Skip to main content
Top
Published in: Journal of Computational Neuroscience 3/2012

01-12-2012

Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity

Authors: I-Chun Lin, Dajun Xing, Robert Shapley

Published in: Journal of Computational Neuroscience | Issue 3/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1’s function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alitto, H. J., Moore, 4th, B. D., Rathbun, D. L., & Usrey, W. M. (2011). A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys. Journal of Physiology, 589.1, 87–99.PubMedCrossRef Alitto, H. J., Moore, 4th, B. D., Rathbun, D. L., & Usrey, W. M. (2011). A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys. Journal of Physiology, 589.1, 87–99.PubMedCrossRef
go back to reference Alitto, H. J., & Usrey, W. M. (2004). Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. Journal of Neurophysiology, 91, 2797–2808.PubMedCrossRef Alitto, H. J., & Usrey, W. M. (2004). Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. Journal of Neurophysiology, 91, 2797–2808.PubMedCrossRef
go back to reference Alonso, J.-M., Usrey, W. M., & Reid, R. C. (2001). Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. Journal of Neuroscience, 21, 4002–4015.PubMed Alonso, J.-M., Usrey, W. M., & Reid, R. C. (2001). Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. Journal of Neuroscience, 21, 4002–4015.PubMed
go back to reference Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. Proceedings of the National Academy of Sciences, 104, 1685–1690.CrossRef Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. Proceedings of the National Academy of Sciences, 104, 1685–1690.CrossRef
go back to reference Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences, 92, 3844–3848.CrossRef Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences, 92, 3844–3848.CrossRef
go back to reference Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences, 94, 5411–5416.CrossRef Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences, 94, 5411–5416.CrossRef
go back to reference Blakemore, C. & Vital-Durand, F. (1986). Organization and post-natal development of the monkey’s lateral geniculate nucleus. Journal of Physiology, 380, 453–491.PubMed Blakemore, C. & Vital-Durand, F. (1986). Organization and post-natal development of the monkey’s lateral geniculate nucleus. Journal of Physiology, 380, 453–491.PubMed
go back to reference Braitenberg, V., & Schüz, A. (1991). Anatomy of the cortex: Statistics and geometry. Berlin: Springer. Braitenberg, V., & Schüz, A. (1991). Anatomy of the cortex: Statistics and geometry. Berlin: Springer.
go back to reference Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25, 10577–10597.PubMedCrossRef Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25, 10577–10597.PubMedCrossRef
go back to reference Casti, A., Hayot, F., Xiao, Y., & Kaplan, E. (2008). A simple model of retina-LGN transmission. Journal of Computational Neuroscience, 24, 235–252.PubMedCrossRef Casti, A., Hayot, F., Xiao, Y., & Kaplan, E. (2008). A simple model of retina-LGN transmission. Journal of Computational Neuroscience, 24, 235–252.PubMedCrossRef
go back to reference Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., et al. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13, 369–378.PubMedCrossRef Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., et al. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13, 369–378.PubMedCrossRef
go back to reference De Valois, R. L., & De Valois, K. K. (1990). Spatial vision. New York: Oxford University Press. De Valois, R. L., & De Valois, K. K. (1990). Spatial vision. New York: Oxford University Press.
go back to reference Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.PubMed Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.PubMed
go back to reference Edwards, D. P., Purpura, K. P., & Kaplan, E. (1995). Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs. Vision Research, 35, 1501–1523.PubMedCrossRef Edwards, D. P., Purpura, K. P., & Kaplan, E. (1995). Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs. Vision Research, 35, 1501–1523.PubMedCrossRef
go back to reference Finn, I. M., Priebe, N. J., & Ferster, D. (2007). The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron, 54, 137–152.PubMedCrossRef Finn, I. M., Priebe, N. J., & Ferster, D. (2007). The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron, 54, 137–152.PubMedCrossRef
go back to reference Gegenfurtner, K. R., Kiper, D. C., & Fenstemaker, S. B. (1996). Processing of color, form, and motion in macaque area V2. Visual Neuroscience, 13, 161–172.PubMedCrossRef Gegenfurtner, K. R., Kiper, D. C., & Fenstemaker, S. B. (1996). Processing of color, form, and motion in macaque area V2. Visual Neuroscience, 13, 161–172.PubMedCrossRef
go back to reference Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.
go back to reference Hansel, D., & van Vreeswijk, C. (2002). How noise contributes to contrast invariance of orientation tuning in cat visual cortex. Journal of Neuroscience, 22, 5118–5128.PubMed Hansel, D., & van Vreeswijk, C. (2002). How noise contributes to contrast invariance of orientation tuning in cat visual cortex. Journal of Neuroscience, 22, 5118–5128.PubMed
go back to reference Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.PubMed Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.PubMed
go back to reference Irvin, G. E., Casagrande, V. A., & Norton, T. T. (1993). Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Visual Neuroscience, 10, 363–373.PubMedCrossRef Irvin, G. E., Casagrande, V. A., & Norton, T. T. (1993). Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Visual Neuroscience, 10, 363–373.PubMedCrossRef
go back to reference Johnson, E. N., Hawken, M. J., & Shapley, R. (2008). The orientation selectivity of color-responsive neurons in macaque V1. Journal of Neuroscience, 28, 8096–8106.PubMedCrossRef Johnson, E. N., Hawken, M. J., & Shapley, R. (2008). The orientation selectivity of color-responsive neurons in macaque V1. Journal of Neuroscience, 28, 8096–8106.PubMedCrossRef
go back to reference Kaplan, E., Purpura, K., & Shapley, R. M. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. Journal of Physiology, 391, 267–288.PubMed Kaplan, E., Purpura, K., & Shapley, R. M. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. Journal of Physiology, 391, 267–288.PubMed
go back to reference Kaplan, E., & Shapley, R. M. (1982). X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology, 330, 125–143.PubMed Kaplan, E., & Shapley, R. M. (1982). X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology, 330, 125–143.PubMed
go back to reference Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27, 635–646.PubMedCrossRef Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27, 635–646.PubMedCrossRef
go back to reference Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRef Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRef
go back to reference Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734–766.PubMedCrossRef Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734–766.PubMedCrossRef
go back to reference Koelling, M., Shapley, R., & Shelley, M. (2008). Retinal and cortical nonlinearities combine to produce masking in V1 responses to plaids. Journal of Computational Neuroscience, 25, 390–400.PubMedCrossRef Koelling, M., Shapley, R., & Shelley, M. (2008). Retinal and cortical nonlinearities combine to produce masking in V1 responses to plaids. Journal of Computational Neuroscience, 25, 390–400.PubMedCrossRef
go back to reference Maimon, G., & Assad, J. A. (2009). Beyond Poisson: Increased spike-time regularity across primate parietal cortex. Neuron, 62, 426–440.PubMedCrossRef Maimon, G., & Assad, J. A. (2009). Beyond Poisson: Increased spike-time regularity across primate parietal cortex. Neuron, 62, 426–440.PubMedCrossRef
go back to reference McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, D. J. (2000). A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα. Proceedings of the National Academy of Sciences, 97, 8087–8092.CrossRef McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, D. J. (2000). A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα. Proceedings of the National Academy of Sciences, 97, 8087–8092.CrossRef
go back to reference Miura, K., Tsubo, Y., Okada, M., & Fukai, T. (2007). Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations. Journal of Neuroscience, 27, 13802–13812.PubMedCrossRef Miura, K., Tsubo, Y., Okada, M., & Fukai, T. (2007). Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations. Journal of Neuroscience, 27, 13802–13812.PubMedCrossRef
go back to reference Monier, C., Chavane, F., Baudot, P., Graham, L. J., & Frégnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: A diversity of combinations produces spike tuning. Neuron, 37, 663–680.PubMedCrossRef Monier, C., Chavane, F., Baudot, P., Graham, L. J., & Frégnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: A diversity of combinations produces spike tuning. Neuron, 37, 663–680.PubMedCrossRef
go back to reference Mukherjee, P., & Kaplan, E. (1998). The maintained discharge of neurons in the cat lateral geniculate nucleus: Spectral analysis and computational modeling. Visual Neuroscience, 15, 529–539.PubMedCrossRef Mukherjee, P., & Kaplan, E. (1998). The maintained discharge of neurons in the cat lateral geniculate nucleus: Spectral analysis and computational modeling. Visual Neuroscience, 15, 529–539.PubMedCrossRef
go back to reference Peters, A., Payne, B. R., & Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex, 4, 215–219.PubMedCrossRef Peters, A., Payne, B. R., & Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex, 4, 215–219.PubMedCrossRef
go back to reference Reich, D. S., Victor, J. D., & Knight, B. W. (1998). The power ratio and the interval map: Spiking models and extracellular recordings. Journal of Neuroscience, 18, 10090–10104.PubMed Reich, D. S., Victor, J. D., & Knight, B. W. (1998). The power ratio and the interval map: Spiking models and extracellular recordings. Journal of Neuroscience, 18, 10090–10104.PubMed
go back to reference Reich, D. S., Victor, J. D., Knight, B. W., Ozaki, T., & Kaplan, E. (1997). Response variability and timing precision of neuronal spike trains in vivo. Journal of Neurophysiology, 77, 2836–2841.PubMed Reich, D. S., Victor, J. D., Knight, B. W., Ozaki, T., & Kaplan, E. (1997). Response variability and timing precision of neuronal spike trains in vivo. Journal of Neurophysiology, 77, 2836–2841.PubMed
go back to reference Reid, R. C., & Alonso, J.-M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378, 281–284.PubMedCrossRef Reid, R. C., & Alonso, J.-M. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature, 378, 281–284.PubMedCrossRef
go back to reference Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455–463.PubMed Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455–463.PubMed
go back to reference Sclar, G., & Freeman, R. D. (1982). Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Experimental Brain Research, 46, 457–461.CrossRef Sclar, G., & Freeman, R. D. (1982). Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Experimental Brain Research, 46, 457–461.CrossRef
go back to reference Sclar, G., Maunsell, J. H. R., & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research, 30, 1–10.PubMedCrossRef Sclar, G., Maunsell, J. H. R., & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research, 30, 1–10.PubMedCrossRef
go back to reference Seriès, P., Latham, P. E., & Pouget, A. (2004). Tuning curve sharpening for orientation selectivity: Coding efficiency and the impact of correlations. Nature Neuroscience, 7, 1129–1135.PubMedCrossRef Seriès, P., Latham, P. E., & Pouget, A. (2004). Tuning curve sharpening for orientation selectivity: Coding efficiency and the impact of correlations. Nature Neuroscience, 7, 1129–1135.PubMedCrossRef
go back to reference Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.PubMed Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.PubMed
go back to reference Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111–119.PubMedCrossRef Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111–119.PubMedCrossRef
go back to reference Sherman, S. M. (2005). Thalamic relays and cortical functioning. Progress in Brain Research, 149, 107–126.PubMedCrossRef Sherman, S. M. (2005). Thalamic relays and cortical functioning. Progress in Brain Research, 149, 107–126.PubMedCrossRef
go back to reference Sherman, S. M., & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research, 63, 1–20.CrossRef Sherman, S. M., & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research, 63, 1–20.CrossRef
go back to reference Sincich, L. C., Horton, J. C., & Sharpee, T. O. (2009). Preserving information in neural transmission. Journal of Neuroscience, 29, 6207–6216.PubMedCrossRef Sincich, L. C., Horton, J. C., & Sharpee, T. O. (2009). Preserving information in neural transmission. Journal of Neuroscience, 29, 6207–6216.PubMedCrossRef
go back to reference Smith, G. D., Cox, C. L., Sherman, S. M., & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83, 588–610.PubMed Smith, G. D., Cox, C. L., Sherman, S. M., & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83, 588–610.PubMed
go back to reference Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.PubMed Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.PubMed
go back to reference Sompolinsky, H., & Shapley, R. (1997). New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology, 7, 514–522.PubMedCrossRef Sompolinsky, H., & Shapley, R. (1997). New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology, 7, 514–522.PubMedCrossRef
go back to reference Tao, L., Shelley, M., McLaughlin, D., & Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences, 101, 366–371.CrossRef Tao, L., Shelley, M., McLaughlin, D., & Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences, 101, 366–371.CrossRef
go back to reference Teich, A. F., & Qian, N. (2006). Comparison among some models of orientation selectivity. Journal of Neurophysiology, 96, 404–419.PubMedCrossRef Teich, A. F., & Qian, N. (2006). Comparison among some models of orientation selectivity. Journal of Neurophysiology, 96, 404–419.PubMedCrossRef
go back to reference Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.PubMed Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.PubMed
go back to reference Victor, J. D., Blessing, E. M., Forte, J. D., Buzás, P., & Martin, P. R. (2007). Response variability of marmoset parvocellular neurons. Journal of Physiology, 579.1, 29–51.CrossRef Victor, J. D., Blessing, E. M., Forte, J. D., Buzás, P., & Martin, P. R. (2007). Response variability of marmoset parvocellular neurons. Journal of Physiology, 579.1, 29–51.CrossRef
go back to reference White, E. L. (1989). Cortical circuits: Synaptic organization of the cerebral cortex. Structure, function and theory. Boston: Birkhäuser. White, E. L. (1989). Cortical circuits: Synaptic organization of the cerebral cortex. Structure, function and theory. Boston: Birkhäuser.
go back to reference Wielaard, D. J., Shelley, M., McLaughlin, D., & Shapley, R. (2001). How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience, 21, 5203–5211.PubMed Wielaard, D. J., Shelley, M., McLaughlin, D., & Shapley, R. (2001). How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience, 21, 5203–5211.PubMed
go back to reference Xing, D., Ringach, D. L., Hawken, M. J., & Shapley, R. M. (2011). Untuned suppression makes a major contribution to the enhancement of orientation selectivity in macaque V1. Journal of Neuroscience, 31, 15972–15982.PubMedCrossRef Xing, D., Ringach, D. L., Hawken, M. J., & Shapley, R. M. (2011). Untuned suppression makes a major contribution to the enhancement of orientation selectivity in macaque V1. Journal of Neuroscience, 31, 15972–15982.PubMedCrossRef
go back to reference Xing, D., Shapley, R. M., Hawken, M. J., & Ringach, D. L. (2005). Effect of stimulus size on the dynamics of orientation selectivity in macaque V1. Journal of Neurophysiology, 94, 799–812.PubMedCrossRef Xing, D., Shapley, R. M., Hawken, M. J., & Ringach, D. L. (2005). Effect of stimulus size on the dynamics of orientation selectivity in macaque V1. Journal of Neurophysiology, 94, 799–812.PubMedCrossRef
go back to reference Zhu, W., Shelley, M., & Shapley, R. (2009). A neuronal network model of primary visual cortex explains spatial frequency selectivity. Journal of Computational Neuroscience, 26, 271–287.PubMedCrossRef Zhu, W., Shelley, M., & Shapley, R. (2009). A neuronal network model of primary visual cortex explains spatial frequency selectivity. Journal of Computational Neuroscience, 26, 271–287.PubMedCrossRef
go back to reference Zhu, W., Xing, D., Shelley, M., & Shapley, R. (2010). Correlation between spatial frequency and orientation selectivity in V1 cortex: Implications of a network model. Vision Research, 50, 2261–2273.PubMedCrossRef Zhu, W., Xing, D., Shelley, M., & Shapley, R. (2010). Correlation between spatial frequency and orientation selectivity in V1 cortex: Implications of a network model. Vision Research, 50, 2261–2273.PubMedCrossRef
Metadata
Title
Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity
Authors
I-Chun Lin
Dajun Xing
Robert Shapley
Publication date
01-12-2012
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 3/2012
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-012-0401-0

Other articles of this Issue 3/2012

Journal of Computational Neuroscience 3/2012 Go to the issue

Premium Partner