Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 9/2021

23-06-2021 | Original Paper

Influences of Loading Method and Notch Type on Rock Fracture Toughness Measurements: From the Perspectives of T-Stress and Fracture Process Zone

Authors: Mingdong Wei, Feng Dai, Yi Liu, Ang Li, Zelin Yan

Published in: Rock Mechanics and Rock Engineering | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding the inconsistent rock fracture toughness (KIc) measurement results from different test specimen geometries helps provide suitable fracture parameters for engineering applications, predict rock fracture load, and assess the safety of flawed rock engineering structures. In this study, fracture experiments using full- or half-disc specimens with chevron notches or straight-through notches were conducted. Experimental results show that the notch types and loading methods (Brazilian-type diametric compression and three-point bending) significantly affect the KIc measurements. It is indicated that only considering the T-stress or fracture process zone (FPZ) alone cannot explain the test results well, while a good agreement is found between the experimental results and the interpretation based on the combined effects of T-stress and FPZ. Moreover, Brazilian-type compression and three-point bending under a short support span can make the full- or half-disc specimens have higher negative T-stress and larger FPZ, thus producing lower KIc values than three-point bending under a relatively long support span. Compared with KIc measurements using the straight-through notch specimens, those utilizing the chevron-notched ones are less affected by FPZ and yield higher KIc results, providing that the loading method is the same. The notch types have little impact on the T-stresses of the specimens. This study sheds light on the combined influence of T-stress and FPZ on rock fracturing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akbardoost J, Ayatollahi MR (2014) Experimental analysis of mixed mode crack propagation in brittle rocks: the effect of non-singular terms. Eng Fract Mech 129:77–89CrossRef Akbardoost J, Ayatollahi MR (2014) Experimental analysis of mixed mode crack propagation in brittle rocks: the effect of non-singular terms. Eng Fract Mech 129:77–89CrossRef
go back to reference Akbardoost J, Ayatollahi MR, Aliha MRM, Pavier MJ, Smith DJ (2014) Size-dependent fracture behavior of Guiting limestone under mixed mode loading. Int J Rock Mech Min Sci 71:369–380CrossRef Akbardoost J, Ayatollahi MR, Aliha MRM, Pavier MJ, Smith DJ (2014) Size-dependent fracture behavior of Guiting limestone under mixed mode loading. Int J Rock Mech Min Sci 71:369–380CrossRef
go back to reference Aliha MRM, Ayatollahi MR (2013) Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Eng Fract Mech 103:115–123CrossRef Aliha MRM, Ayatollahi MR (2013) Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Eng Fract Mech 103:115–123CrossRef
go back to reference Aliha MRM, Bahmani A (2017) Rock fracture toughness study under mixed mode I/III loading. Rock Mech Rock Eng 50(7):1739–1751CrossRef Aliha MRM, Bahmani A (2017) Rock fracture toughness study under mixed mode I/III loading. Rock Mech Rock Eng 50(7):1739–1751CrossRef
go back to reference Aliha MRM, Mousavi SS (2020) Sub-sized short bend beam configuration for the study of mixed-mode fracture. Eng Fract Mech 225:106830CrossRef Aliha MRM, Mousavi SS (2020) Sub-sized short bend beam configuration for the study of mixed-mode fracture. Eng Fract Mech 225:106830CrossRef
go back to reference Aliha MRM, Ayatollahi MR, Akbardoost J (2012) Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech Rock Eng 45(1):65–74CrossRef Aliha MRM, Ayatollahi MR, Akbardoost J (2012) Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech Rock Eng 45(1):65–74CrossRef
go back to reference Aliha MRM, Hosseinpour GR, Ayatollahi MR (2013) Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng 46(5):1023–1034CrossRef Aliha MRM, Hosseinpour GR, Ayatollahi MR (2013) Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng 46(5):1023–1034CrossRef
go back to reference Aliha MRM, Mahdavi E, Ayatollahi MR (2016) The influence of specimen type on tensile fracture toughness of rock materials. Pure Appl Geophys 3(174):1237–1253 Aliha MRM, Mahdavi E, Ayatollahi MR (2016) The influence of specimen type on tensile fracture toughness of rock materials. Pure Appl Geophys 3(174):1237–1253
go back to reference Aliha MRM, Berto F, Mousavi A, Razavi SMJ (2017) On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material. Theor Appl Fract Mech 92:198–204CrossRef Aliha MRM, Berto F, Mousavi A, Razavi SMJ (2017) On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material. Theor Appl Fract Mech 92:198–204CrossRef
go back to reference Aliha MRM, Mahdavi E, Ayatollahi MR (2018) Statistical analysis of rock fracture toughness data obtained from different chevron notched and straight cracked mode I specimens. Rock Mech Rock Eng 51:2095–2114CrossRef Aliha MRM, Mahdavi E, Ayatollahi MR (2018) Statistical analysis of rock fracture toughness data obtained from different chevron notched and straight cracked mode I specimens. Rock Mech Rock Eng 51:2095–2114CrossRef
go back to reference Aliha MRM, Mousavi SS, Ghoreishi SMN (2019) Fracture load prediction under mixed mode I+II using a stress based method for brittle materials tested with the asymmetric four-point bend specimen. Theor Appl Fract Mech 103:102249CrossRef Aliha MRM, Mousavi SS, Ghoreishi SMN (2019) Fracture load prediction under mixed mode I+II using a stress based method for brittle materials tested with the asymmetric four-point bend specimen. Theor Appl Fract Mech 103:102249CrossRef
go back to reference Al-Shayea NA (2005) Crack propagation trajectories for rocks under mixed mode I-II fracture. Eng Geol 81:84–97CrossRef Al-Shayea NA (2005) Crack propagation trajectories for rocks under mixed mode I-II fracture. Eng Geol 81:84–97CrossRef
go back to reference Amrollahi H, Baghbanan A, Hashemolhosseini H (2011) Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I-II loading conditions using CCNBD and HCCD specimens. Int J Rock Mech Min Sci 48:1123–1134CrossRef Amrollahi H, Baghbanan A, Hashemolhosseini H (2011) Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I-II loading conditions using CCNBD and HCCD specimens. Int J Rock Mech Min Sci 48:1123–1134CrossRef
go back to reference ASTM E561 (1987) Annual book of ASTM standards. Metal test methods and analytical procedure. ASTM Publication, Philadephia ASTM E561 (1987) Annual book of ASTM standards. Metal test methods and analytical procedure. ASTM Publication, Philadephia
go back to reference Atkinson BK (1987) Fracture mechanics of rock. Academic Press, Elsevier Atkinson BK (1987) Fracture mechanics of rock. Academic Press, Elsevier
go back to reference Ayatollahi MR, Abbasi H (2001) Prediction of fracture using a strain based mechanism of crack growth. Build Res J 49(3):167–180 Ayatollahi MR, Abbasi H (2001) Prediction of fracture using a strain based mechanism of crack growth. Build Res J 49(3):167–180
go back to reference Ayatollahi MR, Akbardoost J (2014) Size and geometry effects on rock fracture toughness: mode I fracture. Rock Mech Rock Eng 47:677–687CrossRef Ayatollahi MR, Akbardoost J (2014) Size and geometry effects on rock fracture toughness: mode I fracture. Rock Mech Rock Eng 47:677–687CrossRef
go back to reference Ayatollahi MR, Aliha MRM (2005) Cracked Brazilian disc specimen subjected to mode II deformation. Eng Fract Mech 72(4):493–503CrossRef Ayatollahi MR, Aliha MRM (2005) Cracked Brazilian disc specimen subjected to mode II deformation. Eng Fract Mech 72(4):493–503CrossRef
go back to reference Ayatollahi MR, Sedighiani K (2012) Mode I fracture initiation in limestone by strain energy density criterion. Theor Appl Fract Mech 57(1):14–18CrossRef Ayatollahi MR, Sedighiani K (2012) Mode I fracture initiation in limestone by strain energy density criterion. Theor Appl Fract Mech 57(1):14–18CrossRef
go back to reference Ayatollahi MR, Mahdavi E, Alborzi MJ, Obara Y (2016a) Stress intensity factors of semi-circular bend specimens with straight-through and chevron notches. Rock Mech Rock Eng 49(4):1161–1172CrossRef Ayatollahi MR, Mahdavi E, Alborzi MJ, Obara Y (2016a) Stress intensity factors of semi-circular bend specimens with straight-through and chevron notches. Rock Mech Rock Eng 49(4):1161–1172CrossRef
go back to reference Ayatollahi MR, Moghaddam MR, Razavi SMJ, Berto F (2016b) Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading. Eng Fract Mech 163:449–461CrossRef Ayatollahi MR, Moghaddam MR, Razavi SMJ, Berto F (2016b) Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading. Eng Fract Mech 163:449–461CrossRef
go back to reference Ayatollahi MR, Bahrami B, Mirzaeil AM, Yazid Yahyab M (2019) Effects of support friction on mode I stress intensity factor and fracture toughness in SENB testing. Theor Appl Fract Mech 103(10):102288CrossRef Ayatollahi MR, Bahrami B, Mirzaeil AM, Yazid Yahyab M (2019) Effects of support friction on mode I stress intensity factor and fracture toughness in SENB testing. Theor Appl Fract Mech 103(10):102288CrossRef
go back to reference Bahmani A, Nemati S (2021) Fracture resistance of railway ballast rock under tensile and tear loads. Eng Solid Mech 9(3):271–280CrossRef Bahmani A, Nemati S (2021) Fracture resistance of railway ballast rock under tensile and tear loads. Eng Solid Mech 9(3):271–280CrossRef
go back to reference Bahmani A, Farahmand F, Janbaz MR, Darbandi AH, Ghesmati-Kucheki H, Aliha MRM (2021) On the comparison of two mixed-mode I + III fracture test specimens. Eng Fract Mech 241:107434CrossRef Bahmani A, Farahmand F, Janbaz MR, Darbandi AH, Ghesmati-Kucheki H, Aliha MRM (2021) On the comparison of two mixed-mode I + III fracture test specimens. Eng Fract Mech 241:107434CrossRef
go back to reference Barsoum RS (1977) Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Meth Eng 11(1):85–98CrossRef Barsoum RS (1977) Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Meth Eng 11(1):85–98CrossRef
go back to reference Bažant ZP, Kazemi MT (1990) Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. Int J Fract 44(2):111–131CrossRef Bažant ZP, Kazemi MT (1990) Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. Int J Fract 44(2):111–131CrossRef
go back to reference Bidadi J, Akbardoost J, Aliha MRM (2020) Thickness effect on the mode III fracture resistance and fracture path of rock using ENDB specimens. Fatigue Fract Eng Mater Struct 43:277–291CrossRef Bidadi J, Akbardoost J, Aliha MRM (2020) Thickness effect on the mode III fracture resistance and fracture path of rock using ENDB specimens. Fatigue Fract Eng Mater Struct 43:277–291CrossRef
go back to reference Chang SH, Lee CI, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1):79–97CrossRef Chang SH, Lee CI, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1):79–97CrossRef
go back to reference Chen CH, Chen CS, Wu JH (2008) Fracture toughness analysis on cracked ring disks of anisotropic rock. Rock Mech Rock Eng 41(4):539–562CrossRef Chen CH, Chen CS, Wu JH (2008) Fracture toughness analysis on cracked ring disks of anisotropic rock. Rock Mech Rock Eng 41(4):539–562CrossRef
go back to reference Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26(2):59–62CrossRef Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26(2):59–62CrossRef
go back to reference Chong KP, Kuruppu MD, Kuszmaul JS (1987) Fracture toughness determination of layered materials. Eng Fract Mech 28:43–54CrossRef Chong KP, Kuruppu MD, Kuszmaul JS (1987) Fracture toughness determination of layered materials. Eng Fract Mech 28:43–54CrossRef
go back to reference Cui ZD, Liu DA, An GM, Sun B, Zhou M, Cao FQ (2010) A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness. Int J Rock Mech Min Sci 47:871–876CrossRef Cui ZD, Liu DA, An GM, Sun B, Zhou M, Cao FQ (2010) A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness. Int J Rock Mech Min Sci 47:871–876CrossRef
go back to reference Dwivedi RD, Soni AK, Goel RK, Dube AK (2000) Fracture toughness of rocks under sub-zero temperature conditions. Int J Rock Mech Min Sci 37:1267–1275CrossRef Dwivedi RD, Soni AK, Goel RK, Dube AK (2000) Fracture toughness of rocks under sub-zero temperature conditions. Int J Rock Mech Min Sci 37:1267–1275CrossRef
go back to reference Erarslan N (2013) A study on the evaluation of the fracture process zone in CCNBD rock samples. Exp Mech 53:1475–1489CrossRef Erarslan N (2013) A study on the evaluation of the fracture process zone in CCNBD rock samples. Exp Mech 53:1475–1489CrossRef
go back to reference Fan H, Zhang S, Wang Q (2010) Determination of dynamic initiate toughness of concrete using cracked straight-through flattened Brazilian disc. Shuili Xuebao 41(10):1234–1240 Fan H, Zhang S, Wang Q (2010) Determination of dynamic initiate toughness of concrete using cracked straight-through flattened Brazilian disc. Shuili Xuebao 41(10):1234–1240
go back to reference Fayed AS (2018) Numerical evaluation of mode I/II SIF of quasi-brittle materials using cracked semi-circular bend specimen. Eng Solid Mech 6(2):175–186CrossRef Fayed AS (2018) Numerical evaluation of mode I/II SIF of quasi-brittle materials using cracked semi-circular bend specimen. Eng Solid Mech 6(2):175–186CrossRef
go back to reference Fowell RJ (1995) ISRM commission on testing methods. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min Sci Geomech Abstr 32(1):57–64CrossRef Fowell RJ (1995) ISRM commission on testing methods. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min Sci Geomech Abstr 32(1):57–64CrossRef
go back to reference Funatsu T, Kuruppu MD, Matsui K (2014) Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. Int J Rock Mech Min Sci 67:1–8CrossRef Funatsu T, Kuruppu MD, Matsui K (2014) Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. Int J Rock Mech Min Sci 67:1–8CrossRef
go back to reference Funatsu T, Shimizu N, Kuruppu M, Matsui K (2015) Evaluation of mode I fracture toughness assisted by the numerical determination of K-resistance. Rock Mech Rock Eng 48:143–157CrossRef Funatsu T, Shimizu N, Kuruppu M, Matsui K (2015) Evaluation of mode I fracture toughness assisted by the numerical determination of K-resistance. Rock Mech Rock Eng 48:143–157CrossRef
go back to reference Ghouli S, Ayatollahi MR, Bushroa AR (2018) Fracture characterization of ceria partially stabilized zirconia using the GMTSN criterion. Eng Fract Mech 199:647–657CrossRef Ghouli S, Ayatollahi MR, Bushroa AR (2018) Fracture characterization of ceria partially stabilized zirconia using the GMTSN criterion. Eng Fract Mech 199:647–657CrossRef
go back to reference Haeri H, Sarfarazi V, Yazdani M, Shemirani AB, Hedayat A (2018) Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material. Rock Mech Rock Eng 51(1):173–185CrossRef Haeri H, Sarfarazi V, Yazdani M, Shemirani AB, Hedayat A (2018) Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material. Rock Mech Rock Eng 51(1):173–185CrossRef
go back to reference Hu X, Duan K (2008) Size effect and quasi-brittle fracture: the role of FPZ. Int J Fract 154(1):3–14CrossRef Hu X, Duan K (2008) Size effect and quasi-brittle fracture: the role of FPZ. Int J Fract 154(1):3–14CrossRef
go back to reference Huang RQ, Wu LZ, He Q, Li JH (2017) Stress intensity factor analysis and the stability of overhanging rock. Rock Mech Rock Eng 50:2135–2142CrossRef Huang RQ, Wu LZ, He Q, Li JH (2017) Stress intensity factor analysis and the stability of overhanging rock. Rock Mech Rock Eng 50:2135–2142CrossRef
go back to reference Iqbal MJ, Mohanty B (2006) Experimental calibration of stress intensity factors of the ISRM suggested cracked chevron-notched Brazilian disc specimen used for determination of mode-I fracture toughness. Int J Rock Mech Min Sci 43:1270–1276CrossRef Iqbal MJ, Mohanty B (2006) Experimental calibration of stress intensity factors of the ISRM suggested cracked chevron-notched Brazilian disc specimen used for determination of mode-I fracture toughness. Int J Rock Mech Min Sci 43:1270–1276CrossRef
go back to reference Irwin GR (1948) Fracture dynamics. Fracturing of metals. American Society of Metals, Cleveland, pp 147–166 Irwin GR (1948) Fracture dynamics. Fracturing of metals. American Society of Metals, Cleveland, pp 147–166
go back to reference Jenkins MG, Kobayashi AS, White KW, Bradt RC (1987) A 3-D finite element analysis of a chevron-notched, three-point bend fracture specimen for ceramic materials. Int J Fract 34:281–295CrossRef Jenkins MG, Kobayashi AS, White KW, Bradt RC (1987) A 3-D finite element analysis of a chevron-notched, three-point bend fracture specimen for ceramic materials. Int J Fract 34:281–295CrossRef
go back to reference Keles C, Tutluoglu L (2011) Investigation of proper specimen geometry for mode I fracture toughness testing with flattened Brazilian disc method. Int J Fract 169(1):61–75CrossRef Keles C, Tutluoglu L (2011) Investigation of proper specimen geometry for mode I fracture toughness testing with flattened Brazilian disc method. Int J Fract 169(1):61–75CrossRef
go back to reference Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206CrossRef Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206CrossRef
go back to reference Kuruppu MD (1997) Fracture toughness measurement using chevron notched semi-circular bend specimen. Int J Fract 86(4):33–38 Kuruppu MD (1997) Fracture toughness measurement using chevron notched semi-circular bend specimen. Int J Fract 86(4):33–38
go back to reference Kuruppu MD, Chong KP (2012) Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Eng Fract Mech 91:133–150CrossRef Kuruppu MD, Chong KP (2012) Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Eng Fract Mech 91:133–150CrossRef
go back to reference Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng 47:267–274CrossRef Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng 47:267–274CrossRef
go back to reference Labuz JF, Shah SP, Dowding CH (1985a) Fracture analysis of subsize, charcoal granite specimens. Int J Rock Mech Min Sci Geomech Abstr 22(6):192–193CrossRef Labuz JF, Shah SP, Dowding CH (1985a) Fracture analysis of subsize, charcoal granite specimens. Int J Rock Mech Min Sci Geomech Abstr 22(6):192–193CrossRef
go back to reference Labuz JF, Shah SP, Dowding CH (1985b) Experimental analysis of crack propagation in granite. Int J Rock Mech Min Sci Geomech Abstr 22(2):85–98CrossRef Labuz JF, Shah SP, Dowding CH (1985b) Experimental analysis of crack propagation in granite. Int J Rock Mech Min Sci Geomech Abstr 22(2):85–98CrossRef
go back to reference Labuz JF, Shah SP, Dowding CH (1987) The fracture process zone in granite: evidence and effect. Int J Rock Mech Min Sci Geomech Abstr 24(4):235–246CrossRef Labuz JF, Shah SP, Dowding CH (1987) The fracture process zone in granite: evidence and effect. Int J Rock Mech Min Sci Geomech Abstr 24(4):235–246CrossRef
go back to reference Labuz JF, Shah SP, Dowding CH (1989) Measurement and description of tensile fracture in granite. J Eng Mech 115(9):1935–1949 Labuz JF, Shah SP, Dowding CH (1989) Measurement and description of tensile fracture in granite. J Eng Mech 115(9):1935–1949
go back to reference Labuz JF, Chen CN, Berger DJ (1991) Microcrack-dependent fracture of damaged rock. Int J Fract 51(3):231–240CrossRef Labuz JF, Chen CN, Berger DJ (1991) Microcrack-dependent fracture of damaged rock. Int J Fract 51(3):231–240CrossRef
go back to reference Mahdavi E, Obara Y, Ayatollahi M (2015) Numerical investigation of stress intensity factor for semi-circular bend specimen with chevron notch. Eng Solid Mech 3(4):235–244CrossRef Mahdavi E, Obara Y, Ayatollahi M (2015) Numerical investigation of stress intensity factor for semi-circular bend specimen with chevron notch. Eng Solid Mech 3(4):235–244CrossRef
go back to reference Mahdavi E, Aliha MRM, Bahrami B, Ayatollahi MR (2020) Comprehensive data for stress intensity factor and critical crack length in chevron notched semi-circular bend specimen subjected to tensile type fracture mode. Theor Appl Fract Mech 106:102466CrossRef Mahdavi E, Aliha MRM, Bahrami B, Ayatollahi MR (2020) Comprehensive data for stress intensity factor and critical crack length in chevron notched semi-circular bend specimen subjected to tensile type fracture mode. Theor Appl Fract Mech 106:102466CrossRef
go back to reference Mirsayar MM (2014) A new mixed mode fracture test specimen covering positive and negative values of T-stress. Eng Solid Mech 2(2):67–72CrossRef Mirsayar MM (2014) A new mixed mode fracture test specimen covering positive and negative values of T-stress. Eng Solid Mech 2(2):67–72CrossRef
go back to reference Mirsayar MM (2015) Mixed mode fracture analysis using extended maximum tangential strain criterion. Mater Des 86:941–947CrossRef Mirsayar MM (2015) Mixed mode fracture analysis using extended maximum tangential strain criterion. Mater Des 86:941–947CrossRef
go back to reference Mirsayar MM (2017) On the low temperature mixed mode fracture analysis of asphalt binder—theories and experiments. Eng Fract Mech 186:181–194CrossRef Mirsayar MM (2017) On the low temperature mixed mode fracture analysis of asphalt binder—theories and experiments. Eng Fract Mech 186:181–194CrossRef
go back to reference Mirsayar MM (2018) On fracture analysis of dental restorative materials under combined tensile-shear. Theor Appl Fract Mech 93:170–176CrossRef Mirsayar MM (2018) On fracture analysis of dental restorative materials under combined tensile-shear. Theor Appl Fract Mech 93:170–176CrossRef
go back to reference Mirsayar MM, Razmi A, Aliha MRM, Berto F (2018a) EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials. Eng Fract Mech 190:186–197CrossRef Mirsayar MM, Razmi A, Aliha MRM, Berto F (2018a) EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials. Eng Fract Mech 190:186–197CrossRef
go back to reference Mirsayar MM, Razmi A, Berto F (2018b) Tangential strain-based criteria for mixed-mode I/II fracture toughness of cement concrete. Fatigue Fract Eng Mater Struct 41:129–137CrossRef Mirsayar MM, Razmi A, Berto F (2018b) Tangential strain-based criteria for mixed-mode I/II fracture toughness of cement concrete. Fatigue Fract Eng Mater Struct 41:129–137CrossRef
go back to reference Ouchterlony F (1982) A review of fracture toughness testing of rocks. Solid Mech Arch 7:131–211 Ouchterlony F (1982) A review of fracture toughness testing of rocks. Solid Mech Arch 7:131–211
go back to reference Ouchterlony F (1988) ISRM commission on testing methods. Suggested methods for determining fracture toughness of rock. Int J Rock Mech Min Sci Geomech Abstr 25:71–96CrossRef Ouchterlony F (1988) ISRM commission on testing methods. Suggested methods for determining fracture toughness of rock. Int J Rock Mech Min Sci Geomech Abstr 25:71–96CrossRef
go back to reference Razavi SMJ, Aliha MRM, Berto F (2018) Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theor Appl Fract Mech 97:419–425CrossRef Razavi SMJ, Aliha MRM, Berto F (2018) Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theor Appl Fract Mech 97:419–425CrossRef
go back to reference Schmidt RA (1980) A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In: Proceedings of the 21st U.S. symposium on rock mechanics (USRMS), Rolla, MO, USA, May, pp 581–590 Schmidt RA (1980) A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In: Proceedings of the 21st U.S. symposium on rock mechanics (USRMS), Rolla, MO, USA, May, pp 581–590
go back to reference Shannon JL, Bubsey RT, Pierce WS, Munz D (1982) Extended range stress intensity factor expressions for chevron-notched short bar and short rod fracture toughness specimens. Int J Fract 19(3):55–58CrossRef Shannon JL, Bubsey RT, Pierce WS, Munz D (1982) Extended range stress intensity factor expressions for chevron-notched short bar and short rod fracture toughness specimens. Int J Fract 19(3):55–58CrossRef
go back to reference Sheity DK, Rosenfield AR, Duckworth WH (1985) Fracture toughness of ceramics measured by a chevron-notch diametral-compression test. J Am Ceram Soc 68(12):325–327CrossRef Sheity DK, Rosenfield AR, Duckworth WH (1985) Fracture toughness of ceramics measured by a chevron-notch diametral-compression test. J Am Ceram Soc 68(12):325–327CrossRef
go back to reference Tutluoglu L, Keles C (2011) Mode I fracture toughness determination with straight notched disk bending method. Int J Rock Mech Min Sci 48(8):1248–1261CrossRef Tutluoglu L, Keles C (2011) Mode I fracture toughness determination with straight notched disk bending method. Int J Rock Mech Min Sci 48(8):1248–1261CrossRef
go back to reference Tutluoglu L, Keles C (2012) Effects of geometric factors on mode I fracture toughness for modified ring tests. Int J Rock Mech Min Sci 51:149–161CrossRef Tutluoglu L, Keles C (2012) Effects of geometric factors on mode I fracture toughness for modified ring tests. Int J Rock Mech Min Sci 51:149–161CrossRef
go back to reference Wang QZ, Fan H, Gou XP, Zhang S (2013) Recalibration and clarification of the formula applied to the ISRM-suggested CCNBD specimens for testing rock fracture toughness. Rock Mech Rock Eng 46(2):303–313CrossRef Wang QZ, Fan H, Gou XP, Zhang S (2013) Recalibration and clarification of the formula applied to the ISRM-suggested CCNBD specimens for testing rock fracture toughness. Rock Mech Rock Eng 46(2):303–313CrossRef
go back to reference Wei MD, Dai F, Xu NW, Xu Y, Xia K (2015) Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens. Eng Fract Mech 134:286–303CrossRef Wei MD, Dai F, Xu NW, Xu Y, Xia K (2015) Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens. Eng Fract Mech 134:286–303CrossRef
go back to reference Wei MD, Dai F, Xu NW, Liu JF, Xu Y (2016a) Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode I fracture toughness of rocks. Rock Mech Rock Eng 49:1595–1609CrossRef Wei MD, Dai F, Xu NW, Liu JF, Xu Y (2016a) Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode I fracture toughness of rocks. Rock Mech Rock Eng 49:1595–1609CrossRef
go back to reference Wei MD, Dai F, Xu NW, Zhao T (2016b) Stress intensity factors and fracture process zones of ISRM-suggested chevron notched specimens for mode I fracture toughness testing of rocks. Eng Fract Mech 168:174–189CrossRef Wei MD, Dai F, Xu NW, Zhao T (2016b) Stress intensity factors and fracture process zones of ISRM-suggested chevron notched specimens for mode I fracture toughness testing of rocks. Eng Fract Mech 168:174–189CrossRef
go back to reference Wei MD, Dai F, Xu NW, Liu Y, Zhao T (2017) Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Eng Fract Mech 186:21–38CrossRef Wei MD, Dai F, Xu NW, Liu Y, Zhao T (2017) Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Eng Fract Mech 186:21–38CrossRef
go back to reference Wei MD, Dai F, Xu NW, Zhao T (2018a) Experimental and numerical investigation of cracked chevron notched Brazilian disc specimen for fracture toughness testing of rock. Fatigue Fract Eng Mater Struct 41(1):197–211CrossRef Wei MD, Dai F, Xu NW, Zhao T (2018a) Experimental and numerical investigation of cracked chevron notched Brazilian disc specimen for fracture toughness testing of rock. Fatigue Fract Eng Mater Struct 41(1):197–211CrossRef
go back to reference Wei MD, Dai F, Xu NW, Liu Y, Zhao T (2018b) A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks. Eng Fract Mech 190:1–15CrossRef Wei MD, Dai F, Xu NW, Liu Y, Zhao T (2018b) A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks. Eng Fract Mech 190:1–15CrossRef
go back to reference Wei MD, Dai F, Zhou JW, Liu Y, Luo J (2018c) A further improved maximum tangential stress criterion for assessing mode I fracture of rocks considering non-singular stress terms of the Williams expansion. Rock Mech Rock Eng 51:3471–3488 CrossRef Wei MD, Dai F, Zhou JW, Liu Y, Luo J (2018c) A further improved maximum tangential stress criterion for assessing mode I fracture of rocks considering non-singular stress terms of the Williams expansion. Rock Mech Rock Eng 51:3471–3488 CrossRef
go back to reference Wong LNY, Guo TY (2019) Microcracking behavior of two semi-circular bend specimens in mode I fracture toughness test of granite. Eng Fract Mech 221:106565CrossRef Wong LNY, Guo TY (2019) Microcracking behavior of two semi-circular bend specimens in mode I fracture toughness test of granite. Eng Fract Mech 221:106565CrossRef
go back to reference Wu LZ, Wang QZ, Jia XM (2004) Determination of mode-i rock fracture toughness with cracked chevron notched Brazilian disc (CCNBD) and application of size effect law. Chin J Rock Mechan Eng 23(3):383–390 Wu LZ, Wang QZ, Jia XM (2004) Determination of mode-i rock fracture toughness with cracked chevron notched Brazilian disc (CCNBD) and application of size effect law. Chin J Rock Mechan Eng 23(3):383–390
go back to reference Xu Y, Dai F, Xu N, Zhao T (2016a) Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing. Rock Mech Rock Eng 49:731–745CrossRef Xu Y, Dai F, Xu N, Zhao T (2016a) Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing. Rock Mech Rock Eng 49:731–745CrossRef
go back to reference Xu Y, Dai F, Zhao T, Xu N, Liu Y (2016b) Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles. Rock Mech Rock Eng 49(8):3083–3093CrossRef Xu Y, Dai F, Zhao T, Xu N, Liu Y (2016b) Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles. Rock Mech Rock Eng 49(8):3083–3093CrossRef
go back to reference Xu S, Malik MA, Li Q, Wu Y (2016c) Determination of double-K fracture parameters using semi-circular bend test specimens. Eng Fract Mech 152:58–71CrossRef Xu S, Malik MA, Li Q, Wu Y (2016c) Determination of double-K fracture parameters using semi-circular bend test specimens. Eng Fract Mech 152:58–71CrossRef
go back to reference Yin X, Yan Y, Li H, Liao Y, Wu J, Shi Y (1990) Experimental investigation on the measurement of fracture toughness KIc of rocks using different methods. Chin J Rock Mechan Eng 4:328–333 Yin X, Yan Y, Li H, Liao Y, Wu J, Shi Y (1990) Experimental investigation on the measurement of fracture toughness KIc of rocks using different methods. Chin J Rock Mechan Eng 4:328–333
go back to reference Zhang ZX (2002) An empirical relation between mode I fracture toughness and the tensile strength of rock. Int J Rock Mech Min Sci 39:401–406CrossRef Zhang ZX (2002) An empirical relation between mode I fracture toughness and the tensile strength of rock. Int J Rock Mech Min Sci 39:401–406CrossRef
go back to reference Zhang S, Wang QZ (2009) Determination of rock fracture toughness by split test using five types of disc specimens. Rock Soil Mech 30(1):12–18 Zhang S, Wang QZ (2009) Determination of rock fracture toughness by split test using five types of disc specimens. Rock Soil Mech 30(1):12–18
go back to reference Zhang CG, Zhou Y, Yang JR, Wang QZ (2014) A series of edge cracked flattened ring(disc) specimens for determining fracture toughness: numerical analysis and calibration results. Chin J Rock Mechan Eng 33(8):1546–1555 Zhang CG, Zhou Y, Yang JR, Wang QZ (2014) A series of edge cracked flattened ring(disc) specimens for determining fracture toughness: numerical analysis and calibration results. Chin J Rock Mechan Eng 33(8):1546–1555
go back to reference Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112CrossRef Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112CrossRef
Metadata
Title
Influences of Loading Method and Notch Type on Rock Fracture Toughness Measurements: From the Perspectives of T-Stress and Fracture Process Zone
Authors
Mingdong Wei
Feng Dai
Yi Liu
Ang Li
Zelin Yan
Publication date
23-06-2021
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 9/2021
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-021-02541-9

Other articles of this Issue 9/2021

Rock Mechanics and Rock Engineering 9/2021 Go to the issue