Skip to main content
Top

2018 | OriginalPaper | Chapter

Integrated Vacuum Microsensor Systems in CMOS Technology

Authors : Jiaqi Wang, Zhenan Tang

Published in: Micro Electro Mechanical Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Vacuum sensor is a type of pressure sensor and widely used in the vacuum measurement. In this chapter, besides the traditional vacuum sensors, the micro-vacuum sensors based on silicon micromachining technique are introduced. What is more, the CMOS-compatible Pirani and thermal ionization vacuum sensors are discussed in details. The CMOS-compatible process is important for sensor fabrication, including suspending structure, wet etching, dry etching, etc. The influence of sensor to the circuit should also be considered, such as the thermal influence. The sensor system can integrate the sensor with voltage reference, signal sampling circuit, A/D converter (ADC), central processing unit (CPU), and interface circuit. This technique will generate the vacuum sensor system with sensor and its control system monolithically, which is convenient for applications. The integrated vacuum sensor system has the advantages of small size, volume, and weight, which would have its potential applications, such as the space exploration, micro-packaging, etc.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbott P, Jabour Z (2011) Vacuum technology considerations for mass metrology. J Res Nat Inst Stand Technol 116(4):689CrossRef Abbott P, Jabour Z (2011) Vacuum technology considerations for mass metrology. J Res Nat Inst Stand Technol 116(4):689CrossRef
go back to reference Abbott P, Looney J, Mohan P (2005) The effect of ambient temperature on the sensitivity of hot-cathode ionization gauges. Vacuum 77(2):217–222CrossRef Abbott P, Looney J, Mohan P (2005) The effect of ambient temperature on the sensitivity of hot-cathode ionization gauges. Vacuum 77(2):217–222CrossRef
go back to reference Bower CA, Gilchrist KH, Piascik JR, Stoner BR, Natarajan S, Parker CB, Wolter SD, Glass JT (2007) On-chip electron-impact ion source using carbon nanotube field emitters. Appl Phys Lett 90(12):124102CrossRef Bower CA, Gilchrist KH, Piascik JR, Stoner BR, Natarajan S, Parker CB, Wolter SD, Glass JT (2007) On-chip electron-impact ion source using carbon nanotube field emitters. Appl Phys Lett 90(12):124102CrossRef
go back to reference Chae J, Stark BH, Najafi K (2005) A micromachined Pirani gauge with dual heat sinks. IEEE Trans Adv Packag 28(4):619–625CrossRef Chae J, Stark BH, Najafi K (2005) A micromachined Pirani gauge with dual heat sinks. IEEE Trans Adv Packag 28(4):619–625CrossRef
go back to reference Dong C, Myneni GR (2004) Carbon nanotube electron source based ionization vacuum gauge. Appl Phys Lett 84(26):5443–5445CrossRef Dong C, Myneni GR (2004) Carbon nanotube electron source based ionization vacuum gauge. Appl Phys Lett 84(26):5443–5445CrossRef
go back to reference Dong K-Y, Lee YD, Kang BH, Choi J, Ju B-K (2013) Design of a multi-walled carbon nanotube field emitter with micro vacuum gauge. Nanoscale Res Lett 8(1):1CrossRef Dong K-Y, Lee YD, Kang BH, Choi J, Ju B-K (2013) Design of a multi-walled carbon nanotube field emitter with micro vacuum gauge. Nanoscale Res Lett 8(1):1CrossRef
go back to reference Ellett A, Zabel RM (1931) The pirani gauge for the measurement of small changes of pressure. Phys Rev 37:1102–1111CrossRef Ellett A, Zabel RM (1931) The pirani gauge for the measurement of small changes of pressure. Phys Rev 37:1102–1111CrossRef
go back to reference Johnson L, Young R, Montgomery E, Alhorn D (2011) Status of solar sail technology within NASA. Adv Space Res 48(11):1687–1694CrossRef Johnson L, Young R, Montgomery E, Alhorn D (2011) Status of solar sail technology within NASA. Adv Space Res 48(11):1687–1694CrossRef
go back to reference Jousten K (2008) Handbook of vacuum technology. Wiley, Weinheim Jousten K (2008) Handbook of vacuum technology. Wiley, Weinheim
go back to reference Kawano T, Suter M, Cho C, Chiamori H, Lin L (2007) Single carbon nanotube pirani gauge by local synthesis. In: TRANSDUCERS 2007-2007 international solid-state sensors, actuators and microsystems conference. IEEE, pp 1015–1018 Kawano T, Suter M, Cho C, Chiamori H, Lin L (2007) Single carbon nanotube pirani gauge by local synthesis. In: TRANSDUCERS 2007-2007 international solid-state sensors, actuators and microsystems conference. IEEE, pp 1015–1018
go back to reference Khosraviani K, Leung AM (2009) The nanogap Pirani—a pressure sensor with superior linearity in an atmospheric pressure range. J Micromech Microeng 19(4):045007CrossRef Khosraviani K, Leung AM (2009) The nanogap Pirani—a pressure sensor with superior linearity in an atmospheric pressure range. J Micromech Microeng 19(4):045007CrossRef
go back to reference Klaassen EH (1996) Micromachined instrumentation systems. PhD dissertation, Stanford University Klaassen EH (1996) Micromachined instrumentation systems. PhD dissertation, Stanford University
go back to reference Klaassen EH, Kovacs GT (1997) Integrated thermal-conductivity vacuum sensor. Sens Actuators A 58(1):37–42CrossRef Klaassen EH, Kovacs GT (1997) Integrated thermal-conductivity vacuum sensor. Sens Actuators A 58(1):37–42CrossRef
go back to reference Lee J, Wright TL, Abel MR, Sunden EO, Marchenkov A, Graham S, King WP (2007) Thermal conduction from microcantilever heaters in partial vacuum. J Appl Phys 101(1):014906CrossRef Lee J, Wright TL, Abel MR, Sunden EO, Marchenkov A, Graham S, King WP (2007) Thermal conduction from microcantilever heaters in partial vacuum. J Appl Phys 101(1):014906CrossRef
go back to reference Mastrangelo CH, Muller RS (1991) Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor. IEEE J Solid State Circuits 26(12):1998–2007CrossRef Mastrangelo CH, Muller RS (1991) Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor. IEEE J Solid State Circuits 26(12):1998–2007CrossRef
go back to reference Mitchell J, Lahiji GR, Najafi K (2008) An improved performance poly-Si Pirani vacuum gauge using heat-distributing structural supports. J Microelectromech Syst 17(1):93–102CrossRef Mitchell J, Lahiji GR, Najafi K (2008) An improved performance poly-Si Pirani vacuum gauge using heat-distributing structural supports. J Microelectromech Syst 17(1):93–102CrossRef
go back to reference Paul O, Baltes H (1995) Novel fully CMOS-compatible vacuum sensor. Sens Actuators A 1(46):143–146CrossRef Paul O, Baltes H (1995) Novel fully CMOS-compatible vacuum sensor. Sens Actuators A 1(46):143–146CrossRef
go back to reference Shie JS, Chou BC, Chen YM (1995) High performance Pirani vacuum gauge. J Vac Sci Technol A 13(6):2972–2979CrossRef Shie JS, Chou BC, Chen YM (1995) High performance Pirani vacuum gauge. J Vac Sci Technol A 13(6):2972–2979CrossRef
go back to reference Sun C (1999). Microengineered sensor devices with field emission electron sources. PhD dissertation, New Jersey Institute of Technology Sun C (1999). Microengineered sensor devices with field emission electron sources. PhD dissertation, New Jersey Institute of Technology
go back to reference Topalli ES, Topalli K, Alper SE, Serin T, Akin T (2009) Pirani vacuum gauges using silicon-on-glass and dissolved-wafer processes for the characterization of MEMS vacuum packaging. IEEE Sensors J 9(3):263–270CrossRef Topalli ES, Topalli K, Alper SE, Serin T, Akin T (2009) Pirani vacuum gauges using silicon-on-glass and dissolved-wafer processes for the characterization of MEMS vacuum packaging. IEEE Sensors J 9(3):263–270CrossRef
go back to reference Wang J, Tang Z (2009) A fully CMOS-compatible micro-Pirani gauge based on a constant current. In: IEEE 22nd international conference on, Micro electro mechanical systems, MEMS. IEEE, pp 829–832 Wang J, Tang Z (2009) A fully CMOS-compatible micro-Pirani gauge based on a constant current. In: IEEE 22nd international conference on, Micro electro mechanical systems, MEMS. IEEE, pp 829–832
go back to reference Wang JQ, Yu J (2015) Fabrication process and electro-thermal modeling for the cathode of the CMOS-compatible hot-filament vacuum gauge. Key Eng Mater 645:836–840CrossRef Wang JQ, Yu J (2015) Fabrication process and electro-thermal modeling for the cathode of the CMOS-compatible hot-filament vacuum gauge. Key Eng Mater 645:836–840CrossRef
go back to reference Wang JQ, Tang ZA, Li JF, Zhang FT (2009) A MicroPirani pressure sensor based on the tungsten microhotplate in a standard CMOS process. Ieee T Ind Electron 56(4):1086–1091CrossRef Wang JQ, Tang ZA, Li JF, Zhang FT (2009) A MicroPirani pressure sensor based on the tungsten microhotplate in a standard CMOS process. Ieee T Ind Electron 56(4):1086–1091CrossRef
go back to reference Wang J, Tang Z, Li J (2011) Tungsten-microhotplate-array-based pirani vacuum sensor system with on-chip digital front-end processor. J Microelectromech Syst 20(4):834–841CrossRef Wang J, Tang Z, Li J (2011) Tungsten-microhotplate-array-based pirani vacuum sensor system with on-chip digital front-end processor. J Microelectromech Syst 20(4):834–841CrossRef
go back to reference Wilfert S (2004) Miniaturized vacuum gauges. J Vac Sci Technol A 22(2):309–320CrossRef Wilfert S (2004) Miniaturized vacuum gauges. J Vac Sci Technol A 22(2):309–320CrossRef
go back to reference Williams KR (1997) Micromachined hot-filament vacuum devices. PhD dissertation, UC Berkeley Williams KR (1997) Micromachined hot-filament vacuum devices. PhD dissertation, UC Berkeley
go back to reference Williams KR, Muller RS (1997) Microtnachined hot-filament ionization pressure sensor and magnetometer. In: 1997 lnternational conference on solid-state sensors and actuators (Transducers 97′), vol 1000. Chicago, pp 1249–1252 Williams KR, Muller RS (1997) Microtnachined hot-filament ionization pressure sensor and magnetometer. In: 1997 lnternational conference on solid-state sensors and actuators (Transducers 97′), vol 1000. Chicago, pp 1249–1252
go back to reference Zhang F, Tang Z, Yu J, Jin R (2006) A micro-Pirani vacuum gauge based on micro-hotplate technology. Sens Actuators A 126(2):300–305CrossRef Zhang F, Tang Z, Yu J, Jin R (2006) A micro-Pirani vacuum gauge based on micro-hotplate technology. Sens Actuators A 126(2):300–305CrossRef
Metadata
Title
Integrated Vacuum Microsensor Systems in CMOS Technology
Authors
Jiaqi Wang
Zhenan Tang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_10