Skip to main content
Top
Published in: Cellulose 15/2019

06-05-2019 | Original Research

Insight into the mechanism of secondary reactions in cellulose pyrolysis: interactions between levoglucosan and acetic acid

Authors: Qiang Lu, Yu-ting Wu, Bin Hu, Ji Liu, Ding-jia Liu, Chang-qing Dong, Yong-ping Yang

Published in: Cellulose | Issue 15/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomass pyrolysis process involves complex primary and secondary decomposition reactions which together determine the final pyrolytic product distribution. Carboxylic acids produced by primary pyrolysis have significant influences on the secondary reactions, whereas the specific manifestation of these influences has not been determined. In this work, acetic acid (AA) and levoglucosan (LG) are selected as the research objects to explore the influence of carboxylic acids on secondary pyrolysis process, considering AA is usually the most abundant carboxylic acid product, while LG is the major depolymerization product of cellulose as well as the representative of polyhydroxy compounds. The interaction mechanisms between them are investigated by density functional theory calculation. The results indicate that there are four types of important interactions between AA and LG, namely esterification reactions, organic redox reactions, AA-catalyzed LG dehydration reactions, LG-catalyzed AA decomposition reactions. These interaction reactions are more competitive than the unimolecular decomposition reactions of AA and LG. Moreover, AA-catalyzed dehydration reactions dominate interaction reactions.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Adam J, Blazsó M, Mészáros E, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Grønli M, Øye G (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84(12–13):1494–1502 Adam J, Blazsó M, Mészáros E, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Grønli M, Øye G (2005) Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84(12–13):1494–1502
go back to reference Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol 51(1–2):3–22CrossRef Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol 51(1–2):3–22CrossRef
go back to reference Canneaux S, Bohr F, Henon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35(1):82–93CrossRef Canneaux S, Bohr F, Henon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35(1):82–93CrossRef
go back to reference Carrier M, Windt M, Ziegler B, Appelt J, Saake B, Meier D, Bridgwater A (2017) Quantitative insights into the fast pyrolysis of extracted cellulose, hemicelluloses, and lignin. ChemSusChem 10(16):3212–3224CrossRef Carrier M, Windt M, Ziegler B, Appelt J, Saake B, Meier D, Bridgwater A (2017) Quantitative insights into the fast pyrolysis of extracted cellulose, hemicelluloses, and lignin. ChemSusChem 10(16):3212–3224CrossRef
go back to reference Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrol 62(2):331–349CrossRef Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrol 62(2):331–349CrossRef
go back to reference Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09, Revision D. 01. Gaussian Inc., Wallingford Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09, Revision D. 01. Gaussian Inc., Wallingford
go back to reference Fukutome A, Kawamoto H, Saka S (2015) Processes forming gas, tar, and coke in cellulose gasification from gas-phase reactions of levoglucosan as intermediate. ChemSusChem 8(13):2240–2249CrossRef Fukutome A, Kawamoto H, Saka S (2015) Processes forming gas, tar, and coke in cellulose gasification from gas-phase reactions of levoglucosan as intermediate. ChemSusChem 8(13):2240–2249CrossRef
go back to reference Fukutome A, Kawamoto H, Saka S (2017) Kinetics and molecular mechanisms for the gas-phase degradation of levoglucosan as a cellulose gasification intermediate. J Anal Appl Pyrol 124:666–676CrossRef Fukutome A, Kawamoto H, Saka S (2017) Kinetics and molecular mechanisms for the gas-phase degradation of levoglucosan as a cellulose gasification intermediate. J Anal Appl Pyrol 124:666–676CrossRef
go back to reference Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94(14):5523–5527CrossRef Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94(14):5523–5527CrossRef
go back to reference Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104CrossRef Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104CrossRef
go back to reference Hausser N, Marinkovic S, Estrine B (2013) New method for lignocellulosic biomass polysaccharides conversion in butanol, an efficient route for the production of butyl glycosides from wheat straw or poplar wood. Cellulose 20(5):2179–2184CrossRef Hausser N, Marinkovic S, Estrine B (2013) New method for lignocellulosic biomass polysaccharides conversion in butanol, an efficient route for the production of butyl glycosides from wheat straw or poplar wood. Cellulose 20(5):2179–2184CrossRef
go back to reference Hosoya T, Kawamoto H, Saka S (2007) Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrol 78(2):328–336CrossRef Hosoya T, Kawamoto H, Saka S (2007) Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrol 78(2):328–336CrossRef
go back to reference Hosoya T, Nakao Y, Sato H, Kawamoto H, Sakaki S (2009) Thermal degradation of methyl β-d-glucoside. A theoretical study of plausible reaction mechanisms. J Org Chem 74(17):6891–6894CrossRef Hosoya T, Nakao Y, Sato H, Kawamoto H, Sakaki S (2009) Thermal degradation of methyl β-d-glucoside. A theoretical study of plausible reaction mechanisms. J Org Chem 74(17):6891–6894CrossRef
go back to reference Huang JB, Li XS, Wu D, Tong H, Li WM (2013) Theoretical studies on pyrolysis mechanism of guaiacol as lignin model compound. J Renew Sustain Energy 5(4):043112CrossRef Huang JB, Li XS, Wu D, Tong H, Li WM (2013) Theoretical studies on pyrolysis mechanism of guaiacol as lignin model compound. J Renew Sustain Energy 5(4):043112CrossRef
go back to reference Huang XY, Cheng DG, Chen FQ, Zhan XL (2016) Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: a density functional theory study. Renew Energy 96:490–497CrossRef Huang XY, Cheng DG, Chen FQ, Zhan XL (2016) Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: a density functional theory study. Renew Energy 96:490–497CrossRef
go back to reference Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5(12):4952–5001CrossRef Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5(12):4952–5001CrossRef
go back to reference Kabo GJ, Paulechka YU, Voitkevich OV, Blokhin AV, Stepurko EN, Kohut SV, Voznyi YV (2015) Experimental and theoretical study of thermodynamic properties of levoglucosan. J Chem Thermodyn 85:101–110CrossRef Kabo GJ, Paulechka YU, Voitkevich OV, Blokhin AV, Stepurko EN, Kohut SV, Voznyi YV (2015) Experimental and theoretical study of thermodynamic properties of levoglucosan. J Chem Thermodyn 85:101–110CrossRef
go back to reference Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140CrossRef Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140CrossRef
go back to reference Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3):1491–1520CrossRef Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3):1491–1520CrossRef
go back to reference Lu Q, Dong CQ, Zhang XM, Tian HY, Yang YP, Zhu XF (2011a) Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py–GC/MS study. J Anal Appl Pyrol 90(2):204–212CrossRef Lu Q, Dong CQ, Zhang XM, Tian HY, Yang YP, Zhu XF (2011a) Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py–GC/MS study. J Anal Appl Pyrol 90(2):204–212CrossRef
go back to reference Lu Q, Yang XC, Dong CQ, Zhang ZF, Zhang XM, Zhu XF (2011b) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py–GC/MS study. J Anal Appl Pyrol 92(2):430–438CrossRef Lu Q, Yang XC, Dong CQ, Zhang ZF, Zhang XM, Zhu XF (2011b) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py–GC/MS study. J Anal Appl Pyrol 92(2):430–438CrossRef
go back to reference Mackie JC, Doolan KR (1984) High-temperature kinetics of thermal decomposition of acetic acid and its products. Int J Chem Kinet 16(5):525–541CrossRef Mackie JC, Doolan KR (1984) High-temperature kinetics of thermal decomposition of acetic acid and its products. Int J Chem Kinet 16(5):525–541CrossRef
go back to reference Mamleev V, Bourbigot S, Le Bras M, Yvon J (2009) The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: interdependence of the steps. J Anal Appl Pyrol 84(1):1–17CrossRef Mamleev V, Bourbigot S, Le Bras M, Yvon J (2009) The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: interdependence of the steps. J Anal Appl Pyrol 84(1):1–17CrossRef
go back to reference Meng X, Zhang H, Liu C, Xiao R (2016) Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using Py–GC/MS. Energy Fuel 30(10):8369–8376CrossRef Meng X, Zhang H, Liu C, Xiao R (2016) Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using Py–GC/MS. Energy Fuel 30(10):8369–8376CrossRef
go back to reference Mihalcik DJ, Mullen CA, Boateng AA (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrol 92(1):224–232CrossRef Mihalcik DJ, Mullen CA, Boateng AA (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrol 92(1):224–232CrossRef
go back to reference Nguyen MT, Sengupta D, Raspoet G, Vanquickenborne LG (1995) Theoretical study of the thermal decomposition of acetic acid: decarboxylation versus dehydration. J Phys Chem 99(31):11883–11888CrossRef Nguyen MT, Sengupta D, Raspoet G, Vanquickenborne LG (1995) Theoretical study of the thermal decomposition of acetic acid: decarboxylation versus dehydration. J Phys Chem 99(31):11883–11888CrossRef
go back to reference Nimlos MR, Evans RJ (2002) Levoglucosan pyrolysis. Fuel Chem Div Prepr 47(1):393–394 Nimlos MR, Evans RJ (2002) Levoglucosan pyrolysis. Fuel Chem Div Prepr 47(1):393–394
go back to reference Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P (2010) Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrol 88(1):53–72CrossRef Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P (2010) Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrol 88(1):53–72CrossRef
go back to reference Oasmaa A, Elliott DC, Korhonen J (2010) Acidity of biomass fast pyrolysis bio-oils. Energy Fuel 24(12):6548–6554CrossRef Oasmaa A, Elliott DC, Korhonen J (2010) Acidity of biomass fast pyrolysis bio-oils. Energy Fuel 24(12):6548–6554CrossRef
go back to reference Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M, Ibrahim FH (2017) Biomass and bioenergy: an overview of the development potential in Turkey and Malaysia. Renew Sustain Energy Rev 79:1285–1302CrossRef Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M, Ibrahim FH (2017) Biomass and bioenergy: an overview of the development potential in Turkey and Malaysia. Renew Sustain Energy Rev 79:1285–1302CrossRef
go back to reference Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrol 86(2):323–330CrossRef Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrol 86(2):323–330CrossRef
go back to reference Patwardhan PR, Dalluge DL, Shanks BH, Brown RC (2011) Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour Technol 102(8):5265–5269CrossRef Patwardhan PR, Dalluge DL, Shanks BH, Brown RC (2011) Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour Technol 102(8):5265–5269CrossRef
go back to reference Sacchelli S, De Meo I, Paletto A (2013) Bioenergy production and forest multifunctionality: a trade-off analysis using multiscale GIS model in a case study in Italy. Appl Energy 104:10–20CrossRef Sacchelli S, De Meo I, Paletto A (2013) Bioenergy production and forest multifunctionality: a trade-off analysis using multiscale GIS model in a case study in Italy. Appl Energy 104:10–20CrossRef
go back to reference Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100(24):6496–6504CrossRef Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100(24):6496–6504CrossRef
go back to reference Shen DK, Gu S, Bridgwater AV (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrol 87(2):199–206CrossRef Shen DK, Gu S, Bridgwater AV (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrol 87(2):199–206CrossRef
go back to reference Shen DK, Zhang LQ, Xue JT, Guan SP, Liu Q, Xiao R (2015) Thermal degradation of xylan-based hemicellulose under oxidative atmosphere. Carbohydr Polym 127:363–371CrossRef Shen DK, Zhang LQ, Xue JT, Guan SP, Liu Q, Xiao R (2015) Thermal degradation of xylan-based hemicellulose under oxidative atmosphere. Carbohydr Polym 127:363–371CrossRef
go back to reference Wang SR, Guo XJ, Liang T, Zhou Y, Luo ZY (2012) Mechanism research on cellulose pyrolysis by Py–GC/MS and subsequent density functional theory studies. Bioresour Technol 104:722–728CrossRef Wang SR, Guo XJ, Liang T, Zhou Y, Luo ZY (2012) Mechanism research on cellulose pyrolysis by Py–GC/MS and subsequent density functional theory studies. Bioresour Technol 104:722–728CrossRef
go back to reference Wang SR, Ru B, Lin HZ, Sun WX (2015) Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel 150:243–251CrossRef Wang SR, Ru B, Lin HZ, Sun WX (2015) Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel 150:243–251CrossRef
go back to reference Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7(3):233–250CrossRef Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7(3):233–250CrossRef
go back to reference Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Lett 256(4–5):391–399CrossRef Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Lett 256(4–5):391–399CrossRef
go back to reference Zhang XL, Yang WH, Blasiak W (2012) Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis. J Anal Appl Pyrol 96:110–119CrossRef Zhang XL, Yang WH, Blasiak W (2012) Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis. J Anal Appl Pyrol 96:110–119CrossRef
go back to reference Zhang XL, Yang WH, Blasiak W (2013) Kinetics study on thermal dissociation of levoglucosan during cellulose pyrolysis. Fuel 109:476–483CrossRef Zhang XL, Yang WH, Blasiak W (2013) Kinetics study on thermal dissociation of levoglucosan during cellulose pyrolysis. Fuel 109:476–483CrossRef
go back to reference Zhang YY, Liu C, Chen X (2015) Unveiling the initial pyrolytic mechanisms of cellulose by DFT study. J Anal Appl Pyrol 113:621–629CrossRef Zhang YY, Liu C, Chen X (2015) Unveiling the initial pyrolytic mechanisms of cellulose by DFT study. J Anal Appl Pyrol 113:621–629CrossRef
Metadata
Title
Insight into the mechanism of secondary reactions in cellulose pyrolysis: interactions between levoglucosan and acetic acid
Authors
Qiang Lu
Yu-ting Wu
Bin Hu
Ji Liu
Ding-jia Liu
Chang-qing Dong
Yong-ping Yang
Publication date
06-05-2019
Publisher
Springer Netherlands
Published in
Cellulose / Issue 15/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02466-1

Other articles of this Issue 15/2019

Cellulose 15/2019 Go to the issue