Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2017

07-09-2016

Insight into opto-electronic property by modifying optical layers with multi-polar and multi-branched structures

Authors: Yuanchao Li, Shuang Wang, Yulong Lv, Yuanzuo Li, Qungui Wang

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Optical active layers of the multi-polar and multi-branched organic solar cell dye molecules were analyzed by using DFT and TD-DFT methods. Optical active layers contain triphenylamine (TPA) as a donor section and diketopyrrolopyrrole (DPP) as a part of the molecular conjugated bridge. Relative optical and electronic properties have been calculated. The results showed that with the increasing of molecular structure, LUMO energy levels and energy gaps decrease. The decrease of energy gap is beneficial to the red-shift of absorption peak, and TPA(DPP-P)2 displays the maximum red-shift. Ionization potentials decrease and electron affinities increase with the increase of molecular structure. The hole and electron recombination energies of TPA(DPP-P)2 is the smallest, so TPA(DPP-P)2 has a better hole transport capability. For developing their application for DSSC, four molecules are designed on the basis of the original molecules, named after TPA–DPP-1, TPA–DPP-2, TPA(DPP-P)2-1, TPA(DPP-P)2-2, respectively. The effect of the number and the site of functional groups on the photoelectric properties of the designed molecules were studied. Absorption spectra, electron injection free energies, light harvesting efficiencies and the dye regeneration free energies were also calculated. The data shows that two –CNs were introduced into the molecules, energy gaps decrease and absorption peak makes red-shift. The introduction of a –CN is favorable to improve the electron injection free energies and dye regeneration free energies. The introduction of a side chain makes LHE increase; however, make absorption peak blue-shift. Through evaluating the absorption ability and charge transfer process for designed molecules, it is found that the photoelectric properties of the molecules can be regulated and improved by introducing appropriate acceptor group, which can provide valuable information for further experiment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference C.Z. Li, C.Y. Chang, Y. Zang, H.X. Ju, C.C. Chueh, P.W. Liang, N. Cho, D.S. Ginger, A.K. Jen, Suppressed charge recombination in inverted organic photovoltaics via enhanced charge extraction by using a conductive fullerene electron transport layer. Adv. Mater. 26(36), 6262–6267 (2014)CrossRef C.Z. Li, C.Y. Chang, Y. Zang, H.X. Ju, C.C. Chueh, P.W. Liang, N. Cho, D.S. Ginger, A.K. Jen, Suppressed charge recombination in inverted organic photovoltaics via enhanced charge extraction by using a conductive fullerene electron transport layer. Adv. Mater. 26(36), 6262–6267 (2014)CrossRef
2.
go back to reference W.C. Huang, E. Gann, L.Thomsen, C.K. Dong, Y.B. Cheng, C.R. McNeill, Unraveling the morphology of high efficiency polymer solar cells based on the donor polymer PBDTTT-EFT. Adv. Energy Mater. 5(7), 1401259 (2015)CrossRef W.C. Huang, E. Gann, L.Thomsen, C.K. Dong, Y.B. Cheng, C.R. McNeill, Unraveling the morphology of high efficiency polymer solar cells based on the donor polymer PBDTTT-EFT. Adv. Energy Mater. 5(7), 1401259 (2015)CrossRef
3.
go back to reference S. Nam, J. Seo, S. Woo, W.H. Kim, H. Kim, D.D.C. Bradley, Y. Kim, Inverted polymer fullerene solar cells exceeding 10 % efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat. Commun. 6, 8929 (2015)CrossRef S. Nam, J. Seo, S. Woo, W.H. Kim, H. Kim, D.D.C. Bradley, Y. Kim, Inverted polymer fullerene solar cells exceeding 10 % efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat. Commun. 6, 8929 (2015)CrossRef
4.
go back to reference J.D. Chen, C. Cui, Y.Q. Li, L. Zhou, Q.D. Ou, C. Li, Y. Li, J.X. Tang, Single-junction polymer solar cells exceeding 10 % power conversion efficiency. Adv. Mater. 27(6), 1035–1041 (2015)CrossRef J.D. Chen, C. Cui, Y.Q. Li, L. Zhou, Q.D. Ou, C. Li, Y. Li, J.X. Tang, Single-junction polymer solar cells exceeding 10 % power conversion efficiency. Adv. Mater. 27(6), 1035–1041 (2015)CrossRef
5.
go back to reference Y. Li, T. Pullerits, M. Zhao, M. Sun, Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell. J. Phys. Chem. c 115(44), 21865–21873 (2011)CrossRef Y. Li, T. Pullerits, M. Zhao, M. Sun, Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell. J. Phys. Chem. c 115(44), 21865–21873 (2011)CrossRef
6.
go back to reference S. Venkatesan, J. Chen, E.C. Ngo, A. Dubey, D. Khatiwada, C. Zhang, Q. Qiao, Critical role of domain crystallinity, domain purity and domain interface sharpness for reduced bimolecular recombination in polymer solar cells. Nano Energy 12, 457–467 (2015)CrossRef S. Venkatesan, J. Chen, E.C. Ngo, A. Dubey, D. Khatiwada, C. Zhang, Q. Qiao, Critical role of domain crystallinity, domain purity and domain interface sharpness for reduced bimolecular recombination in polymer solar cells. Nano Energy 12, 457–467 (2015)CrossRef
7.
go back to reference A.F. Mitul, L. Mohammad, S. Venkatesan, N. Adhikari, S. Sigdel, Q. Wang, A. Dubey, D. Khatiwada, Q. Qiao, Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy 11, 56–63 (2015)CrossRef A.F. Mitul, L. Mohammad, S. Venkatesan, N. Adhikari, S. Sigdel, Q. Wang, A. Dubey, D. Khatiwada, Q. Qiao, Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy 11, 56–63 (2015)CrossRef
8.
go back to reference Y. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45(5), 723–733 (2012)CrossRef Y. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45(5), 723–733 (2012)CrossRef
9.
go back to reference Y. Zhang, H. Tan, M. Xiao, X. Bao, Q. Tao, Y. Wang, Y. Liu, R. Yang, W. Zhu, D–A–Ar-type small molecules with enlarged π-system of phenanthrene at terminal for high-performance solution processed organic solar cells. Org. Electron. 15(6), 1173–1183 (2014)CrossRef Y. Zhang, H. Tan, M. Xiao, X. Bao, Q. Tao, Y. Wang, Y. Liu, R. Yang, W. Zhu, D–A–Ar-type small molecules with enlarged π-system of phenanthrene at terminal for high-performance solution processed organic solar cells. Org. Electron. 15(6), 1173–1183 (2014)CrossRef
10.
go back to reference O. Synooka, K.R. Eberhardt, J. Balko, T. Thurn-Albrecht, G. Gobsch, W. Mitchell, S. Berny, M. Carrasco-Orozco, H. Hoppe, Thermally stable and efficient polymer solar cells based on a novel donor-acceptor copolymer. Nanotechnology 27(25), 254001 (2016)CrossRef O. Synooka, K.R. Eberhardt, J. Balko, T. Thurn-Albrecht, G. Gobsch, W. Mitchell, S. Berny, M. Carrasco-Orozco, H. Hoppe, Thermally stable and efficient polymer solar cells based on a novel donor-acceptor copolymer. Nanotechnology 27(25), 254001 (2016)CrossRef
11.
go back to reference B. O’Regan, M. Grätzel, Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)CrossRef B. O’Regan, M. Grätzel, Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)CrossRef
12.
go back to reference Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun. 45(37), 5483–5495 (2009)CrossRef Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun. 45(37), 5483–5495 (2009)CrossRef
13.
go back to reference M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C 111(11), 4465–4472 (2007)CrossRef M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C 111(11), 4465–4472 (2007)CrossRef
14.
go back to reference P. Shen, Y. Tang, S. Jiang, H. Chen, X. Zheng, X. Wang, B. Zhao, S. Tan, Efficient triphenylamine-based dyes featuring dual-role carbazole, fluorene and spirobifluorene moieties. Org. Electron. 12(1), 125–135 (2011)CrossRef P. Shen, Y. Tang, S. Jiang, H. Chen, X. Zheng, X. Wang, B. Zhao, S. Tan, Efficient triphenylamine-based dyes featuring dual-role carbazole, fluorene and spirobifluorene moieties. Org. Electron. 12(1), 125–135 (2011)CrossRef
15.
go back to reference Z. Wang, F. Li, C.H. Huang, Photocurrent enhancement of hemicyanine dyes containing RSO3-group through treating TiO2 films with hydrochloric acid. J. Phys. Chem. B. 105(38), 9210–9217 (2001)CrossRef Z. Wang, F. Li, C.H. Huang, Photocurrent enhancement of hemicyanine dyes containing RSO3-group through treating TiO2 films with hydrochloric acid. J. Phys. Chem. B. 105(38), 9210–9217 (2001)CrossRef
16.
go back to reference X. Chen, J. Guo, X. Peng, M. Guo, Y. Xu, L. Shi, C. Liang, L. Wang, Y. Gao, S. Sun, S. Cai, Novel cyanine dyes with different methine chains as sensitizers for nanocrystalline solar cell. J. Photochem. Photobiol. A 171(3), 231–236 (2005)CrossRef X. Chen, J. Guo, X. Peng, M. Guo, Y. Xu, L. Shi, C. Liang, L. Wang, Y. Gao, S. Sun, S. Cai, Novel cyanine dyes with different methine chains as sensitizers for nanocrystalline solar cell. J. Photochem. Photobiol. A 171(3), 231–236 (2005)CrossRef
17.
go back to reference K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol. Energy Mater. Sol. Cells 80(1), 47–71 (2003)CrossRef K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol. Energy Mater. Sol. Cells 80(1), 47–71 (2003)CrossRef
18.
go back to reference W. Wu, J. Hua, Y. Jin, W. Zhan, H. Tian, Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells. Photochem. Photobiol. Sci 7(1), 63–68 (2008)CrossRef W. Wu, J. Hua, Y. Jin, W. Zhan, H. Tian, Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells. Photochem. Photobiol. Sci 7(1), 63–68 (2008)CrossRef
19.
go back to reference K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003)CrossRef K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003)CrossRef
20.
go back to reference S.E. Koops, P.R.F. Barnes, B.C. O’Regan, J.R. Durrant, Kinetic competition in a coumarin dye-sensitized solar cell: injection and recombination limitations upon device performance. J. Phys. Chem. C 114(17), 8054–8061 (2010)CrossRef S.E. Koops, P.R.F. Barnes, B.C. O’Regan, J.R. Durrant, Kinetic competition in a coumarin dye-sensitized solar cell: injection and recombination limitations upon device performance. J. Phys. Chem. C 114(17), 8054–8061 (2010)CrossRef
21.
go back to reference T. Geiger, S. Kuster, J.H. Yum, S.J. Moon, M.K. Nazeeruddin, M. Grätzel, F. Nüesch, Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO2 nanocrystalline films. Adv. Funct. Mater. 19(17), 2720–2727 (2009)CrossRef T. Geiger, S. Kuster, J.H. Yum, S.J. Moon, M.K. Nazeeruddin, M. Grätzel, F. Nüesch, Molecular design of unsymmetrical squaraine dyes for high efficiency conversion of low energy photons into electrons using TiO2 nanocrystalline films. Adv. Funct. Mater. 19(17), 2720–2727 (2009)CrossRef
22.
go back to reference S. Paek, H. Choi, C. Kim, N. Cho, S. So, K. Song, M.K. Nazeeruddin, J. Ko, ChemInform abstract: efficient and stable panchromatic squaraine dyes for dye-sensitized solar cells. Chem. Commun. 42(27), 2874–2876 (2011)CrossRef S. Paek, H. Choi, C. Kim, N. Cho, S. So, K. Song, M.K. Nazeeruddin, J. Ko, ChemInform abstract: efficient and stable panchromatic squaraine dyes for dye-sensitized solar cells. Chem. Commun. 42(27), 2874–2876 (2011)CrossRef
23.
go back to reference F. Silvestri, I. López-Duarte, W. Seitz, L. Beverina, M.V. Martínez-Díaz, T.J. Marks, D.M. Guldi, G.A. Pagani, T. Torres, A squaraine–phthalocyanine ensemble: towards molecular panchromatic sensitizers in solar cells. Chem. Commun. 30(30), 4500–4502 (2009)CrossRef F. Silvestri, I. López-Duarte, W. Seitz, L. Beverina, M.V. Martínez-Díaz, T.J. Marks, D.M. Guldi, G.A. Pagani, T. Torres, A squaraine–phthalocyanine ensemble: towards molecular panchromatic sensitizers in solar cells. Chem. Commun. 30(30), 4500–4502 (2009)CrossRef
24.
go back to reference H.M. Cheng, W.F. Hsieh, Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles. Nanotechnology 21(48), 108–118 (2010)CrossRef H.M. Cheng, W.F. Hsieh, Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles. Nanotechnology 21(48), 108–118 (2010)CrossRef
25.
go back to reference D. Kuang, S. Uchida, R. Humphry-Baker, S.M. Zakeeruddin, M. Grätzel, Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers. Angew. Chem. Int. Ed. 47(10), 1923–1927 (2008)CrossRef D. Kuang, S. Uchida, R. Humphry-Baker, S.M. Zakeeruddin, M. Grätzel, Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers. Angew. Chem. Int. Ed. 47(10), 1923–1927 (2008)CrossRef
26.
go back to reference X.H. Zhang, C. Li, W.B. Wang, X.X. Cheng, X.S. Wang, B.W. Zhang, Photophysical, electrochemical, and photoelectrochemical properties of new azulene-based dye molecules. J. Mater. Chem. 17(7), 642–649 (2007)CrossRef X.H. Zhang, C. Li, W.B. Wang, X.X. Cheng, X.S. Wang, B.W. Zhang, Photophysical, electrochemical, and photoelectrochemical properties of new azulene-based dye molecules. J. Mater. Chem. 17(7), 642–649 (2007)CrossRef
27.
go back to reference S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy, M. Graetzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 44(41), 5194–5196 (2008)CrossRef S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy, M. Graetzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 44(41), 5194–5196 (2008)CrossRef
28.
go back to reference S. Ardo, G.J. Meyer, Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38(1), 115–164 (2008)CrossRef S. Ardo, G.J. Meyer, Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38(1), 115–164 (2008)CrossRef
29.
go back to reference Z.L. Zhang, Y.R. Fang, W.H. Wang, L. Chen, M.T. Sun, Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions. Adv. Sci. 3(1), 1500215 (2016)CrossRef Z.L. Zhang, Y.R. Fang, W.H. Wang, L. Chen, M.T. Sun, Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions. Adv. Sci. 3(1), 1500215 (2016)CrossRef
30.
go back to reference B.G. Kim, K. Chung, J. Kim, Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chem. Eur. J. 19(17), 5220–5230 (2013)CrossRef B.G. Kim, K. Chung, J. Kim, Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chem. Eur. J. 19(17), 5220–5230 (2013)CrossRef
31.
go back to reference B.J. Lynch, P.L. Fast, M. Harris, D.G. Truhlar, Adiabatic connection for kinetics. J. Phys. Chem. A 104(21), 4811–4815 (2000)CrossRef B.J. Lynch, P.L. Fast, M. Harris, D.G. Truhlar, Adiabatic connection for kinetics. J. Phys. Chem. A 104(21), 4811–4815 (2000)CrossRef
32.
go back to reference S.I. Gorelsky, A.B.P. Lever, Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J. Organomet. Chem. 635(1–2), 187–196 (2001)CrossRef S.I. Gorelsky, A.B.P. Lever, Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J. Organomet. Chem. 635(1–2), 187–196 (2001)CrossRef
33.
go back to reference M. Sun, H. Xu, A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8(18), 2777–2786 (2012)CrossRef M. Sun, H. Xu, A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8(18), 2777–2786 (2012)CrossRef
34.
go back to reference A. Mishra, M.K.R. Fischer, P. Bäuerle, Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. Engl. 48(14), 2474–2499 (2009)CrossRef A. Mishra, M.K.R. Fischer, P. Bäuerle, Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. Engl. 48(14), 2474–2499 (2009)CrossRef
35.
go back to reference B.G. Kim, C.G. Zhen, E.J. Jeong, J. Kieffer, J. Kim, Organic dye design tools for efficient photocurrent generation in dye-sensitized solar cells: exciton binding energy and electron acceptors. Adv. Funct. Mater. 22(8), 1606–1612 (2012)CrossRef B.G. Kim, C.G. Zhen, E.J. Jeong, J. Kieffer, J. Kim, Organic dye design tools for efficient photocurrent generation in dye-sensitized solar cells: exciton binding energy and electron acceptors. Adv. Funct. Mater. 22(8), 1606–1612 (2012)CrossRef
36.
go back to reference C.R. Zhang, L. Liu, J.W. Zhe, N.Z. Jin, L.H. Yuan, Y.H. Chen, Z.Q. Wei, Y.Z. Wu, Z.J. Liu, H.S. Chen, Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. J. Mol. Model. 19(4), 1553–1563 (2013)CrossRef C.R. Zhang, L. Liu, J.W. Zhe, N.Z. Jin, L.H. Yuan, Y.H. Chen, Z.Q. Wei, Y.Z. Wu, Z.J. Liu, H.S. Chen, Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. J. Mol. Model. 19(4), 1553–1563 (2013)CrossRef
37.
go back to reference C. Sun, Y. Li, D. Qi, H. Li, P. Song, Optical and electrical properties of purpurin and alizarin complexone as sensitizers for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 27(8), 8027–8039 (2016)CrossRef C. Sun, Y. Li, D. Qi, H. Li, P. Song, Optical and electrical properties of purpurin and alizarin complexone as sensitizers for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 27(8), 8027–8039 (2016)CrossRef
38.
go back to reference P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3), 864–871 (2010) P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3), 864–871 (2010)
39.
go back to reference W. Kohn, L.J. Sham, Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev. 137(6A), 1697–1705 (1965)CrossRef W. Kohn, L.J. Sham, Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev. 137(6A), 1697–1705 (1965)CrossRef
40.
go back to reference A.D. Becke, A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)CrossRef A.D. Becke, A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)CrossRef
41.
go back to reference A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5653 (1993)CrossRef A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5653 (1993)CrossRef
42.
go back to reference T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51–57 (2004)CrossRef T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51–57 (2004)CrossRef
43.
go back to reference R.H. Hertwig, W. Koch, On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem. Phys. Lett. 268(5), 345–351 (1997)CrossRef R.H. Hertwig, W. Koch, On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem. Phys. Lett. 268(5), 345–351 (1997)CrossRef
44.
go back to reference D.J. Tozer, N.C. Handy, Improving virtual Kohn–Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J. Chem. Phys. 109(23), 10180–10189 (1998)CrossRef D.J. Tozer, N.C. Handy, Improving virtual Kohn–Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J. Chem. Phys. 109(23), 10180–10189 (1998)CrossRef
45.
go back to reference P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)CrossRef P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)CrossRef
46.
go back to reference R.E. Stratmann, G.E. Scuseria, M.J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 109(19), 8218–8224 (1998)CrossRef R.E. Stratmann, G.E. Scuseria, M.J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 109(19), 8218–8224 (1998)CrossRef
47.
go back to reference M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.01 (Gaussian, Inc, Wallingford, 2009) M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.01 (Gaussian, Inc, Wallingford, 2009)
48.
go back to reference Y. Mo, Z. Lin, W. Wu, Q. Zhang, Bond-distorted orbitals and effects of hybridization and resonance on C–C bond lengths. J. Phys. Chem. 100(28), 11569–11572 (1996)CrossRef Y. Mo, Z. Lin, W. Wu, Q. Zhang, Bond-distorted orbitals and effects of hybridization and resonance on C–C bond lengths. J. Phys. Chem. 100(28), 11569–11572 (1996)CrossRef
49.
go back to reference K.G. Marek, The geometry and inversion-internal rotation potential function of methylamine. J. Mol. Spectrosc 133(1), 10–21 (1989)CrossRef K.G. Marek, The geometry and inversion-internal rotation potential function of methylamine. J. Mol. Spectrosc 133(1), 10–21 (1989)CrossRef
50.
go back to reference L.X. Wang, Effect of H+ and NH4 + on the N–NO2 bond dissociation energy of HMX. Acta Phys. Chim. Sin. 23(10), 1560–1564 (2007)CrossRef L.X. Wang, Effect of H+ and NH4 + on the N–NO2 bond dissociation energy of HMX. Acta Phys. Chim. Sin. 23(10), 1560–1564 (2007)CrossRef
51.
go back to reference M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv. Mater. 18(6), 789–794 (2006)CrossRef M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv. Mater. 18(6), 789–794 (2006)CrossRef
52.
go back to reference M. Sun, Y. Ding, H. Xu, Direct visual evidence for quinoidal charge delocalization in poly-p-phenylene cation radical. J. Phys. Chem. B 111(46), 13266–13270 (2007)CrossRef M. Sun, Y. Ding, H. Xu, Direct visual evidence for quinoidal charge delocalization in poly-p-phenylene cation radical. J. Phys. Chem. B 111(46), 13266–13270 (2007)CrossRef
53.
go back to reference R.A. Marcus, Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Angew. Chem. Int. Ed. Engl. 32(8), 1111–1121 (1993)CrossRef R.A. Marcus, Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Angew. Chem. Int. Ed. Engl. 32(8), 1111–1121 (1993)CrossRef
54.
go back to reference W.Q. Deng, L. Sun, J.D. Huang, S. Chai, S.H. Wen, K.L. Han, Quantitative prediction of charge mobilities of pi-stacked systems by first-principles simulation. Nat. Protoc. 10(4), 632–642 (2015)CrossRef W.Q. Deng, L. Sun, J.D. Huang, S. Chai, S.H. Wen, K.L. Han, Quantitative prediction of charge mobilities of pi-stacked systems by first-principles simulation. Nat. Protoc. 10(4), 632–642 (2015)CrossRef
55.
go back to reference D.C. And, G. Hodes, M. Grätzel, J.F. Guillemoles, I. Riess, Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 104(9), 2053–2059 (2000)CrossRef D.C. And, G. Hodes, M. Grätzel, J.F. Guillemoles, I. Riess, Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 104(9), 2053–2059 (2000)CrossRef
56.
go back to reference J. Preat, C. Michaux, D. Jacquemin, Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J. Phys. Chem. C 113(38), 16821–16833 (2009)CrossRef J. Preat, C. Michaux, D. Jacquemin, Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J. Phys. Chem. C 113(38), 16821–16833 (2009)CrossRef
57.
go back to reference J.B. Asbury, Y.Q. Wang, E. Hao, H.N. Ghosh, T. Lian, Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res. Chem. Intermed. 27(4), 393–406 (2001)CrossRef J.B. Asbury, Y.Q. Wang, E. Hao, H.N. Ghosh, T. Lian, Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res. Chem. Intermed. 27(4), 393–406 (2001)CrossRef
58.
go back to reference T. Daeneke, A.J. Mozer, U. Yu, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach, L. Spiccia, Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 134(41), 16925–16928 (2012)CrossRef T. Daeneke, A.J. Mozer, U. Yu, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach, L. Spiccia, Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 134(41), 16925–16928 (2012)CrossRef
59.
go back to reference G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42(11), 1819–1826 (2009)CrossRef G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42(11), 1819–1826 (2009)CrossRef
60.
go back to reference J. Preat, D. Jacquemin, C. Michaux, E.A. Perpète, Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem. Phys. 376(1–3), 56–68 (2010)CrossRef J. Preat, D. Jacquemin, C. Michaux, E.A. Perpète, Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem. Phys. 376(1–3), 56–68 (2010)CrossRef
Metadata
Title
Insight into opto-electronic property by modifying optical layers with multi-polar and multi-branched structures
Authors
Yuanchao Li
Shuang Wang
Yulong Lv
Yuanzuo Li
Qungui Wang
Publication date
07-09-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5686-8

Other articles of this Issue 2/2017

Journal of Materials Science: Materials in Electronics 2/2017 Go to the issue