Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2015

01-04-2015

Inhibitive Performance of Monoethylene Glycol on CO2 Corrosion of API 5L X52 Steel

Authors: M. Javidi, M. Khodaparast

Published in: Journal of Materials Engineering and Performance | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Monoethylene glycol has been utilized in wet natural gas transportation to avoid hydrate formation and corrosion. The inhibitive performance of monoethylene glycol (MEG) on CO2 corrosion of API 5L X52 steel in saline solution at 50 °C was studied using electrochemical techniques. Change in inhibition mechanism of MEG against CO2 corrosion was observed including the blocking of reaction sites by MEG in low concentration and slow down of corrosion reactions at high concentration. The presence of different concentrations of sodium chloride affects the corrosion rate in a different manner for rich and lean glycol solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Brustad, K. P. Løken and J. G. Waalmann, Hydrate Prevention Using MEG Instead of MeOH: Impact of Experience from Major Norwegian Developments on Technology Selection for Injection and Recovery of MEG, Offshore Technology Conference, Houston, Texas, 2005. S. Brustad, K. P. Løken and J. G. Waalmann, Hydrate Prevention Using MEG Instead of MeOH: Impact of Experience from Major Norwegian Developments on Technology Selection for Injection and Recovery of MEG, Offshore Technology Conference, Houston, Texas, 2005.
2.
go back to reference E.D. Sloan and C. Koh, Clathrate Hydrates of Natural Gases, 3rd ed., CRC Press, Boca Raton, 2008 E.D. Sloan and C. Koh, Clathrate Hydrates of Natural Gases, 3rd ed., CRC Press, Boca Raton, 2008
3.
go back to reference M. Wu, S. Wang, and H. Liu, A Study on Inhibitors for the Prevention of Hydrate Formation in Gas Transmission Pipeline, J. Nat. Gas Chem., 2007, 16(1), p 81–85CrossRef M. Wu, S. Wang, and H. Liu, A Study on Inhibitors for the Prevention of Hydrate Formation in Gas Transmission Pipeline, J. Nat. Gas Chem., 2007, 16(1), p 81–85CrossRef
4.
go back to reference I. Ivonye, C. Wang, X. Hu and A. Neville, Corrosion Study of Carbon Steel in the Presence of Monoethylene Glycol (MEG) and Corrosion Inhibitors in Acid, NACE, Orlando, Florida, 2013, Corrosion/2013, Paper No. 2349 I. Ivonye, C. Wang, X. Hu and A. Neville, Corrosion Study of Carbon Steel in the Presence of Monoethylene Glycol (MEG) and Corrosion Inhibitors in Acid, NACE, Orlando, Florida, 2013, Corrosion/2013, Paper No. 2349
5.
go back to reference C. de Waard, U. Lotz, and D.E. Milliams, Predictive Model for CO2 Corrosion Engineering in Wet Natural Gas Pipelines, Corrosion, 1991, 47(12), p 976–985CrossRef C. de Waard, U. Lotz, and D.E. Milliams, Predictive Model for CO2 Corrosion Engineering in Wet Natural Gas Pipelines, Corrosion, 1991, 47(12), p 976–985CrossRef
6.
go back to reference E. Gulbrandsen and J. H. Morard, Why Does Glycol Inhibit CO 2 Corrosion?, NACE, San Diego, California, 1998, Corrosion/98, Paper No. 98221 E. Gulbrandsen and J. H. Morard, Why Does Glycol Inhibit CO 2 Corrosion?, NACE, San Diego, California, 1998, Corrosion/98, Paper No. 98221
7.
go back to reference T. Pojtanabuntoeng, M. Salasi and R. Gubner, The Influence of Mono Ethylene Glycol (MEG) on CO 2 Corrosion of Carbon Steel at Elevated Temperatures (80 to 120 °C), NACE, San Antonio, Texas, 2014, Corrosion/2014, Paper No. 4176 T. Pojtanabuntoeng, M. Salasi and R. Gubner, The Influence of Mono Ethylene Glycol (MEG) on CO 2 Corrosion of Carbon Steel at Elevated Temperatures (80 to 120 °C), NACE, San Antonio, Texas, 2014, Corrosion/2014, Paper No. 4176
8.
go back to reference A. Dugstad, M. Seiersten and R. Nyborg, Flow Assurance of pH Stabilized Wet Gas Pipelines, NACE, San Diego, California, 2003, Corrosion/2003, Paper No. 03114 A. Dugstad, M. Seiersten and R. Nyborg, Flow Assurance of pH Stabilized Wet Gas Pipelines, NACE, San Diego, California, 2003, Corrosion/2003, Paper No. 03114
9.
go back to reference API, Specification for Glycol-Type Gas Dehydration Units, SPEC 12GDU, API, 1990, p 6. API, Specification for Glycol-Type Gas Dehydration Units, SPEC 12GDU, API, 1990, p 6.
10.
go back to reference S. Nesic, J. Postlethwaite, and S. Olsen, An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions, Corrosion, 1996, 52(4), p 280–294CrossRef S. Nesic, J. Postlethwaite, and S. Olsen, An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions, Corrosion, 1996, 52(4), p 280–294CrossRef
11.
go back to reference Z.Y. Liu, X.Z. Wang, R.K. Liu, C.W. Du, and X.G. Li, Electrochemical and Sulfide Stress Corrosion Cracking Behaviors of Tubing Steels in a H2S/CO2 Annular Environment, J. Mater. Eng. Perform., 2014, 23(4), p 1279–1287CrossRef Z.Y. Liu, X.Z. Wang, R.K. Liu, C.W. Du, and X.G. Li, Electrochemical and Sulfide Stress Corrosion Cracking Behaviors of Tubing Steels in a H2S/CO2 Annular Environment, J. Mater. Eng. Perform., 2014, 23(4), p 1279–1287CrossRef
12.
go back to reference M.C. Fatah, M.C. Ismail, and B. Ari-Wahjoedi, Electrochemical Behavior of X52 Steel in a CO2 Environment in the Presence of Acetate and sulfide, J. Mater. Eng. Perform., 2013, 22(1), p 236–244CrossRef M.C. Fatah, M.C. Ismail, and B. Ari-Wahjoedi, Electrochemical Behavior of X52 Steel in a CO2 Environment in the Presence of Acetate and sulfide, J. Mater. Eng. Perform., 2013, 22(1), p 236–244CrossRef
13.
go back to reference A. Dugstad and P.-E. Dronen, Efficient Corrosion Control of Gas Condensate Pipelines by pH-Stabilization, NACE, San Antonio, Texas, 1999, Corrosion/99, Paper No. 99020 A. Dugstad and P.-E. Dronen, Efficient Corrosion Control of Gas Condensate Pipelines by pH-Stabilization, NACE, San Antonio, Texas, 1999, Corrosion/99, Paper No. 99020
14.
go back to reference S. Olsen, A. Dugstad and O. Lunde, pH-Stabilization in the Troll Gas-Condensate Pipelines, NACE, San Antonio, Texas, 1999, Corrosion/99, Paper No. 99019 S. Olsen, A. Dugstad and O. Lunde, pH-Stabilization in the Troll Gas-Condensate Pipelines, NACE, San Antonio, Texas, 1999, Corrosion/99, Paper No. 99019
15.
go back to reference S. Nešić, Key Issues Related to Modelling of Internal Corrosion of Oil and Gas Pipelines—A Review, Corros. Sci., 2007, 49(12), p 4308–4338CrossRef S. Nešić, Key Issues Related to Modelling of Internal Corrosion of Oil and Gas Pipelines—A Review, Corros. Sci., 2007, 49(12), p 4308–4338CrossRef
16.
go back to reference J.Kvarekval, A. Dugstad and M.Seiersten, Localized Corrosion on Carbon Steel in Sour Glycolic Solutions, NACE, San Antonio, Texas, 2010, Corrosion/2010, Paper No. 10277 J.Kvarekval, A. Dugstad and M.Seiersten, Localized Corrosion on Carbon Steel in Sour Glycolic Solutions, NACE, San Antonio, Texas, 2010, Corrosion/2010, Paper No. 10277
17.
go back to reference R.H. Hausler, Advances in CO 2 Corrosion, Vol 1, NACE, Houston, 1984, p 72–86 R.H. Hausler, Advances in CO 2 Corrosion, Vol 1, NACE, Houston, 1984, p 72–86
18.
go back to reference G.W. Ashley and G.T. Burstein, Initial Stages of the Anodic Oxidation of Iron in Chloride Solutions, Corrosion, 1991, 47(12), p 908–916CrossRef G.W. Ashley and G.T. Burstein, Initial Stages of the Anodic Oxidation of Iron in Chloride Solutions, Corrosion, 1991, 47(12), p 908–916CrossRef
19.
go back to reference H. Fang, B. Brown, and S. Nešić, Sodium Chloride Concentration Effects on General CO2 Corrosion Mechanisms, Corrosion, 2013, 69(3), p 297–302CrossRef H. Fang, B. Brown, and S. Nešić, Sodium Chloride Concentration Effects on General CO2 Corrosion Mechanisms, Corrosion, 2013, 69(3), p 297–302CrossRef
20.
go back to reference F.F. Eliyan, F. Mohammadi, and A. Alfantazi, An Electrochemical Investigation on the Effect of the Chloride Content on CO2 Corrosion of API-X100 Steel, Corros. Sci., 2012, 64, p 37–43CrossRef F.F. Eliyan, F. Mohammadi, and A. Alfantazi, An Electrochemical Investigation on the Effect of the Chloride Content on CO2 Corrosion of API-X100 Steel, Corros. Sci., 2012, 64, p 37–43CrossRef
21.
go back to reference J. Han, J.W. Carey, and J. Zhang, Effect of Sodium Chloride on Corrosion of Mild Steel in CO2-Saturated Brines, J. Appl. Electrochem., 2011, 41(6), p 741–749CrossRef J. Han, J.W. Carey, and J. Zhang, Effect of Sodium Chloride on Corrosion of Mild Steel in CO2-Saturated Brines, J. Appl. Electrochem., 2011, 41(6), p 741–749CrossRef
22.
go back to reference R.F. Brunel and V.B. Katharine, Density and Thermal Expansion of Liquid Organic Compounds under Atmospheric Pressure, Int. Crit. Tables, 1928, III, p 27–35 R.F. Brunel and V.B. Katharine, Density and Thermal Expansion of Liquid Organic Compounds under Atmospheric Pressure, Int. Crit. Tables, 1928, III, p 27–35
23.
go back to reference A. M. K. Halvorsen and T. R. Andersen, pH Stabilization for Internal Corrosion Protection of Pipeline Carrying Wet Gas with CO 2 and Acetic Acid, NACE, San Diego, California, 2003, Corrosion/2003, Paper No. 03329 A. M. K. Halvorsen and T. R. Andersen, pH Stabilization for Internal Corrosion Protection of Pipeline Carrying Wet Gas with CO 2 and Acetic Acid, NACE, San Diego, California, 2003, Corrosion/2003, Paper No. 03329
24.
go back to reference C. Cao, On Electrochemical Techniques for Interface Inhibitor Research, Corros. Sci., 1996, 38(12), p 2073–2082CrossRef C. Cao, On Electrochemical Techniques for Interface Inhibitor Research, Corros. Sci., 1996, 38(12), p 2073–2082CrossRef
25.
go back to reference M.H. Oyevaar, R.W.J. Morssinkhof, and K.R. Westerterp, Density, Viscosity, Solubility, and Diffusivity of Carbon Dioxide and Nitrous Oxide in Solutions of Diethanolamine in Aqueous Ethylene Glycol at 298 K, J. Chem. Eng. Data, 1989, 34(1), p 77–82CrossRef M.H. Oyevaar, R.W.J. Morssinkhof, and K.R. Westerterp, Density, Viscosity, Solubility, and Diffusivity of Carbon Dioxide and Nitrous Oxide in Solutions of Diethanolamine in Aqueous Ethylene Glycol at 298 K, J. Chem. Eng. Data, 1989, 34(1), p 77–82CrossRef
26.
go back to reference S. Nesic, N. Thevenot, J. L. Crolet and D. Drazic, Electrochemical Properties of Iron Dissolution in the Presence of CO 2 —Basics Revisited, NACE, Denver, Colorado, 1996, Corrosion/96, Paper No. 96003 S. Nesic, N. Thevenot, J. L. Crolet and D. Drazic, Electrochemical Properties of Iron Dissolution in the Presence of CO 2 —Basics Revisited, NACE, Denver, Colorado, 1996, Corrosion/96, Paper No. 96003
27.
go back to reference G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, and J.H. Sluyters, The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element, J. Electroanal. Chem. Interfacial Electrochem., 1984, 176(1–2), p 275–295CrossRef G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, and J.H. Sluyters, The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element, J. Electroanal. Chem. Interfacial Electrochem., 1984, 176(1–2), p 275–295CrossRef
28.
go back to reference W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, PairODocs Publications, 1994. W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, PairODocs Publications, 1994.
29.
go back to reference M.P. Desimone, G. Grundmeier, G. Gordillo, and S.N. Simison, Amphiphilic Amido-Amine as an Effective Corrosion Inhibitor for Mild Steel Exposed to CO2 Saturated Solution: Polarization, EIS and PM-IRRAS Studies, Electrochim. Acta, 2011, 56(8), p 2990–2998CrossRef M.P. Desimone, G. Grundmeier, G. Gordillo, and S.N. Simison, Amphiphilic Amido-Amine as an Effective Corrosion Inhibitor for Mild Steel Exposed to CO2 Saturated Solution: Polarization, EIS and PM-IRRAS Studies, Electrochim. Acta, 2011, 56(8), p 2990–2998CrossRef
30.
go back to reference G. Douheret and A. Pal, Dielectric Constants and Densities of Aqueous Mixtures of 2-alkoxyethanols at 25 °C, J. Chem. Eng. Data, 1988, 33(1), p 40–43CrossRef G. Douheret and A. Pal, Dielectric Constants and Densities of Aqueous Mixtures of 2-alkoxyethanols at 25 °C, J. Chem. Eng. Data, 1988, 33(1), p 40–43CrossRef
31.
go back to reference Q.Y. Liu, L.J. Mao, and S.W. Zhou, Effects of Chloride Content on CO2 Corrosion of Carbon Steel in Simulated Oil and Gas Well Environments, Corros. Sci., 2014, 84, p 165–171CrossRef Q.Y. Liu, L.J. Mao, and S.W. Zhou, Effects of Chloride Content on CO2 Corrosion of Carbon Steel in Simulated Oil and Gas Well Environments, Corros. Sci., 2014, 84, p 165–171CrossRef
32.
go back to reference R.J. Chin and K. Nobe, Electrodissolution Kinetics of Iron in Chloride Solutions: III. Acidic Solutions, J. Electrochem. Soc., 1972, 119(11), p 1457–1461CrossRef R.J. Chin and K. Nobe, Electrodissolution Kinetics of Iron in Chloride Solutions: III. Acidic Solutions, J. Electrochem. Soc., 1972, 119(11), p 1457–1461CrossRef
33.
go back to reference H.C. Kuo and K. Nobe, Electrodissolution Kinetics of Iron in Chloride Solutions: VI. Concentrated Acidic Solutions, J. Electrochem. Soc., 1978, 125(6), p 853–860CrossRef H.C. Kuo and K. Nobe, Electrodissolution Kinetics of Iron in Chloride Solutions: VI. Concentrated Acidic Solutions, J. Electrochem. Soc., 1978, 125(6), p 853–860CrossRef
34.
go back to reference D.R. MacFarlane and S.I. Smedley, The Dissolution Mechanism of Iron in Chloride Solutions, J. Electrochem. Soc., 1986, 133(11), p 2240–2244CrossRef D.R. MacFarlane and S.I. Smedley, The Dissolution Mechanism of Iron in Chloride Solutions, J. Electrochem. Soc., 1986, 133(11), p 2240–2244CrossRef
35.
go back to reference E.N. Zhou, Z.H. Yu, J.K. Qu, T. Qi, X.Y. Han, and G.Q. Zhang, Equilibrium Solubility Modeling of CO2 in Na2Cr2O7 Solutions, Acta Phys. Chim. Sin., 2012, 28, p 2567–2573 E.N. Zhou, Z.H. Yu, J.K. Qu, T. Qi, X.Y. Han, and G.Q. Zhang, Equilibrium Solubility Modeling of CO2 in Na2Cr2O7 Solutions, Acta Phys. Chim. Sin., 2012, 28, p 2567–2573
36.
go back to reference Y.-B. Chang, B.K. Coats, and J.S. Nolen, A Compositional Model for CO2 Floods Including CO2 Solubility in Water, SPE, 1998, 1(02), p 155–160 Y.-B. Chang, B.K. Coats, and J.S. Nolen, A Compositional Model for CO2 Floods Including CO2 Solubility in Water, SPE, 1998, 1(02), p 155–160
37.
go back to reference S. Takenouchi and G.C. Kennedy, The Solubility of Carbon Dioxide in NaCl Solutions at High Temperatures and Pressures, Am. J. Sci., 1965, 263(5), p 445–454CrossRef S. Takenouchi and G.C. Kennedy, The Solubility of Carbon Dioxide in NaCl Solutions at High Temperatures and Pressures, Am. J. Sci., 1965, 263(5), p 445–454CrossRef
38.
go back to reference J.A. Nighswander, N. Kalogerakis, and A.K. Mehrotra, Solubilities of Carbon Dioxide in Water and 1 wt. % Sodium Chloride Solution at Pressures up to 10 MPa and temperatures from 80 to 200 °C, J. Chem. Eng. Data, 1989, 34(3), p 355–360CrossRef J.A. Nighswander, N. Kalogerakis, and A.K. Mehrotra, Solubilities of Carbon Dioxide in Water and 1 wt. % Sodium Chloride Solution at Pressures up to 10 MPa and temperatures from 80 to 200 °C, J. Chem. Eng. Data, 1989, 34(3), p 355–360CrossRef
39.
go back to reference Z.-Q. Tan, G.-H. Gao, Y.-X. Yu, and C. Gu, Solubility of Oxygen in Aqueous Sodium Carbonate Solution at Pressures up to 10 MPa, Fluid Phase Equilib., 2001, 180(1–2), p 375–382CrossRef Z.-Q. Tan, G.-H. Gao, Y.-X. Yu, and C. Gu, Solubility of Oxygen in Aqueous Sodium Carbonate Solution at Pressures up to 10 MPa, Fluid Phase Equilib., 2001, 180(1–2), p 375–382CrossRef
40.
go back to reference S.R. Taylor and E. Gileadi, Physical Interpretation of the Warburg Impedance, Corrosion, 1995, 51(9), p 664–671CrossRef S.R. Taylor and E. Gileadi, Physical Interpretation of the Warburg Impedance, Corrosion, 1995, 51(9), p 664–671CrossRef
41.
go back to reference W. Hayduk and V.K. Malik, Density, Viscosity, and Carbon Dioxide Solubility and Diffusivity in Aqueous Ethylene Glycol Solutions, J. Chem. Eng. Data, 1971, 16(2), p 143–146CrossRef W. Hayduk and V.K. Malik, Density, Viscosity, and Carbon Dioxide Solubility and Diffusivity in Aqueous Ethylene Glycol Solutions, J. Chem. Eng. Data, 1971, 16(2), p 143–146CrossRef
42.
go back to reference G. Song and D. StJohn, Corrosion Behaviour of Magnesium in Ethylene Glycol, Corros. Sci., 2004, 46(6), p 1381–1399CrossRef G. Song and D. StJohn, Corrosion Behaviour of Magnesium in Ethylene Glycol, Corros. Sci., 2004, 46(6), p 1381–1399CrossRef
Metadata
Title
Inhibitive Performance of Monoethylene Glycol on CO2 Corrosion of API 5L X52 Steel
Authors
M. Javidi
M. Khodaparast
Publication date
01-04-2015
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2015
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1415-3

Other articles of this Issue 4/2015

Journal of Materials Engineering and Performance 4/2015 Go to the issue

Premium Partners