Skip to main content
Top
Published in: Cognitive Computation 5/2023

13-10-2020

Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems

Authors: R. Martínez-Peña, J. Nokkala, G. L. Giorgi, R. Zambrini, M. C. Soriano

Published in: Cognitive Computation | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamical behavior of complex quantum systems can be harnessed for information processing. With this aim, quantum reservoir computing (QRC) with Ising spin networks was recently introduced as a quantum version of classical reservoir computing. In turn, reservoir computing is a neuro-inspired machine learning technique that consists in exploiting dynamical systems to solve nonlinear and temporal tasks. We characterize the performance of the spin-based QRC model with the Information Processing Capacity (IPC), which allows to quantify the computational capabilities of a dynamical system beyond specific tasks. The influence on the IPC of the input injection frequency, time multiplexing, and different measured observables encompassing local spin measurements as well as correlations is addressed. We find conditions for an optimum input driving and provide different alternatives for the choice of the output variables used for the readout. This work establishes a clear picture of the computational capabilities of a quantum network of spins for reservoir computing. Our results pave the way to future research on QRC both from the theoretical and experimental points of view.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT press; 2016.MATH Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT press; 2016.MATH
2.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems; 2012. p. 1097–1105. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems; 2012. p. 1097–1105.
3.
go back to reference Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, et al. 2019. Machine learning and the physical sciences, Vol. 91. Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, et al. 2019. Machine learning and the physical sciences, Vol. 91.
4.
go back to reference Hinton G. Deep learning—a technology with the potential to transform health care. Jama 2019; 320(11):1101–1102.CrossRef Hinton G. Deep learning—a technology with the potential to transform health care. Jama 2019; 320(11):1101–1102.CrossRef
5.
go back to reference Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 2018;13(3):55–75.CrossRef Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 2018;13(3):55–75.CrossRef
6.
go back to reference Triefenbach F, Demuynck K, Martens JP. Large vocabulary continuous speech recognition with reservoir-based acoustic models. IEEE Signal Process Lett 2014;21(3):311–315.CrossRef Triefenbach F, Demuynck K, Martens JP. Large vocabulary continuous speech recognition with reservoir-based acoustic models. IEEE Signal Process Lett 2014;21(3):311–315.CrossRef
7.
go back to reference Pathak J, Hunt B, Girvan M, Lu Z, Ott E. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys Rev Lett 2018;120(2):024102.CrossRef Pathak J, Hunt B, Girvan M, Lu Z, Ott E. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys Rev Lett 2018;120(2):024102.CrossRef
8.
go back to reference Antonik P, Duport F, Hermans M, Smerieri A, Haelterman M, Massar S. Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans Neural Netw Learn Syst 2016;28(11):2686–2698.CrossRef Antonik P, Duport F, Hermans M, Smerieri A, Haelterman M, Massar S. Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans Neural Netw Learn Syst 2016;28(11):2686–2698.CrossRef
9.
go back to reference Makridakis S, Spiliotis E, Assimakopoulos V. The M4 Competition: results, findings, conclusion and way forward. Int J Forecast 2018;34(4):802–808.CrossRef Makridakis S, Spiliotis E, Assimakopoulos V. The M4 Competition: results, findings, conclusion and way forward. Int J Forecast 2018;34(4):802–808.CrossRef
10.
go back to reference Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 2002;14(11):2531–2560.CrossRefMATH Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 2002;14(11):2531–2560.CrossRefMATH
11.
go back to reference Lukoševičius M, Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 2009;3(3):127–149.CrossRefMATH Lukoševičius M, Jaeger H. Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 2009;3(3):127–149.CrossRefMATH
12.
go back to reference Jaeger H. 2001. The ”echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148(34):13. Jaeger H. 2001. The ”echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148(34):13.
13.
go back to reference Verstraeten D, Schrauwen B, d’Haene M, Stroobandt D. An experimental unification of reservoir computing methods. Neural Netw 2007;20(3):391–403.CrossRefMATH Verstraeten D, Schrauwen B, d’Haene M, Stroobandt D. An experimental unification of reservoir computing methods. Neural Netw 2007;20(3):391–403.CrossRefMATH
14.
go back to reference Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N, Takeda S, et al. 2019. Recent advances in physical reservoir computing: a review. Neural Netw. Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N, Takeda S, et al. 2019. Recent advances in physical reservoir computing: a review. Neural Netw.
15.
go back to reference Van der Sande G, Brunner D, Soriano M. C. Advances in photonic reservoir computing. Nanophotonics 2017;6(3):561–576.CrossRef Van der Sande G, Brunner D, Soriano M. C. Advances in photonic reservoir computing. Nanophotonics 2017;6(3):561–576.CrossRef
16.
go back to reference Appeltant L, Soriano M C, Van der Sande G, Danckaert J, Massar S, Dambre J, et al. Information processing using a single dynamical node as complex system. Nat Commun 2011;2(1):1–6.CrossRef Appeltant L, Soriano M C, Van der Sande G, Danckaert J, Massar S, Dambre J, et al. Information processing using a single dynamical node as complex system. Nat Commun 2011;2(1):1–6.CrossRef
17.
go back to reference Torrejon J, Riou M, Araujo F A, Tsunegi S, Khalsa G, Querlioz D, et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 2017;547(7664):428.CrossRef Torrejon J, Riou M, Araujo F A, Tsunegi S, Khalsa G, Querlioz D, et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 2017;547(7664):428.CrossRef
18.
go back to reference Fujii K, Nakajimam K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys Rev Appl 2017;8(2):024030.CrossRef Fujii K, Nakajimam K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys Rev Appl 2017;8(2):024030.CrossRef
19.
go back to reference Nakajima K, Fujii K, Negoro M, Mitarai K, Kitagawa M. Boosting computational power through spatial multiplexing in quantum reservoir computing. Phys Rev Appl 2019;11(3):034021.CrossRef Nakajima K, Fujii K, Negoro M, Mitarai K, Kitagawa M. Boosting computational power through spatial multiplexing in quantum reservoir computing. Phys Rev Appl 2019;11(3):034021.CrossRef
20.
21.
go back to reference Ghosh S, Opala A, Matuszewski M, Paterek T, Liew TC. Quantum reservoir processing. npj Quantum Inf 2019;5(1):1–6.CrossRef Ghosh S, Opala A, Matuszewski M, Paterek T, Liew TC. Quantum reservoir processing. npj Quantum Inf 2019;5(1):1–6.CrossRef
23.
go back to reference Nielsen M A, Chuang I. Quantum computation and quantum information. Cambridge: Cambridge University Press; 2010.MATH Nielsen M A, Chuang I. Quantum computation and quantum information. Cambridge: Cambridge University Press; 2010.MATH
24.
go back to reference Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL. Quantum computers. Nature 2010;464(7285):45–53.CrossRef Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL. Quantum computers. Nature 2010;464(7285):45–53.CrossRef
25.
go back to reference Acín A, Bloch I, Buhrman H, Calarco T, Eichler C, Eisert J, et al. The quantum technologies roadmap: a European community view. New J Phys 2018;20(8):080201.CrossRef Acín A, Bloch I, Buhrman H, Calarco T, Eichler C, Eisert J, et al. The quantum technologies roadmap: a European community view. New J Phys 2018;20(8):080201.CrossRef
26.
go back to reference Dambre J, Verstraeten D, Schrauwen B, Massar S. Information processing capacity of dynamical systems. Sci. Rep. 2012;2:514.CrossRef Dambre J, Verstraeten D, Schrauwen B, Massar S. Information processing capacity of dynamical systems. Sci. Rep. 2012;2:514.CrossRef
27.
go back to reference Jaeger H. Short term memory in echo state networks. GMD-Report 152. GMD-German National Research Institute for Computer Science; 2002. Citeseer. Jaeger H. Short term memory in echo state networks. GMD-Report 152. GMD-German National Research Institute for Computer Science; 2002. Citeseer.
28.
go back to reference Brunner D, Soriano M C, Mirasso C R, Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun 2013;4:1364.CrossRef Brunner D, Soriano M C, Mirasso C R, Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun 2013;4:1364.CrossRef
29.
go back to reference Larger L, Baylón-Fuentes A, Martinenghi R, Udaltsov VS, Chembo YK, Jacquot M. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys Rev X 2017;7(1):011015. Larger L, Baylón-Fuentes A, Martinenghi R, Udaltsov VS, Chembo YK, Jacquot M. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys Rev X 2017;7(1):011015.
30.
go back to reference Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 2004;304(5667):78–80.CrossRef Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 2004;304(5667):78–80.CrossRef
31.
go back to reference Soriano M C, Ortín S, Keuninckx L, Appeltant L, Danckaert J, Pesquera L, et al. Delay-based reservoir computing: noise effects in a combined analog and digital implementation. IEEE Trans Neural Netw Learn Syst 2014;26(2):388–393.MathSciNetCrossRef Soriano M C, Ortín S, Keuninckx L, Appeltant L, Danckaert J, Pesquera L, et al. Delay-based reservoir computing: noise effects in a combined analog and digital implementation. IEEE Trans Neural Netw Learn Syst 2014;26(2):388–393.MathSciNetCrossRef
32.
go back to reference Grigoryeva L, Ortega JP. Echo state networks are universal. Neural Netw 2018;108:495–508.CrossRefMATH Grigoryeva L, Ortega JP. Echo state networks are universal. Neural Netw 2018;108:495–508.CrossRefMATH
33.
go back to reference Negoro M, Mitarai K, Fujii K, Nakajima K, Kitagawa M. 2018. Machine learning with controllable quantum dynamics of a nuclear spin ensemble in a solid. arXiv:1806.10910 . Negoro M, Mitarai K, Fujii K, Nakajima K, Kitagawa M. 2018. Machine learning with controllable quantum dynamics of a nuclear spin ensemble in a solid. arXiv:1806.​10910 .
34.
go back to reference Chen J, Nurdin HI, Yamamoto N. 2020. Temporal information processing on noisy quantum computers. arXiv:2001.09498. Chen J, Nurdin HI, Yamamoto N. 2020. Temporal information processing on noisy quantum computers. arXiv:2001.​09498.
35.
go back to reference Nokkala J, Martínez-Peña R, Giorgi GL, Parigi V, Soriano MC, Zambrini R. 2020. Gaussian states provide universal and versatile quantum reservoir computing. arXiv:2006.04821. Nokkala J, Martínez-Peña R, Giorgi GL, Parigi V, Soriano MC, Zambrini R. 2020. Gaussian states provide universal and versatile quantum reservoir computing. arXiv:2006.​04821.
36.
go back to reference Keuninckx L, Danckaert J, Van der Sande G. Real-time audio processing with a cascade of discrete-time delay line-based reservoir computers. Cognit Comput 2017;9(3):315–326.CrossRef Keuninckx L, Danckaert J, Van der Sande G. Real-time audio processing with a cascade of discrete-time delay line-based reservoir computers. Cognit Comput 2017;9(3):315–326.CrossRef
37.
go back to reference Gallicchio C, Micheli A. Echo state property of deep reservoir computing networks. Cognit Comput 2017;9(3):337–350.CrossRef Gallicchio C, Micheli A. Echo state property of deep reservoir computing networks. Cognit Comput 2017;9(3):337–350.CrossRef
38.
go back to reference Martínez-Peña R, Giorgi GL, Nokkala J, Zambrini R, Soriano MC. Dynamical phase transitions in quantum reservoir computing. in preparation. Martínez-Peña R, Giorgi GL, Nokkala J, Zambrini R, Soriano MC. Dynamical phase transitions in quantum reservoir computing. in preparation.
Metadata
Title
Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems
Authors
R. Martínez-Peña
J. Nokkala
G. L. Giorgi
R. Zambrini
M. C. Soriano
Publication date
13-10-2020
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-020-09772-y

Other articles of this Issue 5/2023

Cognitive Computation 5/2023 Go to the issue

Premium Partner