Skip to main content
Top

2012 | OriginalPaper | Chapter

8. InGaAs Submonolayer Quantum-Dot Photonic-Crystal LEDs for Fiber-Optic Communications

Author : Hung-Pin D. Yang

Published in: Quantum Dot Devices

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An InGaAs submonolayer (SML) quantum-dot photonic-crystal light-emitting diode (QD PhC-LED) with for fiber-optic applications is reported. The active region of the device contains three InGaAs SML QD layers. Each of the InGaAs SML QD layers is formed by alternate depositions of InAs (<1 ML) and GaAs. A maximum CW output power of 0.34 mW at 20 mA has been obtained in the 980 nm range. The internally reflected spontaneous emission can be extracted and collimated out of the photonic-crystal etched holes. High-resolution imaging studies indicate that the device emits narrower light beams mainly through the photonic-crystal etched holes making it suitable for fiber-optic applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Steigerwald, D.A., Bhat, J.C., Collins, D., Flectcher, R.M., Holcomb, M.O., Ludowise, M.J., Martin, P.S., Rudaz, S.L.: Illumination with solid state lighting technology. IEEE J. Sel. Top. Quantum Electron. 8, 310–312 (2002)CrossRef Steigerwald, D.A., Bhat, J.C., Collins, D., Flectcher, R.M., Holcomb, M.O., Ludowise, M.J., Martin, P.S., Rudaz, S.L.: Illumination with solid state lighting technology. IEEE J. Sel. Top. Quantum Electron. 8, 310–312 (2002)CrossRef
2.
go back to reference Kim, T., Danner, A.J., Choquette, K.D.: Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating. Electron. Lett. 41, 1138–1140 (2005)CrossRef Kim, T., Danner, A.J., Choquette, K.D.: Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating. Electron. Lett. 41, 1138–1140 (2005)CrossRef
3.
go back to reference Ishikawa, H., Baba, T.: Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal. Appl. Phys. Lett. 84, 457–459 (2004)ADSCrossRef Ishikawa, H., Baba, T.: Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal. Appl. Phys. Lett. 84, 457–459 (2004)ADSCrossRef
4.
go back to reference Rangel, E., Matioli, E., Choi, Y.S., Weisbuch, C., Speck, J.S., Hu, E.L.: Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes. Appl. Phys. Lett. 98, 081104 (2011)ADSCrossRef Rangel, E., Matioli, E., Choi, Y.S., Weisbuch, C., Speck, J.S., Hu, E.L.: Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes. Appl. Phys. Lett. 98, 081104 (2011)ADSCrossRef
5.
go back to reference Kim, J.Y., Kwon, M.K., Park, S.J., Kim, S.H., Lee, K.D.: Enhancement of light extraction from GaN-based green light-emitting diodes using selective area photonic crystal. Appl. Phys. Lett. 96, 251103 (2010)ADSCrossRef Kim, J.Y., Kwon, M.K., Park, S.J., Kim, S.H., Lee, K.D.: Enhancement of light extraction from GaN-based green light-emitting diodes using selective area photonic crystal. Appl. Phys. Lett. 96, 251103 (2010)ADSCrossRef
6.
go back to reference Yang, H.P.D., Liu, J.N., Lai, F.I., Hao-Chung Kuo, H.C., Chi, J.Y.: Photonic-crystal light-emitting diodes on p-type GaAs substrates for optical communications. J. Modern Opt. 55, 1509–1517 (2008)CrossRef Yang, H.P.D., Liu, J.N., Lai, F.I., Hao-Chung Kuo, H.C., Chi, J.Y.: Photonic-crystal light-emitting diodes on p-type GaAs substrates for optical communications. J. Modern Opt. 55, 1509–1517 (2008)CrossRef
7.
go back to reference Lai, C.F., Chao, C.H., Kuo, H.C., Yu, P., Yen, H.H., Yung Yeh, W.Y.: GaN thickness effect on directional light enhancement from GaN-based film-transferred photonic crystal light-emitting diodes. Jpn. J. Appl. Phys. 49, 04DG09 (2010)CrossRef Lai, C.F., Chao, C.H., Kuo, H.C., Yu, P., Yen, H.H., Yung Yeh, W.Y.: GaN thickness effect on directional light enhancement from GaN-based film-transferred photonic crystal light-emitting diodes. Jpn. J. Appl. Phys. 49, 04DG09 (2010)CrossRef
8.
go back to reference Shin, Y.C., Dong Ho Kim, D.H., Chae, D.J., Ji Won Yang, J. W., Shim, J.I., Park, J.M., Ho, K.M., Constant, K., Ryu, H.Y., Tae Geun Kim, T.G.: Effects of nanometer-scale photonic crystal structures on the light extraction from gan light-emitting diodes. IEEE J. Quantum Electron. 49, 1375–1380 (2010) Shin, Y.C., Dong Ho Kim, D.H., Chae, D.J., Ji Won Yang, J. W., Shim, J.I., Park, J.M., Ho, K.M., Constant, K., Ryu, H.Y., Tae Geun Kim, T.G.: Effects of nanometer-scale photonic crystal structures on the light extraction from gan light-emitting diodes. IEEE J. Quantum Electron. 49, 1375–1380 (2010)
9.
go back to reference Long, D.H., Hwang, I.K., Ryu, S.W.: Analysis of disordered photonic crystal implemented in light-emitting diode for high light extraction efficiency. Jpn. J. Appl. Phys. 47, 4527–4530 (2008)ADSCrossRef Long, D.H., Hwang, I.K., Ryu, S.W.: Analysis of disordered photonic crystal implemented in light-emitting diode for high light extraction efficiency. Jpn. J. Appl. Phys. 47, 4527–4530 (2008)ADSCrossRef
10.
go back to reference Lee, J., Ahn, S., Kim, S., Kim, D.U., Jeon, H., Lee, S.J., Baek, J.H.: GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission. Appl. Phys. Lett. 94, 101105 (2009)ADSCrossRef Lee, J., Ahn, S., Kim, S., Kim, D.U., Jeon, H., Lee, S.J., Baek, J.H.: GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission. Appl. Phys. Lett. 94, 101105 (2009)ADSCrossRef
11.
go back to reference Francardi, M., Balet, L., Gerardino, A., Chauvin, N., Bitauld, D., Li, L.H., Alloing, B., Fiore, A.: Enhanced spontaneous emission in a photonic-crystal light-emitting diode. Appl. Phys. Lett. 93, 143102 (2008)ADSCrossRef Francardi, M., Balet, L., Gerardino, A., Chauvin, N., Bitauld, D., Li, L.H., Alloing, B., Fiore, A.: Enhanced spontaneous emission in a photonic-crystal light-emitting diode. Appl. Phys. Lett. 93, 143102 (2008)ADSCrossRef
12.
go back to reference Byeon, K.J., Hwang, S.Y., Lee, H.: Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography. Appl. Phys. Lett. 91, 091106 (2007)ADSCrossRef Byeon, K.J., Hwang, S.Y., Lee, H.: Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography. Appl. Phys. Lett. 91, 091106 (2007)ADSCrossRef
13.
go back to reference Mastro, M.A., Kim, C.S., Kim, M., Caldwell, J., Holm, R.T., Vurgaftman, I., Kim, J., Eddy Jr, C.R., Meyer, J.R.: Zinc Sulphide overlayer two-dimensional photonic crystal for enhanced extraction of light from a micro cavity light-emitting diode. Jpn. J. Appl. Phys. 47, 7827–7830 (2008)ADSCrossRef Mastro, M.A., Kim, C.S., Kim, M., Caldwell, J., Holm, R.T., Vurgaftman, I., Kim, J., Eddy Jr, C.R., Meyer, J.R.: Zinc Sulphide overlayer two-dimensional photonic crystal for enhanced extraction of light from a micro cavity light-emitting diode. Jpn. J. Appl. Phys. 47, 7827–7830 (2008)ADSCrossRef
14.
go back to reference Su, Y.K., Chen, J.J., Lin, C.L., Shi-Ming Chen, S.M., Li, W.L., Kao, C.C.: GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nanosphere lithography. Jpn. J. Appl. Phys. 47, 6706–6708 (2008)ADSCrossRef Su, Y.K., Chen, J.J., Lin, C.L., Shi-Ming Chen, S.M., Li, W.L., Kao, C.C.: GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nanosphere lithography. Jpn. J. Appl. Phys. 47, 6706–6708 (2008)ADSCrossRef
15.
go back to reference Iwamoto, S., Tatebayashi, J., Fukuda, T., Nakaoka, T., Ishida, S., Arakawa, Y.: Observation of 1.55 μm light emission from InAs quantum dots in photonic crystal microcavity. Jpn. J. Appl. Phys. 44, 2579–2583 (2005)ADSCrossRef Iwamoto, S., Tatebayashi, J., Fukuda, T., Nakaoka, T., Ishida, S., Arakawa, Y.: Observation of 1.55 μm light emission from InAs quantum dots in photonic crystal microcavity. Jpn. J. Appl. Phys. 44, 2579–2583 (2005)ADSCrossRef
16.
go back to reference Wierer, J.J., Krames, M.R., Epler, J.E., Gardner, N.F., Craford, M.G., Wendt, J.R., Simmons, J.A., Sigalas, M.M.: InGaN/GaN quantum-well hetero-structure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett. 84, 3885–3887 (2004)ADSCrossRef Wierer, J.J., Krames, M.R., Epler, J.E., Gardner, N.F., Craford, M.G., Wendt, J.R., Simmons, J.A., Sigalas, M.M.: InGaN/GaN quantum-well hetero-structure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett. 84, 3885–3887 (2004)ADSCrossRef
17.
go back to reference Cho, H.K., Kim, S.K., Bae, D.K., Kang, B.C., Lee, J.S., Lee, Y.H.: Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes. IEEE Photonics Technol. Lett. 20, 2096–2098 (2008)ADSCrossRef Cho, H.K., Kim, S.K., Bae, D.K., Kang, B.C., Lee, J.S., Lee, Y.H.: Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes. IEEE Photonics Technol. Lett. 20, 2096–2098 (2008)ADSCrossRef
18.
go back to reference Hawkins, B.M., Hawthorne III, R.A., Guenter, J.K., Tatum, J.A., Biard, J.R.: Reliability of various size oxide aperture VCSELs. 52nd electronic components and technology conference proceedings, p. 540 (2002) Hawkins, B.M., Hawthorne III, R.A., Guenter, J.K., Tatum, J.A., Biard, J.R.: Reliability of various size oxide aperture VCSELs. 52nd electronic components and technology conference proceedings, p. 540 (2002)
19.
go back to reference Chang, S.J., Chang, C.S., Su, Y.K., Chang, P.T., Wu, Y.R., Huang, K.H., Chen, T.P.: Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes. IEEE Photonics Technol. Lett. 9, 182–184 (1997)ADSCrossRef Chang, S.J., Chang, C.S., Su, Y.K., Chang, P.T., Wu, Y.R., Huang, K.H., Chen, T.P.: Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes. IEEE Photonics Technol. Lett. 9, 182–184 (1997)ADSCrossRef
20.
go back to reference Modak, P., D’Hondt, M., Delbeke, D., Moerman, I., Van Daele, P., Baets, R., Demeester, P., Mijlemans, P.: AlGaInP microcavity light-emitting diodes at 650 nm on Ge substrates. IEEE Photonics Technol. Lett. 12, 957–959 (2000)ADSCrossRef Modak, P., D’Hondt, M., Delbeke, D., Moerman, I., Van Daele, P., Baets, R., Demeester, P., Mijlemans, P.: AlGaInP microcavity light-emitting diodes at 650 nm on Ge substrates. IEEE Photonics Technol. Lett. 12, 957–959 (2000)ADSCrossRef
21.
go back to reference Sharma, R., Choi, Y., Wang, C.F., David, A., Weisbuch, C., Nakamura, S., Hu, E.L.: Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors. Appl. Phys. Lett. 91, 211108 (2007)ADSCrossRef Sharma, R., Choi, Y., Wang, C.F., David, A., Weisbuch, C., Nakamura, S., Hu, E.L.: Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors. Appl. Phys. Lett. 91, 211108 (2007)ADSCrossRef
22.
go back to reference Huang, G.S., Lu, T.C., Kuo, H.C., Wang, S.C., Chen, H.G.: Fabrication of microcavity light-emitting diodes using highly reflective AlN–GaN and Ta2O5–SiO2 distributed Bragg mirrors. IEEE Photon. Technol. Lett. 19, 999–1001 (2007)ADSCrossRef Huang, G.S., Lu, T.C., Kuo, H.C., Wang, S.C., Chen, H.G.: Fabrication of microcavity light-emitting diodes using highly reflective AlN–GaN and Ta2O5–SiO2 distributed Bragg mirrors. IEEE Photon. Technol. Lett. 19, 999–1001 (2007)ADSCrossRef
23.
go back to reference Huang, H., Deppe, D.G.: Obtaining high efficiency at low power using a quantum-dot microcavity light-emitting diode. IEEE J. Quantum Electron. 36, 674–679 (2000)ADSCrossRef Huang, H., Deppe, D.G.: Obtaining high efficiency at low power using a quantum-dot microcavity light-emitting diode. IEEE J. Quantum Electron. 36, 674–679 (2000)ADSCrossRef
24.
go back to reference Zhou, W., Bhattacharya, P., Qasaimeh, O.: InP-based cylindrical microcavity light-emitting diodes. IEEE J. Quantum Electron. 37, 48–54 (2001)ADSCrossRef Zhou, W., Bhattacharya, P., Qasaimeh, O.: InP-based cylindrical microcavity light-emitting diodes. IEEE J. Quantum Electron. 37, 48–54 (2001)ADSCrossRef
25.
go back to reference Chen, H., Zou, Z., Cao, C., Deppe, D.G.: High differential efficiency (16%) quantum dot microcavity light emitting diode. Appl. Phys. Lett. 80, 350–352 (2002)ADSCrossRef Chen, H., Zou, Z., Cao, C., Deppe, D.G.: High differential efficiency (16%) quantum dot microcavity light emitting diode. Appl. Phys. Lett. 80, 350–352 (2002)ADSCrossRef
26.
go back to reference Dorsaz, J., Carlin, J.-F., Gradecak, S., Ilegems, M.: Progress in AlInN–GaN Bragg reflectors: application to a microcavity light emitting diode. J. Appl. Phys. 97, 084505 (2005)ADSCrossRef Dorsaz, J., Carlin, J.-F., Gradecak, S., Ilegems, M.: Progress in AlInN–GaN Bragg reflectors: application to a microcavity light emitting diode. J. Appl. Phys. 97, 084505 (2005)ADSCrossRef
27.
go back to reference Tasco, V., Todaro, M.T., De Vittorio, M., De Giorgi, M., Cingolani, R., Passaseo, A., Ratajczak, J., Katcki, J.W.: Electrically injected InGaAs/GaAs quantum-dot microcavity diode operating at 1.3 μm and grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 84, 4155–4157 (2004)ADSCrossRef Tasco, V., Todaro, M.T., De Vittorio, M., De Giorgi, M., Cingolani, R., Passaseo, A., Ratajczak, J., Katcki, J.W.: Electrically injected InGaAs/GaAs quantum-dot microcavity diode operating at 1.3 μm and grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 84, 4155–4157 (2004)ADSCrossRef
28.
go back to reference Qasaimeh, O., Zhou, W.-D., Bhattacharya, P., Huffaker, D., Deppe, D.G.: Monolithically integrated low-power phototransceiver incorporating InGaAs/GaAs quantum-dot microcavity LED and modulated barrier photodiode. Electron. Lett. 36, 1955–1957 (2000)CrossRef Qasaimeh, O., Zhou, W.-D., Bhattacharya, P., Huffaker, D., Deppe, D.G.: Monolithically integrated low-power phototransceiver incorporating InGaAs/GaAs quantum-dot microcavity LED and modulated barrier photodiode. Electron. Lett. 36, 1955–1957 (2000)CrossRef
29.
go back to reference Pratt, A.R., Takamori, T., Kamijoh, T.: Cavity detuning effects in semiconductor microcavity light emitting diodes. J. Appl. Phys. 87, 8243–8250 (2000)ADSCrossRef Pratt, A.R., Takamori, T., Kamijoh, T.: Cavity detuning effects in semiconductor microcavity light emitting diodes. J. Appl. Phys. 87, 8243–8250 (2000)ADSCrossRef
30.
go back to reference Song, Y.-K., Diagne, M., Zhou, H., Nurmikko, A.V., Schneider, R.P., Takeuchi, T.: Resonant-cavity InGaN quantum-well blue light-emitting diodes. Appl. Phys. Lett. 77, 1744–1746 (2000)ADSCrossRef Song, Y.-K., Diagne, M., Zhou, H., Nurmikko, A.V., Schneider, R.P., Takeuchi, T.: Resonant-cavity InGaN quantum-well blue light-emitting diodes. Appl. Phys. Lett. 77, 1744–1746 (2000)ADSCrossRef
31.
go back to reference Todaro, M.T., Tasco, V., De Giorgi, M., Martiradonna, L., Raino, G., De Vittorio, M., Passaseo, A., Cingolani, R.: High-efficiency 1.3 μm InGaAs/GaAs quantum-dot microcavity light-emitting diodes grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 86, 15118 (2005)CrossRef Todaro, M.T., Tasco, V., De Giorgi, M., Martiradonna, L., Raino, G., De Vittorio, M., Passaseo, A., Cingolani, R.: High-efficiency 1.3 μm InGaAs/GaAs quantum-dot microcavity light-emitting diodes grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 86, 15118 (2005)CrossRef
32.
go back to reference Royo, P., Stanley, R.P., Ilegems, M., Streubel, K., Gulden, K.H.: Experimental determination of the internal quantum efficiency of AlGaInP microcavity light-emitting diodes. J. Appl. Phys. 91, 2563–2568 (2002)ADSCrossRef Royo, P., Stanley, R.P., Ilegems, M., Streubel, K., Gulden, K.H.: Experimental determination of the internal quantum efficiency of AlGaInP microcavity light-emitting diodes. J. Appl. Phys. 91, 2563–2568 (2002)ADSCrossRef
33.
go back to reference Takamori, T., Pratt, A.R., Kamijoh, T.: Temperature dependence of InGaAs/GaAs quantum well microcavity light-emitting diodes. Appl. Phys. Lett. 74, 3598–3600 (1999)ADSCrossRef Takamori, T., Pratt, A.R., Kamijoh, T.: Temperature dependence of InGaAs/GaAs quantum well microcavity light-emitting diodes. Appl. Phys. Lett. 74, 3598–3600 (1999)ADSCrossRef
34.
go back to reference Depreter, B., Moerman, I., Baets, R., Van Daele, P., Demeester, P.: InP-based 1300 nm microcavity LEDs with 9% quantum efficiency. Electron. Lett. 36, 1303–1304 (2000)CrossRef Depreter, B., Moerman, I., Baets, R., Van Daele, P., Demeester, P.: InP-based 1300 nm microcavity LEDs with 9% quantum efficiency. Electron. Lett. 36, 1303–1304 (2000)CrossRef
35.
go back to reference Unlu, M.S., Strite, S.: Resonant cavity enhanced photonic devices. J. Appl. Phys. 78, 607–639 (1995)ADSCrossRef Unlu, M.S., Strite, S.: Resonant cavity enhanced photonic devices. J. Appl. Phys. 78, 607–639 (1995)ADSCrossRef
36.
go back to reference Krestnikov, I.L., Maleev, N.A., Sakharov, A.V., Kovsh, A.R., Zhukov, A.E., Tsatsul’nikov, A.F., Ustinov, V.M., Alferov, Zh.I., Ledentsov, N.N., Bimberg, D., Lott, J.A.: 1.3 μm resonant-cavity InGaAs/GaAs quantum dot light-emitting devices. Semicond. Sci. Technol. 16, 844–848 (2001)ADSCrossRef Krestnikov, I.L., Maleev, N.A., Sakharov, A.V., Kovsh, A.R., Zhukov, A.E., Tsatsul’nikov, A.F., Ustinov, V.M., Alferov, Zh.I., Ledentsov, N.N., Bimberg, D., Lott, J.A.: 1.3 μm resonant-cavity InGaAs/GaAs quantum dot light-emitting devices. Semicond. Sci. Technol. 16, 844–848 (2001)ADSCrossRef
37.
go back to reference Hsueh, T.H., Sheu, J.K., Huang, H.W., Chu, J.Y., Kao, C.C., Kuo, H.C., Wang, S.C.: Enhancement in light output of InGaN-based microhole array light-emitting diodes. IEEE Photonics Technol. Lett. 17, 1163–1165 (2005)ADSCrossRef Hsueh, T.H., Sheu, J.K., Huang, H.W., Chu, J.Y., Kao, C.C., Kuo, H.C., Wang, S.C.: Enhancement in light output of InGaN-based microhole array light-emitting diodes. IEEE Photonics Technol. Lett. 17, 1163–1165 (2005)ADSCrossRef
38.
go back to reference Yang, H.P.D., Yeh, Z.E., Lai, F.I., Kuo, H.C., Chi, J.Y.: Characteristics of multileaf holey light-emitting diodes for fiber-optic communications. Jpn. J. Appl. Phys. Part. 1(47), 974–976 (2008)ADSCrossRef Yang, H.P.D., Yeh, Z.E., Lai, F.I., Kuo, H.C., Chi, J.Y.: Characteristics of multileaf holey light-emitting diodes for fiber-optic communications. Jpn. J. Appl. Phys. Part. 1(47), 974–976 (2008)ADSCrossRef
39.
go back to reference Yang, H.P.D., Liu, J.N., Lai, F.I., Kuo, H.C., Chi, J.Y.: Characteristics of p-substrate small-aperture light-emitting diodes for fiber-optic applications. Jpn. J. Appl. Phys. Part. 1(46), 2941–2943 (2007)ADSCrossRef Yang, H.P.D., Liu, J.N., Lai, F.I., Kuo, H.C., Chi, J.Y.: Characteristics of p-substrate small-aperture light-emitting diodes for fiber-optic applications. Jpn. J. Appl. Phys. Part. 1(46), 2941–2943 (2007)ADSCrossRef
40.
go back to reference Amano, T., Sugaya, T., Komori, K.: 1.3 μm InAs quantum-dot laser with high dot density and high uniformity. IEEE Photon. Technol. Lett. 18, 619–621 (2006) Amano, T., Sugaya, T., Komori, K.: 1.3 μm InAs quantum-dot laser with high dot density and high uniformity. IEEE Photon. Technol. Lett. 18, 619–621 (2006)
41.
go back to reference Thompson, M.G., Rae, A.R., Mo, X., Penty, R.V., White, I.H.: InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009)CrossRef Thompson, M.G., Rae, A.R., Mo, X., Penty, R.V., White, I.H.: InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009)CrossRef
42.
go back to reference Moore, S.A., O’Faolain, L., Cataluna, M.A., Flynn, M.B., Kotlyar, M.V., Krauss, T.F.: Reduced surface sidewall recombination and diffusion in quantum-dot lasers. IEEE Photon. Technol. Lett. 18, 1861–1863 (2006)ADSCrossRef Moore, S.A., O’Faolain, L., Cataluna, M.A., Flynn, M.B., Kotlyar, M.V., Krauss, T.F.: Reduced surface sidewall recombination and diffusion in quantum-dot lasers. IEEE Photon. Technol. Lett. 18, 1861–1863 (2006)ADSCrossRef
43.
go back to reference Park, G., Shchekin, O.B., Huffaker, D.L., Deppe, D.G.: Low-threshold oxide-confined 1.3 μm quantum-dot laser. IEEE Photon. Technol. Lett. 12, 230–232 (2000) Park, G., Shchekin, O.B., Huffaker, D.L., Deppe, D.G.: Low-threshold oxide-confined 1.3 μm quantum-dot laser. IEEE Photon. Technol. Lett. 12, 230–232 (2000)
44.
go back to reference Kim, J., Su, H., Minin, S., Chuang, C.L.: Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers. IEEE Photon. Technol. Lett. 18, 1022–1024 (2006)ADSCrossRef Kim, J., Su, H., Minin, S., Chuang, C.L.: Comparison of linewidth enhancement factor between p-doped and undoped quantum-dot lasers. IEEE Photon. Technol. Lett. 18, 1022–1024 (2006)ADSCrossRef
45.
go back to reference Mi, Z., Yang, J., Bhattacharya, P., Qin, G., Ma, Z.: High-performance quantum dot lasers and integrated optoelectronics on Si. Proc. IEEE 97, 1239–1249 (2009)CrossRef Mi, Z., Yang, J., Bhattacharya, P., Qin, G., Ma, Z.: High-performance quantum dot lasers and integrated optoelectronics on Si. Proc. IEEE 97, 1239–1249 (2009)CrossRef
46.
go back to reference Asryan, L.V., Luryi, S.: Tunneling-injection quantum-dot laser: ultrahigh temperature stability. IEEE J. Quantum Electron. 37, 905–910 (2001)ADSCrossRef Asryan, L.V., Luryi, S.: Tunneling-injection quantum-dot laser: ultrahigh temperature stability. IEEE J. Quantum Electron. 37, 905–910 (2001)ADSCrossRef
47.
go back to reference Fischer, M., Bisping, D., Marquardt, B., Forchel, A.: High-temperature continuous-wave operation of GaInAsN–GaAs quantum-dot laser diodes beyond 1.3 μm. IEEE Photon. Technol. Lett. 19, 1030–1032 (2007) Fischer, M., Bisping, D., Marquardt, B., Forchel, A.: High-temperature continuous-wave operation of GaInAsN–GaAs quantum-dot laser diodes beyond 1.3 μm. IEEE Photon. Technol. Lett. 19, 1030–1032 (2007)
48.
go back to reference Lester, L.F., Stintz, A., Li, H., Newell, T.C., Pease, E.A., Fuchs, B.A., Malloy, K.J.: Optical characteristics of 1.24 μm InAs quantum-dot laser diodes. IEEE Photon. Technol. Lett. 11, 931–933 (1999) Lester, L.F., Stintz, A., Li, H., Newell, T.C., Pease, E.A., Fuchs, B.A., Malloy, K.J.: Optical characteristics of 1.24 μm InAs quantum-dot laser diodes. IEEE Photon. Technol. Lett. 11, 931–933 (1999)
49.
go back to reference Yu, H.C., Wang, J.S., Su, Y.K., Chang, S.J., Lai, F.Y., Chang, Y.H., Kuo, H.C., Sung, C.P., Yang, H.P.D., Lin, K.F., Wang, J.M., Chi, J.Y., Hsiao, R.S., Mikhrin, S.: 1.3 μm InAs–InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE. IEEE Photon. Technol. Lett. 18, 418–420 (2006) Yu, H.C., Wang, J.S., Su, Y.K., Chang, S.J., Lai, F.Y., Chang, Y.H., Kuo, H.C., Sung, C.P., Yang, H.P.D., Lin, K.F., Wang, J.M., Chi, J.Y., Hsiao, R.S., Mikhrin, S.: 1.3 μm InAs–InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE. IEEE Photon. Technol. Lett. 18, 418–420 (2006)
50.
go back to reference Chang, Y.H., Peng, P.C., Tsai, W.K., Lin, G., Lai, F.I., Hsiao, R.S., Yang, H.P., Yu, H.C., Lin, K.F., Chi, J.Y., Wang, S.C., Kuo, H.C.: Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB. IEEE Photon. Technol. Lett. 18, 847–849 (2006) Chang, Y.H., Peng, P.C., Tsai, W.K., Lin, G., Lai, F.I., Hsiao, R.S., Yang, H.P., Yu, H.C., Lin, K.F., Chi, J.Y., Wang, S.C., Kuo, H.C.: Single-mode monolithic quantum-dot VCSEL in 1.3 μm with sidemode suppression ratio over 30 dB. IEEE Photon. Technol. Lett. 18, 847–849 (2006)
51.
go back to reference Lott, J.A., Ledentsov, N.N., Ustinov, V.M., Mallev, N.A., Zhukov, A.E., Kovsh, A.R., Maximov, M.V., Volvovik, B.V., Alferov, Z.H.I., Bimberg, D.: InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm. Electron. Lett. 36, 1384–1385 (2000)CrossRef Lott, J.A., Ledentsov, N.N., Ustinov, V.M., Mallev, N.A., Zhukov, A.E., Kovsh, A.R., Maximov, M.V., Volvovik, B.V., Alferov, Z.H.I., Bimberg, D.: InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm. Electron. Lett. 36, 1384–1385 (2000)CrossRef
52.
go back to reference Peng, P.C., Lin, C.T., Kuo, H.C., Tsai, W.K., Liu, J.N., Chi, S., Wang, S.C., Lin, G., Yang, H.P., Lin, K.F., Chi, J.Y.: Tunable slow light device using quantum dot semiconductor laser. Opt. Express 14, 12880–12886 (2006)ADSCrossRef Peng, P.C., Lin, C.T., Kuo, H.C., Tsai, W.K., Liu, J.N., Chi, S., Wang, S.C., Lin, G., Yang, H.P., Lin, K.F., Chi, J.Y.: Tunable slow light device using quantum dot semiconductor laser. Opt. Express 14, 12880–12886 (2006)ADSCrossRef
53.
go back to reference Peng, P.C., Lin, C.T., Kuo, H.C., Lin, G., Tsai, W.K., Yang, H.P., Lin, K.F., Chi, J.Y., Chi, S., Wang, S.C.: Tunable optical group delay in quantum dot vertical-cavity surface-emitting laser at 10 GHz. Electron. Lett. 42, 1036–1037 (2006)CrossRef Peng, P.C., Lin, C.T., Kuo, H.C., Lin, G., Tsai, W.K., Yang, H.P., Lin, K.F., Chi, J.Y., Chi, S., Wang, S.C.: Tunable optical group delay in quantum dot vertical-cavity surface-emitting laser at 10 GHz. Electron. Lett. 42, 1036–1037 (2006)CrossRef
54.
go back to reference Peng, P.C., Chang, Y.H., Kuo, H.C., Tsai, W.K., Lin, G., Lin, C.T., Yu, H.C., Yang, H.P., Hsiao, R.S., Lin, K.F., Chi, J.Y., Chi, S., Wang, S.C.: 1.3 μm quantum dot vertical-cavity surface-emitting laser with external light injection. Electron. Lett. 41, 1222–1223 (2005)CrossRef Peng, P.C., Chang, Y.H., Kuo, H.C., Tsai, W.K., Lin, G., Lin, C.T., Yu, H.C., Yang, H.P., Hsiao, R.S., Lin, K.F., Chi, J.Y., Chi, S., Wang, S.C.: 1.3 μm quantum dot vertical-cavity surface-emitting laser with external light injection. Electron. Lett. 41, 1222–1223 (2005)CrossRef
55.
go back to reference Yang, H.P.D., Chang, Y.H., Lai, F.I., Yu, H.C., Hsu, Y.J., Lin, G., Hsiao, R.S., Kuo, H.C., Wang, S.C., Chi, J.Y.: Singlemode InAs quantum dot photonic crystal VCSELs. Electron. Lett. 41, 1130–1132 (2005)CrossRef Yang, H.P.D., Chang, Y.H., Lai, F.I., Yu, H.C., Hsu, Y.J., Lin, G., Hsiao, R.S., Kuo, H.C., Wang, S.C., Chi, J.Y.: Singlemode InAs quantum dot photonic crystal VCSELs. Electron. Lett. 41, 1130–1132 (2005)CrossRef
56.
go back to reference Mikhrin, S.S., Zhukov, A.E., Kovsh, A.R., Maleev, N.A., Ustinov, V.M., Shernyakov, Yu.M., Soshnikov, I.P., Livshits, D.A., Tarasov, I.S., Bedarev, D.A., Volovik, B.V., Maximov, M.V., Tsatsul’nikov, A.F., Ledentsov, N.N., Kop’ev, P.S., Bimberg, D., Alferov, Z.H.I.: 0.94 μm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots. Semicond. Sci. Technol. 15, 1061–1064 (2000)ADSCrossRef Mikhrin, S.S., Zhukov, A.E., Kovsh, A.R., Maleev, N.A., Ustinov, V.M., Shernyakov, Yu.M., Soshnikov, I.P., Livshits, D.A., Tarasov, I.S., Bedarev, D.A., Volovik, B.V., Maximov, M.V., Tsatsul’nikov, A.F., Ledentsov, N.N., Kop’ev, P.S., Bimberg, D., Alferov, Z.H.I.: 0.94 μm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots. Semicond. Sci. Technol. 15, 1061–1064 (2000)ADSCrossRef
57.
go back to reference Zhukov, A.E., Kovsh, A.R., Mikhrin, S.S., Maleev, N.A., Ustinov, V.M., Livshits, D.A., Tarasov, I.S., Bedarev, D.A., Maximov, M.V., Tsatsul‘nikov, A.F., Soshnikov, I.P., Kop’ev, P.S., Alferov, Zh.I., Ledentsov, N.N., Bimberg, D.: 3.9 W CW power from sub-monolayer quantum dot diode laser. Electron. Lett. 35, 1845–1847 (1999)CrossRef Zhukov, A.E., Kovsh, A.R., Mikhrin, S.S., Maleev, N.A., Ustinov, V.M., Livshits, D.A., Tarasov, I.S., Bedarev, D.A., Maximov, M.V., Tsatsul‘nikov, A.F., Soshnikov, I.P., Kop’ev, P.S., Alferov, Zh.I., Ledentsov, N.N., Bimberg, D.: 3.9 W CW power from sub-monolayer quantum dot diode laser. Electron. Lett. 35, 1845–1847 (1999)CrossRef
58.
go back to reference Blokhin, S.A., Sakharov, A.V., Maleev, N.A., Kulagina, M.M., Shernyakov, Yu.M., Novikov, I.I., Gordeev, N.Yu., Maximov, M.V., Kuzmenkov, A.G., Ustinov, V.M., Ledentsov, N.N., Kovsh, A.R., Mikhrin, S.S., Lin, G., Chi, J.Y.: The impact of thermal effects on the performance of vertical-cavity surface-emitting lasers based on sub-monolayer InGaAs quantum dots. Semicond. Sci. Technol. 22, 203–208 (2007)ADSCrossRef Blokhin, S.A., Sakharov, A.V., Maleev, N.A., Kulagina, M.M., Shernyakov, Yu.M., Novikov, I.I., Gordeev, N.Yu., Maximov, M.V., Kuzmenkov, A.G., Ustinov, V.M., Ledentsov, N.N., Kovsh, A.R., Mikhrin, S.S., Lin, G., Chi, J.Y.: The impact of thermal effects on the performance of vertical-cavity surface-emitting lasers based on sub-monolayer InGaAs quantum dots. Semicond. Sci. Technol. 22, 203–208 (2007)ADSCrossRef
59.
go back to reference Blokhin, S.A., Maleev, N.A., Kuzmenkov, A.G., Sakharov, A.V., Kulagina, M.M., Shernyakov, Y.M., Novikov, I.I., Maximov, M.V., Ustinov, V.M., Kovsh, A.R., Mikhrin, S.S., Ledentsov, N.N., Lin, G., Chi, J.Y.: Vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. IEEE J. Quantum Electron. 42, 851–858 (2006)ADSCrossRef Blokhin, S.A., Maleev, N.A., Kuzmenkov, A.G., Sakharov, A.V., Kulagina, M.M., Shernyakov, Y.M., Novikov, I.I., Maximov, M.V., Ustinov, V.M., Kovsh, A.R., Mikhrin, S.S., Ledentsov, N.N., Lin, G., Chi, J.Y.: Vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. IEEE J. Quantum Electron. 42, 851–858 (2006)ADSCrossRef
60.
go back to reference Hopfer, F., Mutig, A., Kuntz, M., Fiol, G., Bimberg, D., Ledentsov, N.N., Shchukin, V.A., Mikhrin, S.S., Livshits, D.L., Krestnikov, I.L., Kovsh, A.R., Zakharov, N.D., Werner, P.: Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth. Appl. Phys. Lett. 89, 141106 (2006)ADSCrossRef Hopfer, F., Mutig, A., Kuntz, M., Fiol, G., Bimberg, D., Ledentsov, N.N., Shchukin, V.A., Mikhrin, S.S., Livshits, D.L., Krestnikov, I.L., Kovsh, A.R., Zakharov, N.D., Werner, P.: Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth. Appl. Phys. Lett. 89, 141106 (2006)ADSCrossRef
61.
go back to reference Blokhin, S.A., Maleev, N.A., Kuzmenkov, A.G., Shernyakov, Yu.M., Novikov, I.I., Gordeev, N.Yu., Sokolovskii, G.S., Dudelev, V.V., Kuchinskii, V.I., Kulagina, M.M., Maximov, M.V., Ustinov, V.M., Kovsh, A.R., Mikhrin, S.S., Ledentsov, N.N.: VCSELs based on arrays of sub-monolayer InGaAs quantum dots. Semiconductors 40, 615–619 (2006) Blokhin, S.A., Maleev, N.A., Kuzmenkov, A.G., Shernyakov, Yu.M., Novikov, I.I., Gordeev, N.Yu., Sokolovskii, G.S., Dudelev, V.V., Kuchinskii, V.I., Kulagina, M.M., Maximov, M.V., Ustinov, V.M., Kovsh, A.R., Mikhrin, S.S., Ledentsov, N.N.: VCSELs based on arrays of sub-monolayer InGaAs quantum dots. Semiconductors 40, 615–619 (2006)
62.
go back to reference Kuzmenkov, A.G., Ustinov, V.M., Sokolovskii, G.S., Maleev, N.A., Blokhin, S.A., Deryagin, A.G., Chumak, S.V., Shulenkov, A.S., Mikhrin, S.S., Kovsh, A.R., McRobbie, A.D., Sibbett, W., Cataluna, M.A., Rafailov, B.U.: Self-sustained pulsation in the oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. Appl. Phys. Lett. 91, 121106 (2007)ADSCrossRef Kuzmenkov, A.G., Ustinov, V.M., Sokolovskii, G.S., Maleev, N.A., Blokhin, S.A., Deryagin, A.G., Chumak, S.V., Shulenkov, A.S., Mikhrin, S.S., Kovsh, A.R., McRobbie, A.D., Sibbett, W., Cataluna, M.A., Rafailov, B.U.: Self-sustained pulsation in the oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. Appl. Phys. Lett. 91, 121106 (2007)ADSCrossRef
63.
go back to reference Germann, T.D., Strittmatter, A., Pohl, J., Pohl, U.W., Bimberg, D., Rautiainen, J., Guina, M., Okhotnikov, O.G.: High-power semiconductor disk laser based on InAs/GaAs submonolayer quantum dots. Appl. Phys. Lett. 92, 101123 (2008)ADSCrossRef Germann, T.D., Strittmatter, A., Pohl, J., Pohl, U.W., Bimberg, D., Rautiainen, J., Guina, M., Okhotnikov, O.G.: High-power semiconductor disk laser based on InAs/GaAs submonolayer quantum dots. Appl. Phys. Lett. 92, 101123 (2008)ADSCrossRef
64.
go back to reference Yang, H.P.D., Hsu, I.C., Lai, F.Y., Lin, G., Hsiao, R.S., Maleev, N.A., Blokhin, S.A., Kuo, H.C., Chi, J.Y.: Characteristics of broad-area InGaAs submonolayer quantum-dot vertical-cavity surface-emitting lasers. Jpn. J. Appl. Phys. 46, 6670–6672 (2007)ADSCrossRef Yang, H.P.D., Hsu, I.C., Lai, F.Y., Lin, G., Hsiao, R.S., Maleev, N.A., Blokhin, S.A., Kuo, H.C., Chi, J.Y.: Characteristics of broad-area InGaAs submonolayer quantum-dot vertical-cavity surface-emitting lasers. Jpn. J. Appl. Phys. 46, 6670–6672 (2007)ADSCrossRef
65.
go back to reference Powers, J.P.: An Introduction to Fiber Optic Systems. Aksen Associates, Homewood (1993) Powers, J.P.: An Introduction to Fiber Optic Systems. Aksen Associates, Homewood (1993)
Metadata
Title
InGaAs Submonolayer Quantum-Dot Photonic-Crystal LEDs for Fiber-Optic Communications
Author
Hung-Pin D. Yang
Copyright Year
2012
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3570-9_8

Premium Partner