Skip to main content
Top

2018 | OriginalPaper | Chapter

12. Injectable Hydrogels for Cartilage Regeneration

Authors : Cenk Celik, Vishal T. Mogal, James Hoi Po Hui, Xian Jun Loh, Wei Seong Toh

Published in: Hydrogels

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Articular cartilage injuries have a limited potential to heal, which over time, may lead to osteoarthritis, an inflammatory and degenerative joint disease associated with activity-related pain, swelling, and impaired mobility. Regeneration and restoration of joint tissue and function remain unmet challenges. Intra-articular injections of therapeutic agents are effective to some extent, but often require multiple injections. In the past decade, injectable hydrogels have emerged as promising biomaterials, due largely to their biocompatibility, tissue extracellular matrix (ECM) mimicry, excellent permeability, and easy adaptation for minimal-invasive procedures. Moreover, hydrogels can be designed as carriers for sustained release of therapeutic agents and protective matrices for cell delivery. This chapter provides an overview of the injectable hydrogel systems currently being applied together with therapeutic drug delivery and/or cell therapy for treatment of cartilage lesions and osteoarthritis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amici E, Clark AH, Normand V, Johnson NB (2000) Interpenetrating network formation in gellan–agarose gel composites. Biomacromol 1:721–729CrossRef Amici E, Clark AH, Normand V, Johnson NB (2000) Interpenetrating network formation in gellan–agarose gel composites. Biomacromol 1:721–729CrossRef
go back to reference Anderson SB, Lin CC, Kuntzler DV, Anseth KS (2011) The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32:3564–3574PubMedPubMedCentralCrossRef Anderson SB, Lin CC, Kuntzler DV, Anseth KS (2011) The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32:3564–3574PubMedPubMedCentralCrossRef
go back to reference Baba R, Onodera T, Momma D, Matsuoka M, Hontani K, Elmorsy S, Endo K, Todoh M, Tadano S, Iwasaki N (2015) A novel bone marrow stimulation technique augmented by administration of ultrapurified alginate gel enhances osteochondral repair in a rabbit model. Tissue Eng Part C Methods 21:1263–1273PubMedPubMedCentralCrossRef Baba R, Onodera T, Momma D, Matsuoka M, Hontani K, Elmorsy S, Endo K, Todoh M, Tadano S, Iwasaki N (2015) A novel bone marrow stimulation technique augmented by administration of ultrapurified alginate gel enhances osteochondral repair in a rabbit model. Tissue Eng Part C Methods 21:1263–1273PubMedPubMedCentralCrossRef
go back to reference Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W (2016) Poly(lactic acid) based hydrogels. Adv Drug Deliv Rev 107:192–205PubMedCrossRef Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W (2016) Poly(lactic acid) based hydrogels. Adv Drug Deliv Rev 107:192–205PubMedCrossRef
go back to reference Becerra J, Andrades JA, Guerado E, Zamora-Navas P, Lopez-Puertas JM, Reddi AH (2010) Articular cartilage: structure and regeneration. Tissue Eng Part B Rev 16:617–627PubMedCrossRef Becerra J, Andrades JA, Guerado E, Zamora-Navas P, Lopez-Puertas JM, Reddi AH (2010) Articular cartilage: structure and regeneration. Tissue Eng Part B Rev 16:617–627PubMedCrossRef
go back to reference Beck EC, Barragan M, Libeer TB, Kieweg SL, Converse GL, Hopkins RA, Berkland CJ, Detamore MS (2016) Chondroinduction from naturally derived cartilage matrix: a comparison between devitalized and decellularized cartilage encapsulated in hydrogel pastes. Tissue Eng Part A 22:665–679PubMedPubMedCentralCrossRef Beck EC, Barragan M, Libeer TB, Kieweg SL, Converse GL, Hopkins RA, Berkland CJ, Detamore MS (2016) Chondroinduction from naturally derived cartilage matrix: a comparison between devitalized and decellularized cartilage encapsulated in hydrogel pastes. Tissue Eng Part A 22:665–679PubMedPubMedCentralCrossRef
go back to reference Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93:1152–1163PubMedCrossRef Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93:1152–1163PubMedCrossRef
go back to reference Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56CrossRef Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56CrossRef
go back to reference Burnsed OA, Schwartz Z, Marchand KO, Hyzy SL, Olivares-Navarrete R, Boyan BD (2016) Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomater Burnsed OA, Schwartz Z, Marchand KO, Hyzy SL, Olivares-Navarrete R, Boyan BD (2016) Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta Biomater
go back to reference Byers BA, Mauck RL, Chiang IE, Tuan RS (2008) Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng Part A 14:1821–1834PubMedPubMedCentralCrossRef Byers BA, Mauck RL, Chiang IE, Tuan RS (2008) Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng Part A 14:1821–1834PubMedPubMedCentralCrossRef
go back to reference Chen F, Yu S, Liu B, Ni Y, Yu C, Su Y, Zhu X, Yu X, Zhou Y, Yan D (2016) An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep 6:20014PubMedPubMedCentralCrossRef Chen F, Yu S, Liu B, Ni Y, Yu C, Su Y, Zhu X, Yu X, Zhou Y, Yan D (2016) An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep 6:20014PubMedPubMedCentralCrossRef
go back to reference Cheng NC, Estes BT, Young TH, Guilak F (2013a) Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 19:484–496PubMedCrossRef Cheng NC, Estes BT, Young TH, Guilak F (2013a) Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 19:484–496PubMedCrossRef
go back to reference Cheng YH, Yang SH, Lin FH (2011) Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials 32:6953–6961PubMedCrossRef Cheng YH, Yang SH, Lin FH (2011) Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials 32:6953–6961PubMedCrossRef
go back to reference Cheng YH, Yang SH, Liu CC, Gefen A, Lin FH (2013b) Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydr Polym 92:1512–1519PubMedCrossRef Cheng YH, Yang SH, Liu CC, Gefen A, Lin FH (2013b) Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydr Polym 92:1512–1519PubMedCrossRef
go back to reference Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW (2004) Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25:5743–5751PubMedCrossRef Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW (2004) Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25:5743–5751PubMedCrossRef
go back to reference Choi BG, Park MH, Cho SH, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B (2010) In situ thermal gelling polypeptide for chondrocytes 3D culture. Biomaterials 31:9266–9272PubMedCrossRef Choi BG, Park MH, Cho SH, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B (2010) In situ thermal gelling polypeptide for chondrocytes 3D culture. Biomaterials 31:9266–9272PubMedCrossRef
go back to reference Choi BG, Park MH, Cho S, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B (2011) Thermal gelling polyalanine-poloxamine-polyalanine aqueous solution for chondrocytes 3D culture: initial concentration effect. Soft Matter 7:456–462CrossRef Choi BG, Park MH, Cho S, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B (2011) Thermal gelling polyalanine-poloxamine-polyalanine aqueous solution for chondrocytes 3D culture: initial concentration effect. Soft Matter 7:456–462CrossRef
go back to reference Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121PubMedCrossRef Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121PubMedCrossRef
go back to reference Choi B, Kim S, Fan J, Kowalski T, Petrigliano F, Evseenko D, Lee M (2015) Covalently conjugated transforming growth factor-beta1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Biomater Sci 3:742–752 Choi B, Kim S, Fan J, Kowalski T, Petrigliano F, Evseenko D, Lee M (2015) Covalently conjugated transforming growth factor-beta1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Biomater Sci 3:742–752
go back to reference Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60:243–262 Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60:243–262
go back to reference Dadsetan M, Szatkowski JP, Yaszemski MJ, Lu L (2007) Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Biomacromol 8:1702–1709CrossRef Dadsetan M, Szatkowski JP, Yaszemski MJ, Lu L (2007) Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Biomacromol 8:1702–1709CrossRef
go back to reference DeForest CA, Anseth KS (2012) Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng 3:421–444PubMedCrossRef DeForest CA, Anseth KS (2012) Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng 3:421–444PubMedCrossRef
go back to reference Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X (2014) Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 10:1558–1570PubMedCrossRef Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X (2014) Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 10:1558–1570PubMedCrossRef
go back to reference Dinescu S, Gălăţeanu B, Albu M, Lungu A, Radu E, Hermenean A (2014) Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic acid and chondroitin sulfate for cartilage regeneration. Biomed Res Int 2013:1–9CrossRef Dinescu S, Gălăţeanu B, Albu M, Lungu A, Radu E, Hermenean A (2014) Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic acid and chondroitin sulfate for cartilage regeneration. Biomed Res Int 2013:1–9CrossRef
go back to reference Elisseeff J, Anseth KS, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104:1014–1022PubMedCrossRef Elisseeff J, Anseth KS, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104:1014–1022PubMedCrossRef
go back to reference Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA, Mauck RL (2009) Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthr Cartil 17:1639–1648CrossRef Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA, Mauck RL (2009) Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthr Cartil 17:1639–1648CrossRef
go back to reference Fu X, Toh WS, Liu H, Lu K, Li M, Cao T (2011) Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods 17:927–937PubMedCrossRef Fu X, Toh WS, Liu H, Lu K, Li M, Cao T (2011) Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods 17:927–937PubMedCrossRef
go back to reference Gadjanski I, Yodmuang S, Spiller K, Bhumiratana S, Vunjak-Novakovic G (2013) Supplementation of exogenous adenosine 5′-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering. Tissue Eng Part A 19:2188–2200PubMedPubMedCentralCrossRef Gadjanski I, Yodmuang S, Spiller K, Bhumiratana S, Vunjak-Novakovic G (2013) Supplementation of exogenous adenosine 5′-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering. Tissue Eng Part A 19:2188–2200PubMedPubMedCentralCrossRef
go back to reference Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, Cao T (2006) Osteoarthritis and therapy. Arthritis Rheum 55:493–500PubMedCrossRef Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, Cao T (2006) Osteoarthritis and therapy. Arthritis Rheum 55:493–500PubMedCrossRef
go back to reference Geng X, Mo X, Fan L, Yin A, Fang J (2012) Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. J Mater Chem 22:25130CrossRef Geng X, Mo X, Fan L, Yin A, Fang J (2012) Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. J Mater Chem 22:25130CrossRef
go back to reference Gittens J, Haleem AM, Grenier S, Smyth NA, Hannon CP, Ross KA, Torzilli PA, Kennedy JG (2016) Use of novel chitosan hydrogels for chemical tissue bonding of autologous chondral transplants. J Orthop Res 34:1139–1146PubMedCrossRef Gittens J, Haleem AM, Grenier S, Smyth NA, Hannon CP, Ross KA, Torzilli PA, Kennedy JG (2016) Use of novel chitosan hydrogels for chemical tissue bonding of autologous chondral transplants. J Orthop Res 34:1139–1146PubMedCrossRef
go back to reference Han F, Yang X, Zhao J, Zhao Y, Yuan X (2015) Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. J Mater Sci Mater Med 26:160PubMedCrossRef Han F, Yang X, Zhao J, Zhao Y, Yuan X (2015) Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. J Mater Sci Mater Med 26:160PubMedCrossRef
go back to reference Hayami JW, Waldman SD, Amsden BG (2016) Chondrocyte generation of cartilage-like tissue following photoencapsulation in methacrylated polysaccharide solution blends. Macromol Biosci 16:1083–1095 Hayami JW, Waldman SD, Amsden BG (2016) Chondrocyte generation of cartilage-like tissue following photoencapsulation in methacrylated polysaccharide solution blends. Macromol Biosci 16:1083–1095
go back to reference Ho ST, Cool SM, Hui JH, Hutmacher DW (2010) The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials 31:38–47PubMedCrossRef Ho ST, Cool SM, Hui JH, Hutmacher DW (2010) The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials 31:38–47PubMedCrossRef
go back to reference Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, Hurtig M, Buschmann MD (2007) Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr Cartil 15:78–89CrossRef Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, Hurtig M, Buschmann MD (2007) Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr Cartil 15:78–89CrossRef
go back to reference Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125PubMedCrossRef Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125PubMedCrossRef
go back to reference Huang AH, Stein A, Tuan RS, Mauck RL (2009) Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 15:3461–3472PubMedPubMedCentralCrossRef Huang AH, Stein A, Tuan RS, Mauck RL (2009) Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 15:3461–3472PubMedPubMedCentralCrossRef
go back to reference Hui JH, Ren XF, Afizah MH, Chian KS, Mikos AG (2013) Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin Orthop Relat Res 471:1174–1185PubMedCrossRef Hui JH, Ren XF, Afizah MH, Chian KS, Mikos AG (2013) Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin Orthop Relat Res 471:1174–1185PubMedCrossRef
go back to reference Jalani G, Rosenzweig DH, Makhoul G, Abdalla S, Cecere R, Vetrone F, Haglund L, Cerruti M (2015) Tough, in-situ thermogelling, injectable hydrogels for biomedical applications. Macromol Biosci 15:473–480PubMedCrossRef Jalani G, Rosenzweig DH, Makhoul G, Abdalla S, Cecere R, Vetrone F, Haglund L, Cerruti M (2015) Tough, in-situ thermogelling, injectable hydrogels for biomedical applications. Macromol Biosci 15:473–480PubMedCrossRef
go back to reference Jeng L, Olsen BR, Spector M (2012) Engineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels. Acta Biomater 8:2203–2212PubMedCrossRef Jeng L, Olsen BR, Spector M (2012) Engineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels. Acta Biomater 8:2203–2212PubMedCrossRef
go back to reference Jiang YZ, Zhang SF, Qi YY, Wang LL, Ouyang HW (2011) Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant 20:593–607PubMedCrossRef Jiang YZ, Zhang SF, Qi YY, Wang LL, Ouyang HW (2011) Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant 20:593–607PubMedCrossRef
go back to reference Jin R, Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31:3103–3113PubMedCrossRef Jin R, Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31:3103–3113PubMedCrossRef
go back to reference Jo S, Shin H, Shung AK, Fisher JP, Mikos AG (2001) Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34:2839–2844CrossRef Jo S, Shin H, Shung AK, Fisher JP, Mikos AG (2001) Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34:2839–2844CrossRef
go back to reference Karim A, Hall AC (2017) Chondrocyte morphology in stiff and soft agarose gels and the influence of foetal calf serum. J Cell Physiol 232:1041–1052 Karim A, Hall AC (2017) Chondrocyte morphology in stiff and soft agarose gels and the influence of foetal calf serum. J Cell Physiol 232:1041–1052
go back to reference Kaupp JA, Weber JF, Waldman SD (2012) Mechanical stimulation of chondrocyte-agarose hydrogels. J Vis Exp e4229 Kaupp JA, Weber JF, Waldman SD (2012) Mechanical stimulation of chondrocyte-agarose hydrogels. J Vis Exp e4229
go back to reference Kim DH, Heo SJ, Shin JW, Mun CW, Park KM, Park KD, Jee KS (2010) Preparation of thermosensitive gelatin-pluronic copolymer for cartilage tissue engineering. Macromol Res 18:387–391CrossRef Kim DH, Heo SJ, Shin JW, Mun CW, Park KM, Park KD, Jee KS (2010) Preparation of thermosensitive gelatin-pluronic copolymer for cartilage tissue engineering. Macromol Res 18:387–391CrossRef
go back to reference Kim J, Lin B, Kim S, Choi B, Evseenko D, Lee M (2015) TGF-beta1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. J Biol Eng 9:1PubMedPubMedCentralCrossRef Kim J, Lin B, Kim S, Choi B, Evseenko D, Lee M (2015) TGF-beta1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. J Biol Eng 9:1PubMedPubMedCentralCrossRef
go back to reference Ko JY, Kim KI, Park S, Im GI (2014) In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 35:3571–3581PubMedCrossRef Ko JY, Kim KI, Park S, Im GI (2014) In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 35:3571–3581PubMedCrossRef
go back to reference Kontturi LS, Järvinen E, Muhonen V, Collin EC, Pandit AS, Kiviranta I, Yliperttula M, Urtti A (2014) An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv Transl Res 4:149–158PubMedCrossRef Kontturi LS, Järvinen E, Muhonen V, Collin EC, Pandit AS, Kiviranta I, Yliperttula M, Urtti A (2014) An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv Transl Res 4:149–158PubMedCrossRef
go back to reference Kurisawa M, Chung J, Yang Y, Gao S, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chem Commun 2005:4312–4314CrossRef Kurisawa M, Chung J, Yang Y, Gao S, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chem Commun 2005:4312–4314CrossRef
go back to reference Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J (2016) Multiplicity of effects and health benefits of resveratrol. Medicina 52:148–155PubMedCrossRef Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J (2016) Multiplicity of effects and health benefits of resveratrol. Medicina 52:148–155PubMedCrossRef
go back to reference Kwon JS, Yoon SM, Kwon DY, Kim DY, Tai GZ, Jin LM, Song B, Lee B, Kim JH, Han DK, Min BH, Kim MS (2013) Injectable in situ-forming hydrogel for cartilage tissue engineering. J Mater Chem B 1:3314–3321CrossRefPubMed Kwon JS, Yoon SM, Kwon DY, Kim DY, Tai GZ, Jin LM, Song B, Lee B, Kim JH, Han DK, Min BH, Kim MS (2013) Injectable in situ-forming hydrogel for cartilage tissue engineering. J Mater Chem B 1:3314–3321CrossRefPubMed
go back to reference Lee F, Chung JE, Kurisawa M (2009) An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. J Controlled Release 134:186–193CrossRef Lee F, Chung JE, Kurisawa M (2009) An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. J Controlled Release 134:186–193CrossRef
go back to reference Lee HJ, Yu C, Chansakul T, Hwang NS, Varghese S, Yu SM, Elisseeff JH (2008) Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. Tissue Eng Part A 14:1843–1851PubMedCrossRef Lee HJ, Yu C, Chansakul T, Hwang NS, Varghese S, Yu SM, Elisseeff JH (2008) Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. Tissue Eng Part A 14:1843–1851PubMedCrossRef
go back to reference Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2014a) A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 10:214–223PubMedCrossRef Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2014a) A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 10:214–223PubMedCrossRef
go back to reference Levett PA, Hutmacher DW, Malda J, Klein TJ (2014b) Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS ONE 9:e113216PubMedPubMedCentralCrossRef Levett PA, Hutmacher DW, Malda J, Klein TJ (2014b) Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS ONE 9:e113216PubMedPubMedCentralCrossRef
go back to reference Lim CT, Ren X, Afizah MH, Tarigan-Panjaitan S, Yang Z, Wu Y, Chian KS, Mikos AG, Hui JH (2013a) Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model. Tissue Eng Part A 19:1852–1861PubMedCrossRef Lim CT, Ren X, Afizah MH, Tarigan-Panjaitan S, Yang Z, Wu Y, Chian KS, Mikos AG, Hui JH (2013a) Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model. Tissue Eng Part A 19:1852–1861PubMedCrossRef
go back to reference Lim TC, Toh WS, Wang LS, Kurisawa M, Spector M (2012) The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials 33:3446–3455PubMedCrossRef Lim TC, Toh WS, Wang LS, Kurisawa M, Spector M (2012) The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials 33:3446–3455PubMedCrossRef
go back to reference Lim TC, Rokkappanavar S, Toh WS, Wang LS, Kurisawa M, Spector M (2013b) Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1α release and compatible structural support. FASEB J 27:1023–1033PubMedCrossRef Lim TC, Rokkappanavar S, Toh WS, Wang LS, Kurisawa M, Spector M (2013b) Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1α release and compatible structural support. FASEB J 27:1023–1033PubMedCrossRef
go back to reference Lima EG, Tan AR, Tai T, Marra KG, DeFail A, Ateshian GA, Hung CT (2009) Genipin enhances the mechanical properties of tissue engineered cartilage and protects against inflammatory degradation when used as a medium supplement. J Biomed Mater Res A 91:692–700PubMedPubMedCentralCrossRef Lima EG, Tan AR, Tai T, Marra KG, DeFail A, Ateshian GA, Hung CT (2009) Genipin enhances the mechanical properties of tissue engineered cartilage and protects against inflammatory degradation when used as a medium supplement. J Biomed Mater Res A 91:692–700PubMedPubMedCentralCrossRef
go back to reference Little CJ, Kulyk WM, Chen X (2014) The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel. J Funct Biomater 5:197–210PubMedPubMedCentralCrossRef Little CJ, Kulyk WM, Chen X (2014) The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel. J Funct Biomater 5:197–210PubMedPubMedCentralCrossRef
go back to reference Liu SQ, Tian Q, Hedrick JL, Hui JH, Ee PL, Yang YY (2010a) Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31:7298–7307PubMedCrossRef Liu SQ, Tian Q, Hedrick JL, Hui JH, Ee PL, Yang YY (2010a) Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31:7298–7307PubMedCrossRef
go back to reference Liu SQ, Tian Q, Wang L, Hedrick JL, Hui JH, Yang YY, Ee PL (2010b) Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromol Rapid Commun 31:1148–1154PubMedCrossRef Liu SQ, Tian Q, Wang L, Hedrick JL, Hui JH, Yang YY, Ee PL (2010b) Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromol Rapid Commun 31:1148–1154PubMedCrossRef
go back to reference Liu Y, Shu XZ, Prestwich GD (2006) Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng 12:3405–3416PubMedCrossRef Liu Y, Shu XZ, Prestwich GD (2006) Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng 12:3405–3416PubMedCrossRef
go back to reference Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA (2003) Cell-responsive synthetic hydrogels. Adv Mater 15:888–892CrossRef Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA (2003) Cell-responsive synthetic hydrogels. Adv Mater 15:888–892CrossRef
go back to reference Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44(Suppl 1):S11–S15PubMedCrossRef Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44(Suppl 1):S11–S15PubMedCrossRef
go back to reference Martins EA, Michelacci YM, Baccarin RY, Cogliati B, Silva LC (2014) Evaluation of chitosan-GP hydrogel biocompatibility in osteochondral defects: an experimental approach. BMC Vet Res 10:197PubMedPubMedCentralCrossRef Martins EA, Michelacci YM, Baccarin RY, Cogliati B, Silva LC (2014) Evaluation of chitosan-GP hydrogel biocompatibility in osteochondral defects: an experimental approach. BMC Vet Res 10:197PubMedPubMedCentralCrossRef
go back to reference Matsumoto M, Udomsinprasert W, Laengee P, Honsawek S, Patarakul K, Chirachanchai S (2016) A water-based chitosan-maleimide precursor for bioconjugation: an example of a rapid pathway for an in situ injectable adhesive gel. Macromol Rapid Commun 37:1618–1622PubMedCrossRef Matsumoto M, Udomsinprasert W, Laengee P, Honsawek S, Patarakul K, Chirachanchai S (2016) A water-based chitosan-maleimide precursor for bioconjugation: an example of a rapid pathway for an in situ injectable adhesive gel. Macromol Rapid Commun 37:1618–1622PubMedCrossRef
go back to reference Mazaki T, Shiozaki Y, Yamane K, Yoshida A, Nakamura M, Yoshida Y, Zhou D, Kitajima T, Tanaka M, Ito Y, Ozaki T, Matsukawa A (2014) A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep 4:4457PubMedPubMedCentralCrossRef Mazaki T, Shiozaki Y, Yamane K, Yoshida A, Nakamura M, Yoshida Y, Zhou D, Kitajima T, Tanaka M, Ito Y, Ozaki T, Matsukawa A (2014) A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep 4:4457PubMedPubMedCentralCrossRef
go back to reference Mercuri JJ, Patnaik S, Dion G, Gill SS, Liao J, Simionescu DT (2013) Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Eng Part A 19:952–966PubMedCrossRef Mercuri JJ, Patnaik S, Dion G, Gill SS, Liao J, Simionescu DT (2013) Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Eng Part A 19:952–966PubMedCrossRef
go back to reference Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc 17:1326–1331PubMedCrossRef Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc 17:1326–1331PubMedCrossRef
go back to reference Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S (2013) Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C-Mater Biol Appl 33:4786–4794PubMedCrossRef Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S (2013) Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C-Mater Biol Appl 33:4786–4794PubMedCrossRef
go back to reference Mu C, Zhang K, Lin W, Li D (2013) Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel. J Biomed Mater Res Part A 101A:385–393CrossRef Mu C, Zhang K, Lin W, Li D (2013) Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel. J Biomed Mater Res Part A 101A:385–393CrossRef
go back to reference Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223PubMedCrossRef Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223PubMedCrossRef
go back to reference Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA (2004) Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng 32:391–397PubMedCrossRef Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA (2004) Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng 32:391–397PubMedCrossRef
go back to reference Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544PubMedPubMedCentralCrossRef Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544PubMedPubMedCentralCrossRef
go back to reference Nie L, Zhang G, Hou R, Xu H, Li Y, Fu J (2015) Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-beta1 from porous PLGA microspheres. Colloids Surf B Biointerfaces 125:51–57PubMedCrossRef Nie L, Zhang G, Hou R, Xu H, Li Y, Fu J (2015) Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-beta1 from porous PLGA microspheres. Colloids Surf B Biointerfaces 125:51–57PubMedCrossRef
go back to reference Park H, Lee KY (2014) Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res A 102:4519–4525PubMedCrossRef Park H, Lee KY (2014) Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res A 102:4519–4525PubMedCrossRef
go back to reference Park KM, Joung YK, Park KD, Lee SY, Lee MC (2008) RGD-conjugated chitosan-Pluronic hydrogels as a cell supported scaffold for articular cartilage regeneration. Macromol Res 16:517–523CrossRef Park KM, Joung YK, Park KD, Lee SY, Lee MC (2008) RGD-conjugated chitosan-Pluronic hydrogels as a cell supported scaffold for articular cartilage regeneration. Macromol Res 16:517–523CrossRef
go back to reference Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA, Mikos AG (2009a) Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A 88:889–897PubMedCrossRef Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA, Mikos AG (2009a) Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A 88:889–897PubMedCrossRef
go back to reference Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009b) Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965PubMedCrossRef Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009b) Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965PubMedCrossRef
go back to reference Park MH, Choi BG, Jeong B (2012) Complexation-induced biomimetic long range fibrous orientation in a rigid-flexible block copolymer thermogel. Adv Func Mater 22:5118–5125CrossRef Park MH, Choi BG, Jeong B (2012) Complexation-induced biomimetic long range fibrous orientation in a rigid-flexible block copolymer thermogel. Adv Func Mater 22:5118–5125CrossRef
go back to reference Park MH, Yu Y, Moon HJ, Ko DY, Kim HS, Lee H, Ryu KH, Jeong B (2014) 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-Poly(l-alanine-co-l-phenyl alanine) Thermogel. Adv Healthcare Mater 3:1782–1791CrossRef Park MH, Yu Y, Moon HJ, Ko DY, Kim HS, Lee H, Ryu KH, Jeong B (2014) 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-Poly(l-alanine-co-l-phenyl alanine) Thermogel. Adv Healthcare Mater 3:1782–1791CrossRef
go back to reference Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M (2004) Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10:515–522PubMedCrossRef Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M (2004) Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10:515–522PubMedCrossRef
go back to reference Percope de Andrade MA, Campos TV, Abreu-E-Silva GM (2015) Supplementary methods in the nonsurgical treatment of osteoarthritis. Arthroscopy 31:785–792PubMedCrossRef Percope de Andrade MA, Campos TV, Abreu-E-Silva GM (2015) Supplementary methods in the nonsurgical treatment of osteoarthritis. Arthroscopy 31:785–792PubMedCrossRef
go back to reference Ren CD, Gao S, Kurisawa M, Ying JY (2015) Cartilage synthesis in hyaluronic acid-tyramine constructs. J Mater Chem B 3:1942–1956CrossRefPubMed Ren CD, Gao S, Kurisawa M, Ying JY (2015) Cartilage synthesis in hyaluronic acid-tyramine constructs. J Mater Chem B 3:1942–1956CrossRefPubMed
go back to reference Rennerfeldt DA, Renth AN, Talata Z, Gehrke SH, Detamore MS (2013) Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 34:8241–8257PubMedPubMedCentralCrossRef Rennerfeldt DA, Renth AN, Talata Z, Gehrke SH, Detamore MS (2013) Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 34:8241–8257PubMedPubMedCentralCrossRef
go back to reference Schmitt JF, See KH, Yang Z, Hui JH, Lee EH (2012) Sequential differentiation of mesenchymal stem cells in an agarose scaffold promotes a physis-like zonal alignment of chondrocytes. J Orthop Res 30:1753–1759PubMedCrossRef Schmitt JF, See KH, Yang Z, Hui JH, Lee EH (2012) Sequential differentiation of mesenchymal stem cells in an agarose scaffold promotes a physis-like zonal alignment of chondrocytes. J Orthop Res 30:1753–1759PubMedCrossRef
go back to reference Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential bio-materials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561PubMedCrossRef Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential bio-materials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561PubMedCrossRef
go back to reference Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119:112–120PubMedCrossRef Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119:112–120PubMedCrossRef
go back to reference Sheu SY, Chen WS, Sun JS, Lin FH, Wu T (2013) Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering. J Biomed Mater Res A 101:3457–3466PubMedCrossRef Sheu SY, Chen WS, Sun JS, Lin FH, Wu T (2013) Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering. J Biomed Mater Res A 101:3457–3466PubMedCrossRef
go back to reference Sridhar BV, Doyle NR, Randolph MA, Anseth KS (2014) Covalently tethered TGF-beta1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A 102:4464–4472PubMedPubMedCentral Sridhar BV, Doyle NR, Randolph MA, Anseth KS (2014) Covalently tethered TGF-beta1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A 102:4464–4472PubMedPubMedCentral
go back to reference Stocco E, Barbon S, Dalzoppo D, Lora S, Macchi V, Paolo Parnigotto P, Grandi C (2014) In vitro assessment of a novel composite scaffold for articular cartilage restoration. Italian J Anat Embryol 119:188 Stocco E, Barbon S, Dalzoppo D, Lora S, Macchi V, Paolo Parnigotto P, Grandi C (2014) In vitro assessment of a novel composite scaffold for articular cartilage restoration. Italian J Anat Embryol 119:188
go back to reference Toh WS, Loh XJ (2014) Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C 45:690–697CrossRef Toh WS, Loh XJ (2014) Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C 45:690–697CrossRef
go back to reference Toh WS, Lee EH, Guo XM, Chan JK, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980PubMedCrossRef Toh WS, Lee EH, Guo XM, Chan JK, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980PubMedCrossRef
go back to reference Toh WS, Spector M, Lee EH, Cao T (2011) Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Mol Pharm 8:994–1001PubMedCrossRef Toh WS, Spector M, Lee EH, Cao T (2011) Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Mol Pharm 8:994–1001PubMedCrossRef
go back to reference Toh WS, Lim TC, Kurisawa M, Spector M (2012) Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 33:3835–3845PubMedCrossRef Toh WS, Lim TC, Kurisawa M, Spector M (2012) Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 33:3835–3845PubMedCrossRef
go back to reference Toh WS, Foldager CB, Pei M, Hui JH (2014) Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev 10:686–696CrossRef Toh WS, Foldager CB, Pei M, Hui JH (2014) Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev 10:686–696CrossRef
go back to reference Toh WS, Cao T (2014) Derivation of chondrogenic cells from human embryonic stem cells for cartilage tissue engineering. Methods Mol Biol 1307:263–279 Toh WS, Cao T (2014) Derivation of chondrogenic cells from human embryonic stem cells for cartilage tissue engineering. Methods Mol Biol 1307:263–279
go back to reference Toh WS, Foldager CB, Hui JH, Olsen BR, Spector M (2016a) Exploiting stem cell-extracellular matrix interactions for cartilage regeneration: a focus on basement membrane molecules. Curr Stem Cell Res Ther 11:618–625PubMedCrossRef Toh WS, Foldager CB, Hui JH, Olsen BR, Spector M (2016a) Exploiting stem cell-extracellular matrix interactions for cartilage regeneration: a focus on basement membrane molecules. Curr Stem Cell Res Ther 11:618–625PubMedCrossRef
go back to reference Tunesi M, Prina E, Munarin F, Rodilossi S, Albani D, Petrini P, Giordano C (2015) Cross-linked poly(acrylic acids) microgels and agarose as semi-interpenetrating networks for resveratrol release. J Mater Sci Mater Med 26:5328PubMedCrossRef Tunesi M, Prina E, Munarin F, Rodilossi S, Albani D, Petrini P, Giordano C (2015) Cross-linked poly(acrylic acids) microgels and agarose as semi-interpenetrating networks for resveratrol release. J Mater Sci Mater Med 26:5328PubMedCrossRef
go back to reference Visser J, Levett PA, te Moller NC, Besems J, Boere KW, van Rijen MH, de Grauw JC, Dhert WJ, van Weeren PR, Malda J (2015) Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng Part A 21:1195–1206PubMedPubMedCentralCrossRef Visser J, Levett PA, te Moller NC, Besems J, Boere KW, van Rijen MH, de Grauw JC, Dhert WJ, van Weeren PR, Malda J (2015) Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng Part A 21:1195–1206PubMedPubMedCentralCrossRef
go back to reference Wan W, Li Q, Gao H, Ge L, Liu Y, Zhong W, Ouyang J, Xing M (2015) BMSCs laden injectable amino-diethoxypropane modified alginate-chitosan hydrogel for hyaline cartilage reconstruction. J Mater Chem B 3:1990–2005CrossRefPubMed Wan W, Li Q, Gao H, Ge L, Liu Y, Zhong W, Ouyang J, Xing M (2015) BMSCs laden injectable amino-diethoxypropane modified alginate-chitosan hydrogel for hyaline cartilage reconstruction. J Mater Chem B 3:1990–2005CrossRefPubMed
go back to reference Wang LS, Du C, Toh WS, Wan ACA, Gao SJ, Kurisawa M (2014) Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 35:2207–2217PubMedCrossRef Wang LS, Du C, Toh WS, Wan ACA, Gao SJ, Kurisawa M (2014) Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 35:2207–2217PubMedCrossRef
go back to reference Wang PY, Tsai WB (2013) Modulation of the proliferation and matrix synthesis of chondrocytes by dynamic compression on genipin-crosslinked chitosan/collagen scaffolds. J Biomater Sci Polym Ed 24:507–519PubMedCrossRef Wang PY, Tsai WB (2013) Modulation of the proliferation and matrix synthesis of chondrocytes by dynamic compression on genipin-crosslinked chitosan/collagen scaffolds. J Biomater Sci Polym Ed 24:507–519PubMedCrossRef
go back to reference Wright LD, McKeon-Fischer KD, Cui Z, Nair LS, Freeman JW (2014) PDLA/PLLA and PDLA/PCL nanofibers with a chitosan-based hydrogel in composite scaffolds for tissue engineered cartilage. Tissue Eng Regen Med 8:946–954CrossRef Wright LD, McKeon-Fischer KD, Cui Z, Nair LS, Freeman JW (2014) PDLA/PLLA and PDLA/PCL nanofibers with a chitosan-based hydrogel in composite scaffolds for tissue engineered cartilage. Tissue Eng Regen Med 8:946–954CrossRef
go back to reference Wu J, Ding Q, Dutta A, Wang Y, Huang YH, Weng H, Tang L, Hong Y (2015) An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater 16:49–59PubMedCrossRef Wu J, Ding Q, Dutta A, Wang Y, Huang YH, Weng H, Tang L, Hong Y (2015) An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater 16:49–59PubMedCrossRef
go back to reference Wu ZM, Zhang XG, Zheng C, Li CX, Zhang SM, Dong RN, Yu DM (2009) Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci 37:198–206PubMedCrossRef Wu ZM, Zhang XG, Zheng C, Li CX, Zhang SM, Dong RN, Yu DM (2009) Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci 37:198–206PubMedCrossRef
go back to reference Yan S, Zhang X, Zhang K, Di H, Feng L, Li G, Fang J, Cui L, Chen X, Yin J (2016) Injectable in situ forming poly(L-glutamic acid) hydrogels for cartilage tissue engineering. J Mater Chem B 4:947–961CrossRefPubMed Yan S, Zhang X, Zhang K, Di H, Feng L, Li G, Fang J, Cui L, Chen X, Yin J (2016) Injectable in situ forming poly(L-glutamic acid) hydrogels for cartilage tissue engineering. J Mater Chem B 4:947–961CrossRefPubMed
go back to reference Yao Y, Zeng L, Huang Y (2016) The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels. J Biomater Appl 31:92–101PubMedCrossRef Yao Y, Zeng L, Huang Y (2016) The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels. J Biomater Appl 31:92–101PubMedCrossRef
go back to reference Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271PubMedPubMedCentralCrossRef Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271PubMedPubMedCentralCrossRef
go back to reference Zhang J, Mujeeb A, Du Y, Lin J, Ge Z (2015) Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Biomed Mater 10:035016PubMedCrossRef Zhang J, Mujeeb A, Du Y, Lin J, Ge Z (2015) Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Biomed Mater 10:035016PubMedCrossRef
go back to reference Zhang L, Yuan T, Guo L, Zhang X (2012) An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 100:2717–2725PubMedCrossRef Zhang L, Yuan T, Guo L, Zhang X (2012) An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 100:2717–2725PubMedCrossRef
go back to reference Zhang S, Lu Q, Cao T, Toh WS (2016) Adipose tissue and extracellular matrix development by injectable decellularized adipose matrix loaded with basic fibroblast growth factor. Plast Reconstr Surg 137:1171–1180PubMedCrossRef Zhang S, Lu Q, Cao T, Toh WS (2016) Adipose tissue and extracellular matrix development by injectable decellularized adipose matrix loaded with basic fibroblast growth factor. Plast Reconstr Surg 137:1171–1180PubMedCrossRef
go back to reference Zhang Z, Lai Y, Yu L, Ding J (2010) Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion. Biomaterials 31:7873–7882PubMedCrossRef Zhang Z, Lai Y, Yu L, Ding J (2010) Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion. Biomaterials 31:7873–7882PubMedCrossRef
go back to reference Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88:327–339CrossRef Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88:327–339CrossRef
go back to reference Zheng L, Jiang X, Chen X, Fan H, Zhang X (2014) Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering. Biomed Mater 9:065004PubMedCrossRef Zheng L, Jiang X, Chen X, Fan H, Zhang X (2014) Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering. Biomed Mater 9:065004PubMedCrossRef
Metadata
Title
Injectable Hydrogels for Cartilage Regeneration
Authors
Cenk Celik
Vishal T. Mogal
James Hoi Po Hui
Xian Jun Loh
Wei Seong Toh
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6077-9_12

Premium Partners