Skip to main content
Top

2012 | OriginalPaper | Chapter

9. Quantum Optical Transistor and Other Devices Based on Nanostructures

Authors : Jin-Jin Li, Ka-Di Zhu

Published in: Quantum Dot Devices

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Laser and strong coupling can coexist in a single quantum dot (QD) coupled to nanostructures. This provides an important clue toward the realization of quantum optical devices, such as quantum optical transistor, slow light device, fast light device, or light storage device. In contrast to conventional electronic transistor, a quantum optical transistor uses photons as signal carriers rather than electrons, which has a faster and more powerful transfer efficiency. Under the radiation of a strong pump laser, a signal laser can be amplified or attenuated via passing through a single quantum dot coupled to a photonic crystal (PC) nanocavity system. Such a switching and amplifying behavior can really implement the quantum optical transistor. By simply turning on or off the input pump laser, the amplified or attenuated signal laser can be obtained immediately. Based on this transistor, we further propose a method to measure the vacuum Rabi splitting of exciton in all-optical domain. Besides, we study the light propagation in a coupled QD and nanomechanical resonator (NR) system. We demonstrate that it is possible to achieve the slow light, fast light, and quantum memory for light on demand, which is based on the mechanically induced coherent population oscillation (MICPO) and exciton polaritons. These QD devices offer a route toward the use of all-optical technique to investigate the coupled QD systems and will make contributions to quantum internets and quantum computers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Amos, S.W., James, M.R.: Principles of transistor circuits. 9th edn. Elsevier (1969) Amos, S.W., James, M.R.: Principles of transistor circuits. 9th edn. Elsevier (1969)
2.
go back to reference Bunis, M., Bunis, S.: Collector’s guide to transistor radios identification and values, collector books publisher, Paducah (1996) Bunis, M., Bunis, S.: Collector’s guide to transistor radios identification and values, collector books publisher, Paducah (1996)
3.
go back to reference Ooi, C.H.R.: Controlling irreversibility and directionality of light via atomic motion: optical transistor and quantum velocimeter. New J. Phys. 10, 123024 (2008)ADSCrossRef Ooi, C.H.R.: Controlling irreversibility and directionality of light via atomic motion: optical transistor and quantum velocimeter. New J. Phys. 10, 123024 (2008)ADSCrossRef
4.
go back to reference Kalithasan, B., Porsezian, K., Dinda, P.T.: Modulational instability in resonant optical fiber with higher-order dispersion effect. J. Opt. 12, 035210 (2010)ADSCrossRef Kalithasan, B., Porsezian, K., Dinda, P.T.: Modulational instability in resonant optical fiber with higher-order dispersion effect. J. Opt. 12, 035210 (2010)ADSCrossRef
5.
go back to reference Zhang, J.J., Wang, Z.L., Liu, J., Chen, S., Liu, G.: Self-assembled nanostructures. Kluwer Academic/Plenum Publishers, NY (2003) Zhang, J.J., Wang, Z.L., Liu, J., Chen, S., Liu, G.: Self-assembled nanostructures. Kluwer Academic/Plenum Publishers, NY (2003)
6.
go back to reference Fu, A., Gu, W.W., Larabell, C., Alivisatos, A.P.: Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol. 15, 568 (2005)CrossRef Fu, A., Gu, W.W., Larabell, C., Alivisatos, A.P.: Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol. 15, 568 (2005)CrossRef
7.
go back to reference Jabbour, G.E., Doderer, D.: Quantum dot solar cells: the best of both worlds. Nat. Photonics 4, 604 (2010)ADSCrossRef Jabbour, G.E., Doderer, D.: Quantum dot solar cells: the best of both worlds. Nat. Photonics 4, 604 (2010)ADSCrossRef
8.
go back to reference Liu, H.C.: Quantum dot infrered photodetector. Opto-electron. Rev. 11, 1–5 (2003) Liu, H.C.: Quantum dot infrered photodetector. Opto-electron. Rev. 11, 1–5 (2003)
9.
go back to reference Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum dot heterostructures. Wiley, Chichester (1999) Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum dot heterostructures. Wiley, Chichester (1999)
10.
go back to reference Imamoḡlu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)ADSCrossRef Imamoḡlu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)ADSCrossRef
11.
go back to reference Heiss, D., Jovanov, V., Caesar, M., Bichler, M., Abstreiter, G., Finley, J.J.: Selective optical charge generation, storage, and readout in a single self-assembled quantum dot. Appl. Phys. Lett. 94, 072108 (2009)ADSCrossRef Heiss, D., Jovanov, V., Caesar, M., Bichler, M., Abstreiter, G., Finley, J.J.: Selective optical charge generation, storage, and readout in a single self-assembled quantum dot. Appl. Phys. Lett. 94, 072108 (2009)ADSCrossRef
12.
go back to reference Kłopotowskia, L., Gorycab, M., Kossackib, P., Kudelski, A., Krebs, O., Wojnara, P., Wojtowicza, T., Karczewskia, G.: Charge storage in self-assembled CdTe quantum dots. J. Phys.: Conf. Ser. 210, 012007 (2010)ADSCrossRef Kłopotowskia, L., Gorycab, M., Kossackib, P., Kudelski, A., Krebs, O., Wojnara, P., Wojtowicza, T., Karczewskia, G.: Charge storage in self-assembled CdTe quantum dots. J. Phys.: Conf. Ser. 210, 012007 (2010)ADSCrossRef
13.
go back to reference Chang, C.-C., Sharma, Y.D., Kim, Y.-S., Bur, J.A., Shenoi, R.V., Krishna, S., Huang, D., Lin, S.-Y.: A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett. 10, 1704–1709 (2010)ADSCrossRef Chang, C.-C., Sharma, Y.D., Kim, Y.-S., Bur, J.A., Shenoi, R.V., Krishna, S., Huang, D., Lin, S.-Y.: A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett. 10, 1704–1709 (2010)ADSCrossRef
14.
go back to reference Wang, H., Zhu, K.D.: Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator. Opt. Express 18, 16175 (2010)ADSCrossRef Wang, H., Zhu, K.D.: Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator. Opt. Express 18, 16175 (2010)ADSCrossRef
15.
go back to reference Wang, H., Zhu, K.D.: Large optical Kerr effect in a nanocrystal complex coupled to a nanomechanical resonator. Europhys. Lett. 92, 47008 (2010)ADSCrossRef Wang, H., Zhu, K.D.: Large optical Kerr effect in a nanocrystal complex coupled to a nanomechanical resonator. Europhys. Lett. 92, 47008 (2010)ADSCrossRef
16.
go back to reference Posani, K.T., Tripathi, V., Annamalai, S., Weisse-Bernstein, N.R., Krishna, S., Perahia, R., Crisafulli, O., Painter, O.J.: Nanoscale quantum dot infrared sensors with photonic crystal cavity. Appl. Phys. Lett. 88, 151104 (2006)ADSCrossRef Posani, K.T., Tripathi, V., Annamalai, S., Weisse-Bernstein, N.R., Krishna, S., Perahia, R., Crisafulli, O., Painter, O.J.: Nanoscale quantum dot infrared sensors with photonic crystal cavity. Appl. Phys. Lett. 88, 151104 (2006)ADSCrossRef
17.
go back to reference Li, J.J., Zhu, K.D.: A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot. Nanotechnol. 21, 205501 (2010)ADSCrossRef Li, J.J., Zhu, K.D.: A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot. Nanotechnol. 21, 205501 (2010)ADSCrossRef
18.
go back to reference Li, J.J., Zhu, K.D.: An efficient optical knob from slow light to fast light in a coupled nanomechanical resonator-quantum dot system. Opt. Express 17, 19874–19881 (2009)ADSCrossRef Li, J.J., Zhu, K.D.: An efficient optical knob from slow light to fast light in a coupled nanomechanical resonator-quantum dot system. Opt. Express 17, 19874–19881 (2009)ADSCrossRef
19.
go back to reference Li, J.J., Zhu, K.D.: A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity. Nanotechnology 22, 055202 (2011)ADSCrossRef Li, J.J., Zhu, K.D.: A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity. Nanotechnology 22, 055202 (2011)ADSCrossRef
20.
go back to reference Li, J.J., Zhu, K.D.: A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dto system, Appl. Phys. Lett. 94, 063116–063118, 249903 (2009) Li, J.J., Zhu, K.D.: A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum dto system, Appl. Phys. Lett. 94, 063116–063118, 249903 (2009)
21.
go back to reference Li, J.J., Zhu, K.D.: Quantum memory for light with a quantum dot system coupled to a nanomechanical resonator. Quantum Inf. Comput. 11, 0456–0465 (2011) Li, J.J., Zhu, K.D.: Quantum memory for light with a quantum dot system coupled to a nanomechanical resonator. Quantum Inf. Comput. 11, 0456–0465 (2011)
22.
go back to reference Li, J.J., Zhu, K.D.: Mechanical vibration-induced coherent optical spectroscopy in a single quantum dot coupled to a nanomechanical resonator. J. Phys. B 43, 155504 (2010)ADSCrossRef Li, J.J., Zhu, K.D.: Mechanical vibration-induced coherent optical spectroscopy in a single quantum dot coupled to a nanomechanical resonator. J. Phys. B 43, 155504 (2010)ADSCrossRef
23.
go back to reference Li, J.J., Zhu, K.D.: Coherent optical spectroscopy due to lattice vibrations in a single quantum dot. Eur. Phys. J. D 59, 305–308 (2010)ADSCrossRef Li, J.J., Zhu, K.D.: Coherent optical spectroscopy due to lattice vibrations in a single quantum dot. Eur. Phys. J. D 59, 305–308 (2010)ADSCrossRef
24.
go back to reference Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)ADSCrossRef Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)ADSCrossRef
25.
go back to reference Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011)ADSCrossRef Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011)ADSCrossRef
26.
go back to reference Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)ADSCrossRef Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)ADSCrossRef
27.
go back to reference Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)ADSCrossRef Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)ADSCrossRef
28.
go back to reference Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Götzinger, S., Sandoghdar, V.A.: Single-molecule optical transistor. Nature 460, 76–80 (2009)ADSCrossRef Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Götzinger, S., Sandoghdar, V.A.: Single-molecule optical transistor. Nature 460, 76–80 (2009)ADSCrossRef
29.
go back to reference Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y., Arakawa, Y.: Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat. Phys. 6, 279–283 (2010)CrossRef Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y., Arakawa, Y.: Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat. Phys. 6, 279–283 (2010)CrossRef
30.
go back to reference Mücke, M., Figueroa, E., Bochmann, J., Hahn, C., Murr, K., Ritter, S., Villas-Boas, C.J., Rempe, G.: Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010)ADSCrossRef Mücke, M., Figueroa, E., Bochmann, J., Hahn, C., Murr, K., Ritter, S., Villas-Boas, C.J., Rempe, G.: Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010)ADSCrossRef
31.
go back to reference Faraon, A., Majumdar, A., Kim, H., Petroff, P., Vučković, J.: Fast electrical control of a quantum dot strongly coupled to a nano-resonator. Phy. Rev. Lett. 104, 047402–047405 (2010)ADSCrossRef Faraon, A., Majumdar, A., Kim, H., Petroff, P., Vučković, J.: Fast electrical control of a quantum dot strongly coupled to a nano-resonator. Phy. Rev. Lett. 104, 047402–047405 (2010)ADSCrossRef
32.
go back to reference Chauvin, N., Zinoni, C., Francardi, M., Gerardino, A., Balet, L., Alloing, B., Li, L.H., Fiore, A.: Controlling the charge environment of single quantum dots in a photonic-crystal cavity. Phys. Rev. B 80, 241306–241309(R) (2009)ADSCrossRef Chauvin, N., Zinoni, C., Francardi, M., Gerardino, A., Balet, L., Alloing, B., Li, L.H., Fiore, A.: Controlling the charge environment of single quantum dots in a photonic-crystal cavity. Phys. Rev. B 80, 241306–241309(R) (2009)ADSCrossRef
33.
go back to reference Arlandis, J., Centeno, E., Pollès, R., Moreau, A., Campos, J., Gauthier-Lafaye, O., Monmayrant, A.: Mesoscopic self-collimation and slow light in all-positive index layered photonic crystals. Phys. Rev. Lett. 108, 037401 (2012)ADSCrossRef Arlandis, J., Centeno, E., Pollès, R., Moreau, A., Campos, J., Gauthier-Lafaye, O., Monmayrant, A.: Mesoscopic self-collimation and slow light in all-positive index layered photonic crystals. Phys. Rev. Lett. 108, 037401 (2012)ADSCrossRef
34.
go back to reference Figotin, A., Vitebskiy, I.: Slow wave phenomena in photonic crystals. Laser Photonics Rev. 5, 201–213 (2011)CrossRef Figotin, A., Vitebskiy, I.: Slow wave phenomena in photonic crystals. Laser Photonics Rev. 5, 201–213 (2011)CrossRef
35.
go back to reference Kim, M.-K., Kim, J.-Y., Kang, J.-H., Ahn, B.-H., Lee, Y.-H.: On-demand photonic crystal resonators. Laser Photonics Rev. 5, 479–495 (2011)CrossRef Kim, M.-K., Kim, J.-Y., Kang, J.-H., Ahn, B.-H., Lee, Y.-H.: On-demand photonic crystal resonators. Laser Photonics Rev. 5, 479–495 (2011)CrossRef
36.
go back to reference Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)ADSCrossRef Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)ADSCrossRef
37.
go back to reference Gardiner, C.W., Zoller, P.: Quantum noise. Springer Verlag, Berlin (2005) Gardiner, C.W., Zoller, P.: Quantum noise. Springer Verlag, Berlin (2005)
38.
go back to reference Scully, M.O., Zubairy, M.S.: Quantum optics. Cambridge University Press, Cambridge (1997) Scully, M.O., Zubairy, M.S.: Quantum optics. Cambridge University Press, Cambridge (1997)
39.
go back to reference Boyd, R.W.: Nonlinear optics, pp. 313. Academic, Amsterdam (2008) Boyd, R.W.: Nonlinear optics, pp. 313. Academic, Amsterdam (2008)
40.
go back to reference Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. Lett. 69, 681 (1946) Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. Lett. 69, 681 (1946)
41.
go back to reference Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRef Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRef
42.
go back to reference Safavi-Naeini, A.H., Chan, J., Hill, J.T., Alegre, T.P.M., Krause, A., Painter, O.: Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012)ADSCrossRef Safavi-Naeini, A.H., Chan, J., Hill, J.T., Alegre, T.P.M., Krause, A., Painter, O.: Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012)ADSCrossRef
43.
go back to reference Massel, F., Heikkilä, T.T., Pirkkalainen, J.-M., Cho, S.U., Saloniemi, H., Hakonen, P.J., Sillanpää M., A.: Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011)ADSCrossRef Massel, F., Heikkilä, T.T., Pirkkalainen, J.-M., Cho, S.U., Saloniemi, H., Hakonen, P.J., Sillanpää M., A.: Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011)ADSCrossRef
44.
go back to reference Bagheri, M., Poot, M., Li, M., Pernice, W.P.H., Tang H., X.: Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotechnol. 6, 726–732 (2011)ADSCrossRef Bagheri, M., Poot, M., Li, M., Pernice, W.P.H., Tang H., X.: Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotechnol. 6, 726–732 (2011)ADSCrossRef
45.
go back to reference Schmidt, T.L., Børkje, K., Bruder, C., Trauzettel, B.: Detection of qubit-oscillator entanglement in nanoelectromechanical systems. Phys. Rev. Lett. 104, 177205 (2010)ADSCrossRef Schmidt, T.L., Børkje, K., Bruder, C., Trauzettel, B.: Detection of qubit-oscillator entanglement in nanoelectromechanical systems. Phys. Rev. Lett. 104, 177205 (2010)ADSCrossRef
46.
go back to reference Fransson, J., Balatsky, A.V., Zhu, J.X.: Dynamical properties of a vibrating molecular quantum dot in a Josephson junction. Phys. Rev. B 81, 155440 (2010)ADSCrossRef Fransson, J., Balatsky, A.V., Zhu, J.X.: Dynamical properties of a vibrating molecular quantum dot in a Josephson junction. Phys. Rev. B 81, 155440 (2010)ADSCrossRef
47.
go back to reference Zippilli, S., Bachtold, A., Morigi, G.: Ground-state-cooling vibrations of suspended carbon nanotubes with constant electron current. Phys. Rev. B 81, 205408 (2010)ADSCrossRef Zippilli, S., Bachtold, A., Morigi, G.: Ground-state-cooling vibrations of suspended carbon nanotubes with constant electron current. Phys. Rev. B 81, 205408 (2010)ADSCrossRef
48.
go back to reference Bennett, S.D., Cockins, L., Miyahara, Y., Grütter, P., Clerk, A.A.: Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010)ADSCrossRef Bennett, S.D., Cockins, L., Miyahara, Y., Grütter, P., Clerk, A.A.: Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010)ADSCrossRef
49.
go back to reference Wu, B., Hulbert, J.F., Lunt, E.J., Hurd, K., Hawkins, A.R., Schmidt, H.: Slow light on a chip via atomic quantum state control. Nat. Photonics 4, 776 (2010)ADSCrossRef Wu, B., Hulbert, J.F., Lunt, E.J., Hurd, K., Hawkins, A.R., Schmidt, H.: Slow light on a chip via atomic quantum state control. Nat. Photonics 4, 776 (2010)ADSCrossRef
50.
go back to reference Stepanov, S., Sánchez, M.P.: Slow and fast light via two-wave mixing in erbium-doped fibers with saturable absorption. Phys. Rev. A 80, 053830 (2009)ADSCrossRef Stepanov, S., Sánchez, M.P.: Slow and fast light via two-wave mixing in erbium-doped fibers with saturable absorption. Phys. Rev. A 80, 053830 (2009)ADSCrossRef
51.
go back to reference Dudin, Y.O., Zhao, R., Kennedy, T.A.B., Kuzmich, A.: Light storage in a magnetically dressed optical lattice. Phys. Rev. A 81, 041805 (2010)ADSCrossRef Dudin, Y.O., Zhao, R., Kennedy, T.A.B., Kuzmich, A.: Light storage in a magnetically dressed optical lattice. Phys. Rev. A 81, 041805 (2010)ADSCrossRef
52.
go back to reference Wilson-Rae, I., Zoller, P., Imamoḡlu, A.: Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004)ADSCrossRef Wilson-Rae, I., Zoller, P., Imamoḡlu, A.: Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004)ADSCrossRef
53.
go back to reference Mahan, G.D.: Many-particle physics, 2nd edn. pp. 304. Plenum Press, NY (1990)CrossRef Mahan, G.D.: Many-particle physics, 2nd edn. pp. 304. Plenum Press, NY (1990)CrossRef
54.
go back to reference Fleischhauer, M., Lukin, M.D.: Quantum memory for photons: dark-state polaritons. Phys. Rev. A 65, 022314 (2002)ADSCrossRef Fleischhauer, M., Lukin, M.D.: Quantum memory for photons: dark-state polaritons. Phys. Rev. A 65, 022314 (2002)ADSCrossRef
55.
go back to reference Peng, A., Johnsson, M., Bowen, W.P., Lam, P.K., Bachor, H.A., Hope, J.J.: Squeezing and entanglement delay using slow light. Phys. Rev. A 71, 033809 (2005)ADSCrossRef Peng, A., Johnsson, M., Bowen, W.P., Lam, P.K., Bachor, H.A., Hope, J.J.: Squeezing and entanglement delay using slow light. Phys. Rev. A 71, 033809 (2005)ADSCrossRef
56.
go back to reference Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)ADSCrossRef Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)ADSCrossRef
57.
go back to reference Verbridge, S.S., Shapiro, D.F., Craighead, H.G., Parpia J., M.: Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 7, 1728 (2007)ADSCrossRef Verbridge, S.S., Shapiro, D.F., Craighead, H.G., Parpia J., M.: Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 7, 1728 (2007)ADSCrossRef
Metadata
Title
Quantum Optical Transistor and Other Devices Based on Nanostructures
Authors
Jin-Jin Li
Ka-Di Zhu
Copyright Year
2012
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3570-9_9

Premium Partner