatings, Ceram. Int., 2015, 41(10), p 12621–12625CrossRef X. Wang, L. Guo, H. Zhang et al., Structural Evolution and Thermal Conductivities of (Gd1−xYbx)2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) Ceramics for Thermal Barrier Coatings, Ceram. Int., 2015, 41(10), p 12621–12625CrossRef
11.
go back to reference C. Wan, Z. Qu, A. Du et al., Influence of B Site Substituent Ti on the Structure and Thermophysical Properties of A2B2O7-Type Pyrochlore Gd2Zr2O7, Acta Mater., 2009, 57(16), p 4782–4789CrossRef C. Wan, Z. Qu, A. Du et al., Influence of B Site Substituent Ti on the Structure and Thermophysical Properties of A2B2O7-Type Pyrochlore Gd2Zr2O7, Acta Mater., 2009, 57(16), p 4782–4789CrossRef
12.
go back to reference Z.G. Liu, J.H. Ouyang, and Y. Zhou, Preparation and Thermophysical Properties of (NdxGd1−x)2Zr2O7 Ceramics, J. Mater. Sci., 2008, 43(10), p 3596–3603CrossRef Z.G. Liu, J.H. Ouyang, and Y. Zhou, Preparation and Thermophysical Properties of (NdxGd1−x)2Zr2O7 Ceramics, J. Mater. Sci., 2008, 43(10), p 3596–3603CrossRef
13.
go back to reference Z.G. Liu, J.H. Ouyang, and Y. Zhou, Structural Evolution and Thermophysical Properties of (SmxGd1−x)2Zr2O7 (0 ≤ x≤1.0) Ceramics, J. Alloys Compd., 2009, 472(1), p 319–324CrossRef Z.G. Liu, J.H. Ouyang, and Y. Zhou, Structural Evolution and Thermophysical Properties of (SmxGd1−x)2Zr2O7 (0 ≤ x≤1.0) Ceramics, J. Alloys Compd., 2009, 472(1), p 319–324CrossRef
14.
go back to reference A.N. Radhakrishnan, P. Prabhakar Rao, S.K. Mahesh et al., Role of Bond Strength on the Lattice Thermal Expansion and Oxide Ion Conductivity in Quaternary Pyrochlore Solid Solutions, Inorg. Chem., 2012, 51(4), p 2409–2419CrossRef A.N. Radhakrishnan, P. Prabhakar Rao, S.K. Mahesh et al., Role of Bond Strength on the Lattice Thermal Expansion and Oxide Ion Conductivity in Quaternary Pyrochlore Solid Solutions, Inorg. Chem., 2012, 51(4), p 2409–2419CrossRef
15.
go back to reference A.N. Radhakrishnan, P.P. Rao, K.S. Sibi et al., Order–Disorder Phase Transformations in Quaternary Pyrochlore Oxide System: Investigated by X-Ray Diffraction, Transmission Electron Microscopy and Raman Spectroscopic Techniques, J. Solid State Chem., 2009, 182(8), p 2312–2318CrossRef A.N. Radhakrishnan, P.P. Rao, K.S. Sibi et al., Order–Disorder Phase Transformations in Quaternary Pyrochlore Oxide System: Investigated by X-Ray Diffraction, Transmission Electron Microscopy and Raman Spectroscopic Techniques, J. Solid State Chem., 2009, 182(8), p 2312–2318CrossRef
16.
go back to reference M. Zhao, X. Ren, and W. Pan, Mechanical and Thermal Properties of Simultaneously Substituted Pyrochlore Compounds (Ca2Nb2O7)x(Gd2Zr2O7)1−x, J. Eur. Ceram. Soc., 2015, 35(3), p 1055–1061CrossRef M. Zhao, X. Ren, and W. Pan, Mechanical and Thermal Properties of Simultaneously Substituted Pyrochlore Compounds (Ca2Nb2O7)x(Gd2Zr2O7)1−x, J. Eur. Ceram. Soc., 2015, 35(3), p 1055–1061CrossRef
17.
go back to reference X. Shu, L. Fan, X. Lu et al., Structure and Performance Evolution of the System (Gd1−xNdx)2(Zr1−yCey)2O7 (0 ≤ x, y ≤ 1.0), J. Eur. Ceram. Soc., 2015, 35(11), p 3095–3102CrossRef X. Shu, L. Fan, X. Lu et al., Structure and Performance Evolution of the System (Gd1−xNdx)2(Zr1−yCey)2O7 (0 ≤ x, y ≤ 1.0), J. Eur. Ceram. Soc., 2015, 35(11), p 3095–3102CrossRef
18.
go back to reference Y. Wang, F. Yang, and P. Xiao, Glass-Like Thermal Conductivities in (La1−x1Yx1)2 (Zr1−x2Yx2)2O7-x2 (x = x1 + x2, 0 ≤ x≤1.0) Solid Solutions, Acta Mater., 2012, 60(20), p 7024–7033CrossRef Y. Wang, F. Yang, and P. Xiao, Glass-Like Thermal Conductivities in (La1−x1Yx1)2 (Zr1−x2Yx2)2O7-x2 (x = x1 + x2, 0 ≤ x≤1.0) Solid Solutions, Acta Mater., 2012, 60(20), p 7024–7033CrossRef
19.
go back to reference J.S. Van Sluytman, S. Krämer, V.K. Tolpygo et al., Microstructure Evolution of ZrO2-YbTaO4 Thermal Barrier Coatings, Acta Mater., 2015, 96, p 133–142CrossRef J.S. Van Sluytman, S. Krämer, V.K. Tolpygo et al., Microstructure Evolution of ZrO2-YbTaO4 Thermal Barrier Coatings, Acta Mater., 2015, 96, p 133–142CrossRef
20.
go back to reference X. Song, M. Xie, S. An et al., Structure and Thermal Properties of ZrO2-Ta2O5-Y2O3-Ln2O3 (Ln = Nd, Sm or Gd) Ceramics for Thermal Barrier Coatings, Scripta Mater., 2010, 62(11), p 879–882CrossRef X. Song, M. Xie, S. An et al., Structure and Thermal Properties of ZrO2-Ta2O5-Y2O3-Ln2O3 (Ln = Nd, Sm or Gd) Ceramics for Thermal Barrier Coatings, Scripta Mater., 2010, 62(11), p 879–882CrossRef
21.
go back to reference L. Sun, H. Guo, H. Peng et al., Phase Stability and Thermal Conductivity of Ytterbia and Yttria Co-doped Zirconia, Prog. Nat. Sci. Mater. Int., 2013, 23(4), p 440–445CrossRef L. Sun, H. Guo, H. Peng et al., Phase Stability and Thermal Conductivity of Ytterbia and Yttria Co-doped Zirconia, Prog. Nat. Sci. Mater. Int., 2013, 23(4), p 440–445CrossRef
22.
go back to reference Z. Qu, C. Wan, and W. Pan, Thermophysical Properties of Rare-Earth Stannates: Effect of Pyrochlore Structure, Acta Mater., 2012, 60(6), p 2939–2949CrossRef Z. Qu, C. Wan, and W. Pan, Thermophysical Properties of Rare-Earth Stannates: Effect of Pyrochlore Structure, Acta Mater., 2012, 60(6), p 2939–2949CrossRef
23.
go back to reference Z. Qu, C. Wan, and W. Pan, Thermal Expansion and defect Chemistry of MgO-Doped Sm2Zr2O7, Chem. Mater., 2007, 19(20), p 4913–4918CrossRef Z. Qu, C. Wan, and W. Pan, Thermal Expansion and defect Chemistry of MgO-Doped Sm2Zr2O7, Chem. Mater., 2007, 19(20), p 4913–4918CrossRef
24.
go back to reference M.T. Vandenborre, E. Husson, J.P. Chatry et al., Rare-Earth Titanates and Stannates of Pyrochlore Structure; Vibrational Spectra and Force Fields, J. Raman Spectrosc., 1983, 14(2), p 63–71CrossRef M.T. Vandenborre, E. Husson, J.P. Chatry et al., Rare-Earth Titanates and Stannates of Pyrochlore Structure; Vibrational Spectra and Force Fields, J. Raman Spectrosc., 1983, 14(2), p 63–71CrossRef
25.
go back to reference L. Guo, Y. Zhang, and F. Ye, Phase Structure Evolution and Thermo-Physical Properties of Nonstoichiometry Nd2−xZr2+xO7+x/2 Pyrochlore Ceramics, J. Am. Ceram. Soc., 2015, 98(3), p 1013–1018CrossRef L. Guo, Y. Zhang, and F. Ye, Phase Structure Evolution and Thermo-Physical Properties of Nonstoichiometry Nd2−xZr2+xO7+x/2 Pyrochlore Ceramics, J. Am. Ceram. Soc., 2015, 98(3), p 1013–1018CrossRef
26.
go back to reference N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gasturbine Engine Applications, Science, 2002, 296(4), p 280–284CrossRef N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gasturbine Engine Applications, Science, 2002, 296(4), p 280–284CrossRef
27.
go back to reference J. Wu, X. Wei, N.P. Padture et al., Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc., 2002, 85(12), p 3031–3035CrossRef J. Wu, X. Wei, N.P. Padture et al., Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc., 2002, 85(12), p 3031–3035CrossRef
28.
go back to reference K.V.G. Kutty, S. Rajagopalan, C.K. Mathews et al., Thermal Expansion Behaviour of Some Rare Earth Oxide Pyrochlores, Mater. Res. Bull., 1994, 29(7), p 759–766CrossRef K.V.G. Kutty, S. Rajagopalan, C.K. Mathews et al., Thermal Expansion Behaviour of Some Rare Earth Oxide Pyrochlores, Mater. Res. Bull., 1994, 29(7), p 759–766CrossRef
29.
go back to reference Y.J. Liang, Y.C. Che, and X.X. Liu, Manual of Practical Inorganic Matter Thermodynamics, Northeastern University Press, Shenyang, 1993 Y.J. Liang, Y.C. Che, and X.X. Liu, Manual of Practical Inorganic Matter Thermodynamics, Northeastern University Press, Shenyang, 1993
30.
go back to reference H.R. Lu, C.A. Wang, and C.G. Zhang, Influence of Ln3+ and B3+ Ions Co-Substitution on Thermophysical Properties of LnMB11O19-type Magnetoplumbite LaMgAl11O19 for Advanced Thermal Barrier Coatings, J. Am. Ceram. Soc., 2013, 96(4), p 1063–1066CrossRef H.R. Lu, C.A. Wang, and C.G. Zhang, Influence of Ln3+ and B3+ Ions Co-Substitution on Thermophysical Properties of LnMB11O19-type Magnetoplumbite LaMgAl11O19 for Advanced Thermal Barrier Coatings, J. Am. Ceram. Soc., 2013, 96(4), p 1063–1066CrossRef
31.
go back to reference D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 163, p 67–74CrossRef D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 163, p 67–74CrossRef
32.
go back to reference L. Guo, H. Guo, S. Gong et al., Improvement on the Phase Stability, Mechanical Properties and Thermal Insulation of Y2O3-Stabilized ZrO2 by Gd2O3 and Yb2O3 Co-doping, Ceram. Int., 2013, 39(8), p 9009–9015CrossRef L. Guo, H. Guo, S. Gong et al., Improvement on the Phase Stability, Mechanical Properties and Thermal Insulation of Y2O3-Stabilized ZrO2 by Gd2O3 and Yb2O3 Co-doping, Ceram. Int., 2013, 39(8), p 9009–9015CrossRef
33.
go back to reference M.R. Loghman-Estarki, R.S. Razavi, and H. Jamali, Thermal Behavior Comparison of Plasma Sprayed Nanostructured 7YSZ, 15YSZ and 5.5SYSZ Coatings at Elevated Temperatures, Ceram. Int., 2016, 42(13), p 14374–14383CrossRef M.R. Loghman-Estarki, R.S. Razavi, and H. Jamali, Thermal Behavior Comparison of Plasma Sprayed Nanostructured 7YSZ, 15YSZ and 5.5SYSZ Coatings at Elevated Temperatures, Ceram. Int., 2016, 42(13), p 14374–14383CrossRef
Metadata
Title
Influence of Y2O3 and Ta2O5 Co-doping on Microstructure and Thermal Conductivity of Gd2Zr2O7 Ceramics
Authors
Zhaolu Xue
Shuqin Wu
Lihong Qian
Eungsun Byon
Shihong Zhang
Publication date
19-02-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04658-4

Other articles of this Issue 2/2020

Journal of Materials Engineering and Performance 2/2020 Go to the issue

EditorialNotes

Editorial

Premium Partners