Skip to main content
Top
Published in: Clean Technologies and Environmental Policy 7/2015

01-10-2015 | Original Paper

Integration of parabolic trough and linear Fresnel collectors for optimum design of concentrating solar thermal power plant

Authors: Nishith B. Desai, Santanu Bandyopadhyay

Published in: Clean Technologies and Environmental Policy | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A concentrating solar power (CSP) plant with parabolic trough collector (PTC) using thermal oil as heat transfer fluid (HTF) is the most commercially established technology. On the other hand, linear Fresnel reflectors (LFRs) with direct steam generation (DSG) are developed and proposed as cheaper alternative to PTC systems. The optical efficiency of LFR systems is lower than that of PTC systems. Also low-cost LFR systems produce saturated steam, resulting in higher aperture area requirement compared to PTC-based CSP plants of the same capacity. In this paper, integration of parabolic trough and linear Fresnel collectors for an optimum design of a CSP plant is proposed. The integrated CSP plant configuration combines the advantages of conventional HTF-based PTC fields and DSG of LFR fields. Thermo-economic comparisons between PTC-based, LFR-based and integrated CSP plant configurations, without hybridization and storage, are presented in this paper. An approximate, but simple selection methodology for these configurations, based on the values of relative collector field costs per unit of energy gain and relative isentropic efficiency of turbines, is also proposed to generate selection diagram. This diagram helps in selecting optimum configuration for the CSP plant. The applicability of the proposed methodology is demonstrated through an illustrative case study. Detailed simulations are advisable in case of design point close to separation lines between different regions in the selection diagram.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Avila-Marin AL, Fernandez-Reche J, Tellez FM (2013) Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends. Appl Energy 112:274–288CrossRef Avila-Marin AL, Fernandez-Reche J, Tellez FM (2013) Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends. Appl Energy 112:274–288CrossRef
go back to reference Cau G, Cocco D (2014) Comparison of medium-size concentrating solar power plants based on parabolic trough and linear Fresnel collectors. Energy Procedia 45:101–110CrossRef Cau G, Cocco D (2014) Comparison of medium-size concentrating solar power plants based on parabolic trough and linear Fresnel collectors. Energy Procedia 45:101–110CrossRef
go back to reference Cucchiella F, D’Adamo I, Gastaldi M (2014) Financial analysis for investment and policy decisions in the renewable energy sector. Clean Technol Environ Policy. doi:10.1007/s10098-014-0839-z Cucchiella F, D’Adamo I, Gastaldi M (2014) Financial analysis for investment and policy decisions in the renewable energy sector. Clean Technol Environ Policy. doi:10.​1007/​s10098-014-0839-z
go back to reference Desai NB, Bandyopadhyay S (2012) Solar thermal power plant simulator. In: Proceedings of international conference on energy security, global warming and sustainable climate (Solaris 2012), Varanasi Desai NB, Bandyopadhyay S (2012) Solar thermal power plant simulator. In: Proceedings of international conference on energy security, global warming and sustainable climate (Solaris 2012), Varanasi
go back to reference Desai NB, Bandyopadhyay S (2015) Optimization of concentrating solar thermal power plant based on parabolic trough collector. J Clean Prod 89:262–271CrossRef Desai NB, Bandyopadhyay S (2015) Optimization of concentrating solar thermal power plant based on parabolic trough collector. J Clean Prod 89:262–271CrossRef
go back to reference Desai NB, Bandyopadhyay S, Nayak JK, Banerjee R, Kedare SB (2013) Simulation of 1MWe solar thermal power plant. In: Proceedings of the ISES Solar World Congress, Cancun Desai NB, Bandyopadhyay S, Nayak JK, Banerjee R, Kedare SB (2013) Simulation of 1MWe solar thermal power plant. In: Proceedings of the ISES Solar World Congress, Cancun
go back to reference Desai NB, Kedare SB, Bandyopadhyay S (2014) Optimization of design radiation for concentrating solar thermal power plants without storage. Sol Energy 107:98–112CrossRef Desai NB, Kedare SB, Bandyopadhyay S (2014) Optimization of design radiation for concentrating solar thermal power plants without storage. Sol Energy 107:98–112CrossRef
go back to reference Eck M, Hirsch T (2007) Dynamics and control of parabolic trough collector loops with direct steam generation. Sol Energy 81:268–279CrossRef Eck M, Hirsch T (2007) Dynamics and control of parabolic trough collector loops with direct steam generation. Sol Energy 81:268–279CrossRef
go back to reference Facão J, Oliveira AC (2011) Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renew Energy 36:90–96CrossRef Facão J, Oliveira AC (2011) Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renew Energy 36:90–96CrossRef
go back to reference Feldhoff JF, Ortiz-Vives F, Schulte-Fischedick J, Laing D, Schnatbaum-Laumann L, Eck M, Schmitz K (2012) Comparative system analysis of direct steam generation and synthetic oil parabolic trough power plants with integrated thermal storage. Sol Energy 86:520–530CrossRef Feldhoff JF, Ortiz-Vives F, Schulte-Fischedick J, Laing D, Schnatbaum-Laumann L, Eck M, Schmitz K (2012) Comparative system analysis of direct steam generation and synthetic oil parabolic trough power plants with integrated thermal storage. Sol Energy 86:520–530CrossRef
go back to reference Fernández-García A, Zarza E, Valenzuela L, Pérez M (2010) Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev 14:1695–1721CrossRef Fernández-García A, Zarza E, Valenzuela L, Pérez M (2010) Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev 14:1695–1721CrossRef
go back to reference Fokaides PA, Miltiadous IC, Neophytou MKA, Spyridou LP (2014) Promotion of wind energy in isolated energy systems: the case of the Orites wind farm. Clean Technol Environ Policy 16:477–488CrossRef Fokaides PA, Miltiadous IC, Neophytou MKA, Spyridou LP (2014) Promotion of wind energy in isolated energy systems: the case of the Orites wind farm. Clean Technol Environ Policy 16:477–488CrossRef
go back to reference Gharbi NEl, Derbal H, Bouaichaoui S, Said N (2011) A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Procedia 6:565–572CrossRef Gharbi NEl, Derbal H, Bouaichaoui S, Said N (2011) A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Procedia 6:565–572CrossRef
go back to reference Giostri A, Binotti M, Astolfi M, Silva P, Macchi E, Manzolini G (2012a) Comparison of different solar plants based on parabolic trough technology. Sol Energy 86:1208–1221CrossRef Giostri A, Binotti M, Astolfi M, Silva P, Macchi E, Manzolini G (2012a) Comparison of different solar plants based on parabolic trough technology. Sol Energy 86:1208–1221CrossRef
go back to reference Giostri A, Binotti M, Silva P, Macchi E, Manzolini G (2012b) Comparison of two linear collectors in solar thermal plants: parabolic trough versus Fresnel. J Sol Energy Eng 135:011001CrossRef Giostri A, Binotti M, Silva P, Macchi E, Manzolini G (2012b) Comparison of two linear collectors in solar thermal plants: parabolic trough versus Fresnel. J Sol Energy Eng 135:011001CrossRef
go back to reference Gutiérrez-Arriaga CG, Serna-González M, Ponce-Ortega JM, El-Halwagi MM (2013) Multi-objective optimization of steam power plants for sustainable generation of electricity. Clean Technol Environ Policy 15:551–566CrossRef Gutiérrez-Arriaga CG, Serna-González M, Ponce-Ortega JM, El-Halwagi MM (2013) Multi-objective optimization of steam power plants for sustainable generation of electricity. Clean Technol Environ Policy 15:551–566CrossRef
go back to reference Gutiérrez-Arriaga CG, Abdelhady F, Bamufleh HS, Serna-González M, El-Halwagi MM, Ponce-Ortega JM (2014) Industrial waste heat recovery and cogeneration involving organic Rankine cycles. Clean Technol Environ Policy. doi:10.1007/s10098-014-0833-5 Gutiérrez-Arriaga CG, Abdelhady F, Bamufleh HS, Serna-González M, El-Halwagi MM, Ponce-Ortega JM (2014) Industrial waste heat recovery and cogeneration involving organic Rankine cycles. Clean Technol Environ Policy. doi:10.​1007/​s10098-014-0833-5
go back to reference Jamel MS, Abd Rahman A, Shamsuddin AH (2014) Repowering of existing AL-Hartha gas-fuelled conventional steam power plant with molten salt cavity tubular solar central receiver. Clean Technol Environ Policy. doi:10.1007/s10098-014-0740-9 Jamel MS, Abd Rahman A, Shamsuddin AH (2014) Repowering of existing AL-Hartha gas-fuelled conventional steam power plant with molten salt cavity tubular solar central receiver. Clean Technol Environ Policy. doi:10.​1007/​s10098-014-0740-9
go back to reference Kartheek NGR, Yadav D, Banerjee R, Nayak JK, Bandyopadhyay S, Kedare SB (2013) Experiences in commissioning of a 1MWe solar thermal power plant in Gurgaon. In: Proceedings of IVth international conference on advances in energy research, Indian Institute of Technology Bombay, Mumbai Kartheek NGR, Yadav D, Banerjee R, Nayak JK, Bandyopadhyay S, Kedare SB (2013) Experiences in commissioning of a 1MWe solar thermal power plant in Gurgaon. In: Proceedings of IVth international conference on advances in energy research, Indian Institute of Technology Bombay, Mumbai
go back to reference Katinas V, Karbauskaitė J, Perednis E, Valančius R (2013) Efficiency analysis of combined biomass and solar energy in Lithuania. Clean Technol Environ Policy 15:667–676CrossRef Katinas V, Karbauskaitė J, Perednis E, Valančius R (2013) Efficiency analysis of combined biomass and solar energy in Lithuania. Clean Technol Environ Policy 15:667–676CrossRef
go back to reference Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, Cable R, Potrovitza N, Blake D, Price H (2003) Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng 125:170–176CrossRef Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, Cable R, Potrovitza N, Blake D, Price H (2003) Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng 125:170–176CrossRef
go back to reference Krishna Priya GS, Bandyopadhyay S (2013) Emission constrained power system planning: a pinch analysis based study of Indian electricity sector. Clean Technol Environ Policy 15:771–782CrossRef Krishna Priya GS, Bandyopadhyay S (2013) Emission constrained power system planning: a pinch analysis based study of Indian electricity sector. Clean Technol Environ Policy 15:771–782CrossRef
go back to reference Krishnamurthy P, Mishra S, Banerjee R (2012) An analysis of costs of parabolic trough technology in India. Energy Policy 48:407–419CrossRef Krishnamurthy P, Mishra S, Banerjee R (2012) An analysis of costs of parabolic trough technology in India. Energy Policy 48:407–419CrossRef
go back to reference Kumar KR, Reddy KS (2012) 4-E (energy–exergy–environmental– economic) analyses of line-focusing stand-alone concentrating solar power plants. Int J Low-Carbon Technol 7:82–96CrossRef Kumar KR, Reddy KS (2012) 4-E (energy–exergy–environmental– economic) analyses of line-focusing stand-alone concentrating solar power plants. Int J Low-Carbon Technol 7:82–96CrossRef
go back to reference Manzolini G, Giostri A, Saccilotto C, Silva P, Macchi E (2011) Development of an innovative code for the design of thermodynamic solar power plants part B: performance assessment of commercial and innovative technologies. Renew Energy 36:2465–2473CrossRef Manzolini G, Giostri A, Saccilotto C, Silva P, Macchi E (2011) Development of an innovative code for the design of thermodynamic solar power plants part B: performance assessment of commercial and innovative technologies. Renew Energy 36:2465–2473CrossRef
go back to reference Mavromatis SP, Kokossis AC (1998) Conceptual optimisation of utility networks for operational variations—I. targets and level optimisation. Chem Eng Sci 53:1585–1608CrossRef Mavromatis SP, Kokossis AC (1998) Conceptual optimisation of utility networks for operational variations—I. targets and level optimisation. Chem Eng Sci 53:1585–1608CrossRef
go back to reference Mills DR, Morrison GL (2000) Compact linear Fresnel reflector solar thermal power plants. Sol Energy 68(3):263–283CrossRef Mills DR, Morrison GL (2000) Compact linear Fresnel reflector solar thermal power plants. Sol Energy 68(3):263–283CrossRef
go back to reference Montes MJ, Abánades A, Martínez-Val JM, Valdés M (2009) Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Sol Energy 83:2165–2176CrossRef Montes MJ, Abánades A, Martínez-Val JM, Valdés M (2009) Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Sol Energy 83:2165–2176CrossRef
go back to reference Montes MJ, Abánades A, Martínez-Val JM (2010) Thermofluidynamic model and comparative analysis of parabolic trough collectors using oil, water/steam, or molten salt as heat transfer fluids. J Sol Energy Eng 132:021001CrossRef Montes MJ, Abánades A, Martínez-Val JM (2010) Thermofluidynamic model and comparative analysis of parabolic trough collectors using oil, water/steam, or molten salt as heat transfer fluids. J Sol Energy Eng 132:021001CrossRef
go back to reference Morin G, Dersch J, Platzer W, Eck M, Häberle A (2012) Comparison of linear Fresnel and parabolic trough collector power plants. Sol Energy 86:1–12CrossRef Morin G, Dersch J, Platzer W, Eck M, Häberle A (2012) Comparison of linear Fresnel and parabolic trough collector power plants. Sol Energy 86:1–12CrossRef
go back to reference Nemet A, Kravanja Z, Klemeš JJ (2012) Integration of solar thermal energy into processes with heat demand. Clean Technol Environ Policy 14:453–463CrossRef Nemet A, Kravanja Z, Klemeš JJ (2012) Integration of solar thermal energy into processes with heat demand. Clean Technol Environ Policy 14:453–463CrossRef
go back to reference Nixon JD, Davies PA (2012) Cost-exergy optimisation of linear Fresnel reflectors. Sol Energy 86:147–156CrossRef Nixon JD, Davies PA (2012) Cost-exergy optimisation of linear Fresnel reflectors. Sol Energy 86:147–156CrossRef
go back to reference Odeh SD, Morrison GL, Behnia M (1998) Modelling of parabolic trough direct steam generation solar collectors. Sol Energy 62:395–406CrossRef Odeh SD, Morrison GL, Behnia M (1998) Modelling of parabolic trough direct steam generation solar collectors. Sol Energy 62:395–406CrossRef
go back to reference Panepinto D, Viggiano F, Genon G (2014) The potential of biomass supply for energetic utilization in a small Italian region: Basilicata. Clean Technol Environ Policy 16:833–845CrossRef Panepinto D, Viggiano F, Genon G (2014) The potential of biomass supply for energetic utilization in a small Italian region: Basilicata. Clean Technol Environ Policy 16:833–845CrossRef
go back to reference Pavlović TM, Radonjić IS, Milosavljević DD, Pantić LS (2012) A review of concentrating solar power plants in the world and their potential use in Serbia. Renew Sustain Energy Rev 16:3891–3902CrossRef Pavlović TM, Radonjić IS, Milosavljević DD, Pantić LS (2012) A review of concentrating solar power plants in the world and their potential use in Serbia. Renew Sustain Energy Rev 16:3891–3902CrossRef
go back to reference Purohit I, Purohit P, Shekhar S (2013) Evaluating the potential of concentrating solar power generation in Northwestern India. Energy Policy 62:157–175CrossRef Purohit I, Purohit P, Shekhar S (2013) Evaluating the potential of concentrating solar power generation in Northwestern India. Energy Policy 62:157–175CrossRef
go back to reference Ramaswamy MA, Rao B, Thirumalai NC, Suresh NS (2013) Estimation of hourly direct normal irradiance (DNI) for 22 stations in India. Center for Study of Science, Technology and Policy, Bangalore Ramaswamy MA, Rao B, Thirumalai NC, Suresh NS (2013) Estimation of hourly direct normal irradiance (DNI) for 22 stations in India. Center for Study of Science, Technology and Policy, Bangalore
go back to reference Ranjan KR, Kaushik SC (2014) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16:791–805CrossRef Ranjan KR, Kaushik SC (2014) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16:791–805CrossRef
go back to reference Reddy VS, Kaushik SC, Tyagi SK (2013) Exergetic analysis of solar concentrator aided coal fired super critical thermal power plant (SACSCTPT). Clean Technol Environ Policy 15:133–145CrossRef Reddy VS, Kaushik SC, Tyagi SK (2013) Exergetic analysis of solar concentrator aided coal fired super critical thermal power plant (SACSCTPT). Clean Technol Environ Policy 15:133–145CrossRef
go back to reference Rinaldi F, Binotti M, Giostri A, Manzolini G (2014) Comparison of linear and point focus collectors in solar power plants. Energy Procedia 49:1491–1500CrossRef Rinaldi F, Binotti M, Giostri A, Manzolini G (2014) Comparison of linear and point focus collectors in solar power plants. Energy Procedia 49:1491–1500CrossRef
go back to reference Sánchez-Bautista ADF, Santibañez-Aguilar JE, Ponce-Ortega JM et al (2014) Optimal design of domestic water-heating solar systems. Clean Technol Environ Policy. doi:10.1007/s10098-014-0818-4 Sánchez-Bautista ADF, Santibañez-Aguilar JE, Ponce-Ortega JM et al (2014) Optimal design of domestic water-heating solar systems. Clean Technol Environ Policy. doi:10.​1007/​s10098-014-0818-4
go back to reference Schenk H, Hirsch T, Feldhoff JF, Wittmann M (2014) Energetic comparison of linear Fresnel and parabolic trough collector systems. J Sol Energy Eng 136:041015CrossRef Schenk H, Hirsch T, Feldhoff JF, Wittmann M (2014) Energetic comparison of linear Fresnel and parabolic trough collector systems. J Sol Energy Eng 136:041015CrossRef
go back to reference Singh K, Jash T (2014) Performance analysis of micro turbine-based grid-connected biogas power plant in Purulia in West Bengal, India. Clean Technol Environ Policy. doi:10.1007/s10098-014-0838-0 Singh K, Jash T (2014) Performance analysis of micro turbine-based grid-connected biogas power plant in Purulia in West Bengal, India. Clean Technol Environ Policy. doi:10.​1007/​s10098-014-0838-0
go back to reference Singh AK, Parida SK (2013) Evaluation of current status and future directions of wind energy in India. Clean Technol Environ Policy 15:643–655CrossRef Singh AK, Parida SK (2013) Evaluation of current status and future directions of wind energy in India. Clean Technol Environ Policy 15:643–655CrossRef
go back to reference Xie WT, Dai YJ, Wang RZ (2012) Theoretical and experimental analysis on efficiency factors and heat removal factors of Fresnel lens solar collector using different cavity receivers. Sol Energy 86:2458–2471CrossRef Xie WT, Dai YJ, Wang RZ (2012) Theoretical and experimental analysis on efficiency factors and heat removal factors of Fresnel lens solar collector using different cavity receivers. Sol Energy 86:2458–2471CrossRef
go back to reference Zaversky F, Medina R, García-Barberena J, Sánchez M, Astrain D (2013) Object-oriented modeling for the transient performance simulation of parabolic trough collectors using molten salt as heat transfer fluid. Sol Energy 95:192–215CrossRef Zaversky F, Medina R, García-Barberena J, Sánchez M, Astrain D (2013) Object-oriented modeling for the transient performance simulation of parabolic trough collectors using molten salt as heat transfer fluid. Sol Energy 95:192–215CrossRef
go back to reference Zhang HL, Baeyens J, Degrève J, Cacères G (2013) Concentrated solar power plants: review and design methodology. Renew Sustain Energy Rev 22:466–481CrossRef Zhang HL, Baeyens J, Degrève J, Cacères G (2013) Concentrated solar power plants: review and design methodology. Renew Sustain Energy Rev 22:466–481CrossRef
go back to reference Zhu G, Wendelin T, Wagner MJ, Kutscher C (2014) History, current state, and future of linear Fresnel concentrating solar collectors. Sol Energy 103:639–652CrossRef Zhu G, Wendelin T, Wagner MJ, Kutscher C (2014) History, current state, and future of linear Fresnel concentrating solar collectors. Sol Energy 103:639–652CrossRef
Metadata
Title
Integration of parabolic trough and linear Fresnel collectors for optimum design of concentrating solar thermal power plant
Authors
Nishith B. Desai
Santanu Bandyopadhyay
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Clean Technologies and Environmental Policy / Issue 7/2015
Print ISSN: 1618-954X
Electronic ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-015-0918-9

Other articles of this Issue 7/2015

Clean Technologies and Environmental Policy 7/2015 Go to the issue