Skip to main content
Top
Published in: Neural Computing and Applications 7/2020

17-08-2018 | Original Article

Integrating mutation scheme into monarch butterfly algorithm for global numerical optimization

Authors: Mohamed Ghetas, Huah Yong Chan

Published in: Neural Computing and Applications | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Monarch butterfly optimization algorithm (MBO) has recently been proposed as a robust metaheuristic optimization algorithm for solving numerical global optimization problems. To enhance the performance of MBO algorithm, harmony search (HS) is introduced as a mutation operator during the adjusting operator of MBO. A novel hybrid metaheuristic optimization method, the so-called HMBO, is introduced to find the best solution for the global optimization problems. HMBO combines HS exploration with MBO exploitation, and therefore, it produces potential candidate solutions. The implementation process for enhancing MBO method is also presented. To evaluate the effectiveness of this improvement, fourteen standard benchmark functions are used. The mean and the best performance of these benchmark functions in 20, 50, and 100 dimensions demonstrated that HMBO often performs better than the original MBO and other population-based optimization algorithms such as ACO, BBO, DE, ES, GAPBIL, PSO and SGA. Moreover, the t-test result proved that the performance differences between the enhanced HMBO and the original MBO as well as the other optimization methods are statistically significant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press, Frome Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press, Frome
2.
go back to reference Michalewicz Z, Fogel DB (2013) How to solve it: modern heuristics. Springer, BerlinMATH Michalewicz Z, Fogel DB (2013) How to solve it: modern heuristics. Springer, BerlinMATH
3.
go back to reference Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. Simulated annealing theory and applications. Springer, Netherlands, pp 7–15MATHCrossRef Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. Simulated annealing theory and applications. Springer, Netherlands, pp 7–15MATHCrossRef
4.
go back to reference Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871CrossRef Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871CrossRef
5.
go back to reference Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic applications in structures and infrastructures. Newnes, Oxford Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic applications in structures and infrastructures. Newnes, Oxford
6.
go back to reference Yang XS, Deb S, Hanne T, He X (2015) Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput Appl 24:1–8 Yang XS, Deb S, Hanne T, He X (2015) Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput Appl 24:1–8
7.
go back to reference Ouaarab A, Ahiod B, Yang XS (2014) Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput Appl 24(7–8):1659–1669CrossRef Ouaarab A, Ahiod B, Yang XS (2014) Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput Appl 24(7–8):1659–1669CrossRef
8.
go back to reference Yang XS, Gandomi AH, Talatahari S, Alavi AH (2012) Metaheuristics in water, geotechnical and transport engineering. Newnes, Oxford Yang XS, Gandomi AH, Talatahari S, Alavi AH (2012) Metaheuristics in water, geotechnical and transport engineering. Newnes, Oxford
9.
go back to reference Horst R, Tuy H (2013) Global optimization: deterministic approaches. Springer, BerlinMATH Horst R, Tuy H (2013) Global optimization: deterministic approaches. Springer, BerlinMATH
10.
go back to reference Ding S, Zhang Y, Chen J, Jia W (2013) Research on using genetic algorithms to optimize Elman neural networks. Neural Comput Appl 23(2):293–297CrossRef Ding S, Zhang Y, Chen J, Jia W (2013) Research on using genetic algorithms to optimize Elman neural networks. Neural Comput Appl 23(2):293–297CrossRef
11.
go back to reference Mitchell M (1998) An introduction to genetic algorithms. MIT press, CambridgeMATH Mitchell M (1998) An introduction to genetic algorithms. MIT press, CambridgeMATH
12.
go back to reference Zhao M, Ren J, Ji L, Fu C, Li J, Zhou M (2012) Parameter selection of support vector machines and genetic algorithm based on change area search. Neural Comput Appl 21(1):1–8CrossRef Zhao M, Ren J, Ji L, Fu C, Li J, Zhou M (2012) Parameter selection of support vector machines and genetic algorithm based on change area search. Neural Comput Appl 21(1):1–8CrossRef
13.
go back to reference Khatib W, Fleming PJ (1998) The stud GA: a mini revolution? In: International conference on parallel problem solving from nature. Springer, Berlin, pp 683–691 Khatib W, Fleming PJ (1998) The stud GA: a mini revolution? In: International conference on parallel problem solving from nature. Springer, Berlin, pp 683–691
14.
go back to reference Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetMATHCrossRef Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetMATHCrossRef
15.
go back to reference Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Neural Comput 1(1):3–52MathSciNetMATH Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Neural Comput 1(1):3–52MathSciNetMATH
16.
go back to reference Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT press, CambridgeMATH Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT press, CambridgeMATH
19.
go back to reference Glover F, Laguna M (2013) Tabu search. In: Du DZ, Pardalos PM (eds) Handbook of combinatorial optimization. Springer, Berlin, pp 3261–3362CrossRef Glover F, Laguna M (2013) Tabu search. In: Du DZ, Pardalos PM (eds) Handbook of combinatorial optimization. Springer, Berlin, pp 3261–3362CrossRef
20.
go back to reference Li X, Yin M (2014) Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723–734CrossRef Li X, Yin M (2014) Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723–734CrossRef
21.
go back to reference Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471MathSciNetMATHCrossRef Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471MathSciNetMATHCrossRef
22.
go back to reference Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. New York, NY, pp 39–43 Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. New York, NY, pp 39–43
23.
go back to reference Mirjalili S, Wang GG, Coelho LdS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435CrossRef Mirjalili S, Wang GG, Coelho LdS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435CrossRef
24.
go back to reference Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, Berlin, pp 169–178 Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, Berlin, pp 169–178
25.
go back to reference Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46CrossRef Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46CrossRef
26.
go back to reference Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRef Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRef
27.
go back to reference Wang GG, Gandomi AH, Alavi AH (2014) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38(9):2454–2462MathSciNetMATHCrossRef Wang GG, Gandomi AH, Alavi AH (2014) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38(9):2454–2462MathSciNetMATHCrossRef
28.
go back to reference Xiong P, Wang Z, Malkowski S, Wang Q, Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097CrossRef Xiong P, Wang Z, Malkowski S, Wang Q, Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097CrossRef
29.
go back to reference Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life. Paris, France, pp 134–142 Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life. Paris, France, pp 134–142
31.
go back to reference Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput Appl 16(3):235–247CrossRef Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput Appl 16(3):235–247CrossRef
32.
go back to reference Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Nature and biologically inspired computing, 2009. NaBIC 2009. World Congress on 2009. IEEE, pp 210–214 Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Nature and biologically inspired computing, 2009. NaBIC 2009. World Congress on 2009. IEEE, pp 210–214
33.
go back to reference Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877CrossRef Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877CrossRef
34.
go back to reference Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74 Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74
35.
go back to reference Gandomi AH, Yang XS, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255CrossRef Gandomi AH, Yang XS, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255CrossRef
36.
go back to reference Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In: International conference in swarm intelligence. Springer, Berlin, pp 86–94 Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In: International conference in swarm intelligence. Springer, Berlin, pp 86–94
37.
38.
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
39.
40.
go back to reference Li J, Tang Y, Hua C, Guan X (2014) An improved krill herd algorithm: krill herd with linear decreasing step. Appl Math Comput 234:356–367MathSciNetMATH Li J, Tang Y, Hua C, Guan X (2014) An improved krill herd algorithm: krill herd with linear decreasing step. Appl Math Comput 234:356–367MathSciNetMATH
41.
go back to reference Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRef Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRef
42.
go back to reference Wang GG, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl 28:1–20 Wang GG, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl 28:1–20
43.
go back to reference Ghetas M, Yong CH, Sumari P (2015) Harmony-based monarch butterfly optimization algorithm. In: Proceedings of the 2015 IEEE international conference control system, computing and engineering (ICCSCE). IEEE, pp 156–161 Ghetas M, Yong CH, Sumari P (2015) Harmony-based monarch butterfly optimization algorithm. In: Proceedings of the 2015 IEEE international conference control system, computing and engineering (ICCSCE). IEEE, pp 156–161
44.
45.
go back to reference Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:1–21MathSciNetMATH Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:1–21MathSciNetMATH
46.
go back to reference Wang GG, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285CrossRef Wang GG, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285CrossRef
47.
go back to reference Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579MathSciNetMATH Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579MathSciNetMATH
48.
go back to reference Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRef Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRef
49.
go back to reference Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetMATHCrossRef Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetMATHCrossRef
50.
go back to reference Beyer HG (2013) The theory of evolution strategies. Springer, New York, pp 1–373 Beyer HG (2013) The theory of evolution strategies. Springer, New York, pp 1–373
51.
go back to reference Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11):815–834MATHCrossRef Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11):815–834MATHCrossRef
52.
go back to reference Ghetas M, Yong CH (2017) Resource management framework for multi-tier service using case-based reasoning and optimization algorithm. Arab J Sci Eng 43:1–15 Ghetas M, Yong CH (2017) Resource management framework for multi-tier service using case-based reasoning and optimization algorithm. Arab J Sci Eng 43:1–15
Metadata
Title
Integrating mutation scheme into monarch butterfly algorithm for global numerical optimization
Authors
Mohamed Ghetas
Huah Yong Chan
Publication date
17-08-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 7/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3676-x

Other articles of this Issue 7/2020

Neural Computing and Applications 7/2020 Go to the issue

Deep Learning & Neural Computing for Intelligent Sensing and Control

Traffic identification and traffic analysis based on support vector machine

Deep Learning & Neural Computing for Intelligent Sensing and Control

Deep Refinement: capsule network with attention mechanism-based system for text classification

Deep Learning & Neural Computing for Intelligent Sensing and Control

Even faster retinal vessel segmentation via accelerated singular value decomposition

Premium Partner