Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

05-12-2017 | Issue 4/2017

Advances in Manufacturing 4/2017

Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario

Journal:
Advances in Manufacturing > Issue 4/2017
Authors:
Zhe Li, Yi Wang, Ke-Sheng Wang

Abstract

Fault diagnosis and prognosis in mechanical systems have been researched and developed in the last few decades at a very rapid rate. However, owing to the high complexity of machine centers, research on improving the accuracy and reliability of fault diagnosis and prognosis via data mining remains a prominent issue in this field. This study investigates fault diagnosis and prognosis in machine centers based on data mining approaches to formulate a systematic approach and obtain knowledge for predictive maintenance in Industry 4.0 era. We introduce a system framework based on Industry 4.0 concepts, which includes the process of fault analysis and treatment for predictive maintenance in machine centers. The framework includes five modules: sensor selection and data acquisition module, data preprocessing module, data mining module, decision support module, and maintenance implementation module. Furthermore, a case study is presented to illustrate the application of the data mining methods for fault diagnosis and prognosis in machine centers as an Industry 4.0 scenario.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2017

Advances in Manufacturing 4/2017 Go to the issue

Premium Partners

    Image Credits