Skip to main content
Top

2021 | OriginalPaper | Chapter

Intelligent Wearable Electronics: A New Paradigm in Smart Electronics

Authors : Ribu Matthew, Jyotirmoy Dutta, R. Maheswar, Kawsar Ahmed

Published in: Challenges and Solutions for Sustainable Smart City Development

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the last decade or so, the wearable electronics technology has seen an unprecedented growth which is expected to reach around USD 51.60 billion by the year 2022 with a CAGR of 15.51%. Intelligent wearable electronics is a combination of wide range of technologies like computation, communication, sensors, cloud computing, and display to cite a few. Integration of various technologies result in systems which are multifunctional along with higher complexity of design presenting a unique challenge for the technologists. With Internet of Things (IoTs) becoming ubiquitous and 5G technologies around the corner, the wearable devices are no longer simple passive systems providing the user limited information, but rather they are multifunctional, powerful, and intelligent devices which make use of complex sensing and signal processing elements along with cloud computing and data analytics to provide real-time data interpretation.
In this chapter, we review the recent developments of intelligent wearable electronics (WE) with emphasis on their working principle and design at various levels of abstraction, that includes material, device, and system levels, along with signal processing and communication protocol for external communication. Further, the design and development of smart wearable electronics which involves multivariant problem-solving at various abstraction levels is explained. In addition, we elucidate popular classes of smart wearables like wearable textiles, healthcare wearable electronics, and WE in education. Furthermore, we explore the primary performance constraints of typical WE systems such as battery life (energy), system architecture, communication protocols, and integration with cloud computing to, mention a few. This chapter concludes by elucidating various challenges in developing WE and the future directions of this industry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference O. Amft, P. Lukowicz, From backpacks to smartphones: past, present, and future of wearable computers. IEEE Pervasive Comput. 8(3), 8–13 (2009)CrossRef O. Amft, P. Lukowicz, From backpacks to smartphones: past, present, and future of wearable computers. IEEE Pervasive Comput. 8(3), 8–13 (2009)CrossRef
2.
go back to reference S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, A. Seneviratne, A survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials 19(4), 2573–2620 (2017)CrossRef S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, A. Seneviratne, A survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials 19(4), 2573–2620 (2017)CrossRef
3.
go back to reference Y. Adesida, E. Papi, A.H. McGregor, Exploring the role of wearable technology in sport kinematics and kinetics: a systematic review. Sensors 19(7), 1597 (2019)CrossRef Y. Adesida, E. Papi, A.H. McGregor, Exploring the role of wearable technology in sport kinematics and kinetics: a systematic review. Sensors 19(7), 1597 (2019)CrossRef
4.
go back to reference K. Maltseva, Wearables in the workplace: the brave new world of employee engagement. Bus. Horiz. 63(4), 493–505 (2020)CrossRef K. Maltseva, Wearables in the workplace: the brave new world of employee engagement. Bus. Horiz. 63(4), 493–505 (2020)CrossRef
12.
go back to reference R. Mathew, A.R. Sankar, Design of a triangular platform piezoresistive affinity microcantilever sensor for biochemical sensing applications. J. Phys. D. Appl. Phys. 48(20), 205402 (2015)CrossRef R. Mathew, A.R. Sankar, Design of a triangular platform piezoresistive affinity microcantilever sensor for biochemical sensing applications. J. Phys. D. Appl. Phys. 48(20), 205402 (2015)CrossRef
13.
go back to reference R. Mathew, A.R. Sankar, Impact of isolation and immobilization layers on the electro-mechanical response of piezoresistive nano cantilever sensors. J. Nanosci. Nanotechnol. 18(3), 1636–1647 (2018)CrossRef R. Mathew, A.R. Sankar, Impact of isolation and immobilization layers on the electro-mechanical response of piezoresistive nano cantilever sensors. J. Nanosci. Nanotechnol. 18(3), 1636–1647 (2018)CrossRef
14.
go back to reference R. Mathew, A.R. Sankar, Impact of the isolation and immobilization layers on the electro-mechanical response of piezoresistive micro/nano cantilever sensors, in IEEE international conference ICEE (2016) R. Mathew, A.R. Sankar, Impact of the isolation and immobilization layers on the electro-mechanical response of piezoresistive micro/nano cantilever sensors, in IEEE international conference ICEE (2016)
15.
go back to reference S. Vetrivel, R. Mathew, A.R. Sankar, Design and optimization of a doubly clamped piezoresistive acceleration sensor with an integrated silicon nanowire piezoresistor. Microsyst. Technol. 23(8), 3525–3536 (2017)CrossRef S. Vetrivel, R. Mathew, A.R. Sankar, Design and optimization of a doubly clamped piezoresistive acceleration sensor with an integrated silicon nanowire piezoresistor. Microsyst. Technol. 23(8), 3525–3536 (2017)CrossRef
16.
go back to reference R.N. Sri, S. Vetrivel, R. Mathew, A.R. Sankar, Effect of electroplated gold film on the performance of a piezoresistive accelerometer with stress concentrated tiny beams. Indian J. Sci. Technol. 8(19), 1 (2015) R.N. Sri, S. Vetrivel, R. Mathew, A.R. Sankar, Effect of electroplated gold film on the performance of a piezoresistive accelerometer with stress concentrated tiny beams. Indian J. Sci. Technol. 8(19), 1 (2015)
17.
go back to reference S. Vetrivel, B. Anupama Menon, R. Mathew, A. Ravi Sankar, Influence of the flexure position and a thick gold film on the performance of beam-mass structures. IETE J. Res. 6, 1–3 (2019) S. Vetrivel, B. Anupama Menon, R. Mathew, A. Ravi Sankar, Influence of the flexure position and a thick gold film on the performance of beam-mass structures. IETE J. Res. 6, 1–3 (2019)
18.
go back to reference K.V. Meena, R. Mathew, A.R. Sankar, A finite element method based approach of modeling of a piezoresistive accelerometer by incorporating doping profile of a diffused resistor, in IEEE Sensors Oct 28 (IEEE, 2018), pp. 1–4 K.V. Meena, R. Mathew, A.R. Sankar, A finite element method based approach of modeling of a piezoresistive accelerometer by incorporating doping profile of a diffused resistor, in IEEE Sensors Oct 28 (IEEE, 2018), pp. 1–4
19.
go back to reference S. Vetrivel, R. Mathew, A.R. Sankar, Design and simulation of a doubly clamped accelerometer with integrated silicon nanowires, in 3rd International Conference on Emerging Electronics (ICEE) Dec 27 (IEEE, 2016), pp. 1–4 S. Vetrivel, R. Mathew, A.R. Sankar, Design and simulation of a doubly clamped accelerometer with integrated silicon nanowires, in 3rd International Conference on Emerging Electronics (ICEE) Dec 27 (IEEE, 2016), pp. 1–4
20.
go back to reference K.V. Meena, R. Mathew, J. Leelavathi, A.R. Sankar, Performance comparison of a single element piezoresistor with a half-active Wheatstone bridge for miniaturized pressure sensors. Measurement 111, 340–350 (2017)CrossRef K.V. Meena, R. Mathew, J. Leelavathi, A.R. Sankar, Performance comparison of a single element piezoresistor with a half-active Wheatstone bridge for miniaturized pressure sensors. Measurement 111, 340–350 (2017)CrossRef
21.
go back to reference K.V. Meena, R. Mathew, A.R. Sankar, Design and optimization of a three-terminal piezoresistive pressure sensor for catheter based in vivo biomedical applications. Biomed. Phys. Eng. Express. 3(4), 045003 (2017)CrossRef K.V. Meena, R. Mathew, A.R. Sankar, Design and optimization of a three-terminal piezoresistive pressure sensor for catheter based in vivo biomedical applications. Biomed. Phys. Eng. Express. 3(4), 045003 (2017)CrossRef
22.
go back to reference R. Mathew, A. Krishna, K. Nag, S. Sathvik, A. Sharma, Material and geometry selection of a multi-layer microcantilever thermal sensor with piezoresistive readout. J. Phys. Conf. Ser. 1451(1), 012002 (2020). IOP PublishingCrossRef R. Mathew, A. Krishna, K. Nag, S. Sathvik, A. Sharma, Material and geometry selection of a multi-layer microcantilever thermal sensor with piezoresistive readout. J. Phys. Conf. Ser. 1451(1), 012002 (2020). IOP PublishingCrossRef
23.
go back to reference P.A. Ajeesh, R. Mathew, A.R. Sankar, Effect of doping concentration on the performance of a thermally actuated MEMS resonator using piezoresistive readout. Indian J. Sci. Technol. 8(19), 1–9 (2015)CrossRef P.A. Ajeesh, R. Mathew, A.R. Sankar, Effect of doping concentration on the performance of a thermally actuated MEMS resonator using piezoresistive readout. Indian J. Sci. Technol. 8(19), 1–9 (2015)CrossRef
24.
go back to reference T.M. Fernández-Caramés, P. Fraga-Lamas, Towards the Internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 7(12), 405 (2018)CrossRef T.M. Fernández-Caramés, P. Fraga-Lamas, Towards the Internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 7(12), 405 (2018)CrossRef
25.
go back to reference R. Mathew, A.R. Sankar, A review on surface stress-based miniaturized piezoresistive SU-8 polymeric cantilever sensors. Nano-micro Lett. 10(2), 35 (2018)CrossRef R. Mathew, A.R. Sankar, A review on surface stress-based miniaturized piezoresistive SU-8 polymeric cantilever sensors. Nano-micro Lett. 10(2), 35 (2018)CrossRef
26.
go back to reference D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin, L. Piao, B. Park, K.Y. Suh, T.I. Kim, M. Choi, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014)CrossRef D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin, L. Piao, B. Park, K.Y. Suh, T.I. Kim, M. Choi, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014)CrossRef
27.
go back to reference M. Li, H. Li, W. Zhong, Q. Zhao, D. Wang, Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 6(2), 1313–1319 (2014)CrossRef M. Li, H. Li, W. Zhong, Q. Zhao, D. Wang, Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 6(2), 1313–1319 (2014)CrossRef
28.
go back to reference H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu, Z.J. Zheng, Y. Ni, S.H. Yu, A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46), 6692–6698 (2013)CrossRef H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu, Z.J. Zheng, Y. Ni, S.H. Yu, A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46), 6692–6698 (2013)CrossRef
29.
go back to reference Y. Wei, S. Chen, X. Dong, Y. Lin, L. Liu, Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward graphene. Carbon 113, 395–403 (2017)CrossRef Y. Wei, S. Chen, X. Dong, Y. Lin, L. Liu, Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward graphene. Carbon 113, 395–403 (2017)CrossRef
30.
go back to reference L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5(1), 1–8 (2014)CrossRef L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5(1), 1–8 (2014)CrossRef
31.
go back to reference L. Wang, J.A. Jackman, E.L. Tan, J.H. Park, M.G. Potroz, E.T. Hwang, N.J. Cho, High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 36, 38–45 (2017)CrossRef L. Wang, J.A. Jackman, E.L. Tan, J.H. Park, M.G. Potroz, E.T. Hwang, N.J. Cho, High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 36, 38–45 (2017)CrossRef
32.
go back to reference S. Harada, K. Kanao, Y. Yamamoto, T. Arie, S. Akita, K. Takei, Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 8(12), 12851–12857 (2014)CrossRef S. Harada, K. Kanao, Y. Yamamoto, T. Arie, S. Akita, K. Takei, Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 8(12), 12851–12857 (2014)CrossRef
33.
go back to reference S. Harada, W. Honda, T. Arie, S. Akita, K. Takei, Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano 8(4), 3921–3927 (2014)CrossRef S. Harada, W. Honda, T. Arie, S. Akita, K. Takei, Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano 8(4), 3921–3927 (2014)CrossRef
34.
go back to reference S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D.H. Kim, Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014)CrossRef S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D.H. Kim, Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014)CrossRef
35.
go back to reference J. Park, Y. Lee, J. Hong, M. Ha, Y.D. Jung, H. Lim, S.Y. Kim, H. Ko, Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8(5), 4689–4697 (2014)CrossRef J. Park, Y. Lee, J. Hong, M. Ha, Y.D. Jung, H. Lim, S.Y. Kim, H. Ko, Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8(5), 4689–4697 (2014)CrossRef
36.
go back to reference C. Hou, H. Wang, Q. Zhang, Y. Li, M. Zhu, Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 26(29), 5018–5024 (2014)CrossRef C. Hou, H. Wang, Q. Zhang, Y. Li, M. Zhu, Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 26(29), 5018–5024 (2014)CrossRef
37.
go back to reference X. Ye, Z. Yuan, H. Tai, W. Li, X. Du, Y. Jiang, A wearable and highly sensitive strain sensor based on a polyethylenimine–rGO layered nanocomposite thin film. J. Mater. Chem. C 5(31), 7746–7752 (2017)CrossRef X. Ye, Z. Yuan, H. Tai, W. Li, X. Du, Y. Jiang, A wearable and highly sensitive strain sensor based on a polyethylenimine–rGO layered nanocomposite thin film. J. Mater. Chem. C 5(31), 7746–7752 (2017)CrossRef
38.
go back to reference A. Ahmed, A. Khlifi, S. Pandit, R. Patkar, A. Joshi, P. Dixit, B. Mezghani, M.S. Baghini, Design, fabrication, and characterization of SU-8/carbon black nanocomposite based polymer MEMS acceleration sensor. Microsyst. Technol. 31, 1–1 (2020) A. Ahmed, A. Khlifi, S. Pandit, R. Patkar, A. Joshi, P. Dixit, B. Mezghani, M.S. Baghini, Design, fabrication, and characterization of SU-8/carbon black nanocomposite based polymer MEMS acceleration sensor. Microsyst. Technol. 31, 1–1 (2020)
39.
go back to reference H.C. Chiamori, J.W. Brown, E.V. Adhiprakasha, E.T. Hantsoo, J.B. Straalsund, N.A. Melosh, B.L. Pruitt, Suspension of nanoparticles in SU-8: processing and characterization of nanocomposite polymers. Microelectron. J. 39(2), 228–236 (2008)CrossRef H.C. Chiamori, J.W. Brown, E.V. Adhiprakasha, E.T. Hantsoo, J.B. Straalsund, N.A. Melosh, B.L. Pruitt, Suspension of nanoparticles in SU-8: processing and characterization of nanocomposite polymers. Microelectron. J. 39(2), 228–236 (2008)CrossRef
40.
go back to reference S. Jiguet, A. Bertsch, H. Hofmann, P. Renaud, Conductive SU8 photoresist for microfabrication. Adv. Funct. Mater. 15(9), 1511–1516 (2005)CrossRef S. Jiguet, A. Bertsch, H. Hofmann, P. Renaud, Conductive SU8 photoresist for microfabrication. Adv. Funct. Mater. 15(9), 1511–1516 (2005)CrossRef
41.
go back to reference C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim, S.H. Ahn, K.Y. Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11(9), 795–801 (2012)CrossRef C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim, S.H. Ahn, K.Y. Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11(9), 795–801 (2012)CrossRef
42.
go back to reference M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)CrossRef M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)CrossRef
43.
go back to reference L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang, Y.Q. Chen, Y. Yang, T.L. Ren, Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017)CrossRef L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang, Y.Q. Chen, Y. Yang, T.L. Ren, Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017)CrossRef
44.
go back to reference Z. Yang, Y. Pang, X.L. Han, Y. Yang, J. Ling, M. Jian, Y. Zhang, Y. Yang, T.L. Ren, Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9), 9134–9141 (2018)CrossRef Z. Yang, Y. Pang, X.L. Han, Y. Yang, J. Ling, M. Jian, Y. Zhang, Y. Yang, T.L. Ren, Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9), 9134–9141 (2018)CrossRef
45.
go back to reference L. Wang, K. Wang, Z. Lou, K. Jiang, G. Shen, Plant-based modular building blocks for “green” electronic skins. Adv. Funct. Mater. 28(51), 1804510 (2018)CrossRef L. Wang, K. Wang, Z. Lou, K. Jiang, G. Shen, Plant-based modular building blocks for “green” electronic skins. Adv. Funct. Mater. 28(51), 1804510 (2018)CrossRef
46.
go back to reference L. Wang, D. Chen, K. Jiang, G. Shen, New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 46(22), 6764–6815 (2017)CrossRef L. Wang, D. Chen, K. Jiang, G. Shen, New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev. 46(22), 6764–6815 (2017)CrossRef
47.
go back to reference R. Mathew, A.R. Sankar, Optimization of a nano-cantilever biosensor for reduced self-heating effects and improved performance metrics. J. Micromech. Microeng. 28(8), 085012 (2018)CrossRef R. Mathew, A.R. Sankar, Optimization of a nano-cantilever biosensor for reduced self-heating effects and improved performance metrics. J. Micromech. Microeng. 28(8), 085012 (2018)CrossRef
48.
go back to reference R. Mathew, A. Ravi Sankar, In silico modeling and investigation of self-heating effects in composite nano cantilever biosensors with integrated piezoresistors. AIP Adv. 7(3), 035108 (2017)CrossRef R. Mathew, A. Ravi Sankar, In silico modeling and investigation of self-heating effects in composite nano cantilever biosensors with integrated piezoresistors. AIP Adv. 7(3), 035108 (2017)CrossRef
49.
go back to reference R. Mathew, A.R. Sankar, Piezoresistive composite silicon dioxide nanocantilever surface stress sensor: design and optimization. J. Nanosci. Nanotechnol. 18(5), 3387–3397 (2018)CrossRef R. Mathew, A.R. Sankar, Piezoresistive composite silicon dioxide nanocantilever surface stress sensor: design and optimization. J. Nanosci. Nanotechnol. 18(5), 3387–3397 (2018)CrossRef
50.
go back to reference R. Mathew, A.R. Sankar, Influence of surface layer properties on the thermo-electro-mechanical characteristics of a MEMS/NEMS piezoresistive cantilever surface stress sensor. Mater. Res. Express 6(8), 086304 (2019)CrossRef R. Mathew, A.R. Sankar, Influence of surface layer properties on the thermo-electro-mechanical characteristics of a MEMS/NEMS piezoresistive cantilever surface stress sensor. Mater. Res. Express 6(8), 086304 (2019)CrossRef
51.
go back to reference R. Mathew, A.R. Sankar, Temperature drift-aware material selection of composite piezoresistive micro-cantilevers using Ashby’s methodology. Microsyst. Technol. 3, 1–4 (2020) R. Mathew, A.R. Sankar, Temperature drift-aware material selection of composite piezoresistive micro-cantilevers using Ashby’s methodology. Microsyst. Technol. 3, 1–4 (2020)
52.
go back to reference R. Mathew, A.R. Sankar, Numerical study on the influence of buried oxide layer of SOI wafers on the terminal characteristics of a micro/nano cantilever biosensor with an integrated piezoresistor. Biomed. Phys. Eng. Express 2(5), 055012 (2016)CrossRef R. Mathew, A.R. Sankar, Numerical study on the influence of buried oxide layer of SOI wafers on the terminal characteristics of a micro/nano cantilever biosensor with an integrated piezoresistor. Biomed. Phys. Eng. Express 2(5), 055012 (2016)CrossRef
53.
go back to reference R. Mathew, A.R. Sankar, Temperature induced inaccuracy in composite piezoresistive micro/nano cantilever chemical/biological sensors, in IEEE Sensors Oct 28 (IEEE, 2018), pp. 1–4 R. Mathew, A.R. Sankar, Temperature induced inaccuracy in composite piezoresistive micro/nano cantilever chemical/biological sensors, in IEEE Sensors Oct 28 (IEEE, 2018), pp. 1–4
54.
go back to reference S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4), 2345–2352 (2014)CrossRef S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4), 2345–2352 (2014)CrossRef
55.
go back to reference J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, S. Son, J.H. Kim, Y.H. Jang, D.E. Kim, T. Lee, Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27(15), 2433–2439 (2015)CrossRef J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, S. Son, J.H. Kim, Y.H. Jang, D.E. Kim, T. Lee, Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27(15), 2433–2439 (2015)CrossRef
56.
go back to reference D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011)CrossRef D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011)CrossRef
57.
go back to reference A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016)CrossRef A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016)CrossRef
58.
go back to reference S.Y. Kim, S. Park, H.W. Park, D.H. Park, Y. Jeong, D.H. Kim, Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27(28), 4178–4185 (2015)CrossRef S.Y. Kim, S. Park, H.W. Park, D.H. Park, Y. Jeong, D.H. Kim, Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27(28), 4178–4185 (2015)CrossRef
59.
go back to reference S. Park, H. Kim, M. Vosgueritchian, S. Cheon, H. Kim, J.H. Koo, T.R. Kim, S. Lee, G. Schwartz, H. Chang, Z. Bao, Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 26(43), 7324–7332 (2014)CrossRef S. Park, H. Kim, M. Vosgueritchian, S. Cheon, H. Kim, J.H. Koo, T.R. Kim, S. Lee, G. Schwartz, H. Chang, Z. Bao, Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 26(43), 7324–7332 (2014)CrossRef
60.
go back to reference C.C. Kim, H.H. Lee, K.H. Oh, J.Y. Sun, Highly stretchable, transparent ionic touch panel. Science 353(6300), 682–687 (2016)CrossRef C.C. Kim, H.H. Lee, K.H. Oh, J.Y. Sun, Highly stretchable, transparent ionic touch panel. Science 353(6300), 682–687 (2016)CrossRef
61.
go back to reference X. Zhao, Q. Hua, R. Yu, Y. Zhang, C. Pan, Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv. Electron. Mater. 1(7), 1500142 (2015)CrossRef X. Zhao, Q. Hua, R. Yu, Y. Zhang, C. Pan, Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv. Electron. Mater. 1(7), 1500142 (2015)CrossRef
62.
go back to reference J.Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26(45), 7608–7614 (2014)CrossRef J.Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26(45), 7608–7614 (2014)CrossRef
63.
go back to reference B. Nie, S. Xing, J.D. Brandt, T. Pan, Droplet-based interfacial capacitive sensing. Lab Chip 12(6), 1110–1118 (2012)CrossRef B. Nie, S. Xing, J.D. Brandt, T. Pan, Droplet-based interfacial capacitive sensing. Lab Chip 12(6), 1110–1118 (2012)CrossRef
64.
go back to reference J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian, T. Pan, R. Li, M. Khine, J. Kim, J. Wang, Wearable sensors: modalities, challenges, and prospects. Lab Chip 18(2), 217–248 (2018)CrossRef J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian, T. Pan, R. Li, M. Khine, J. Kim, J. Wang, Wearable sensors: modalities, challenges, and prospects. Lab Chip 18(2), 217–248 (2018)CrossRef
65.
go back to reference R. Li, B. Nie, C. Zhai, J. Cao, J. Pan, Y.W. Chi, T. Pan, Telemedical wearable sensing platform for management of chronic venous disorder. Ann. Biomed. Eng. 44(7), 2282–2291 (2016)CrossRef R. Li, B. Nie, C. Zhai, J. Cao, J. Pan, Y.W. Chi, T. Pan, Telemedical wearable sensing platform for management of chronic venous disorder. Ann. Biomed. Eng. 44(7), 2282–2291 (2016)CrossRef
66.
go back to reference B. Nie, R. Li, J. Cao, J.D. Brandt, T. Pan, Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 27(39), 6055–6062 (2015)CrossRef B. Nie, R. Li, J. Cao, J.D. Brandt, T. Pan, Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 27(39), 6055–6062 (2015)CrossRef
67.
go back to reference C. Li, P.M. Wu, S. Lee, A. Gorton, M.J. Schulz, C.H. Ahn, Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromech. Syst. 17(2), 334–341 (2008)CrossRef C. Li, P.M. Wu, S. Lee, A. Gorton, M.J. Schulz, C.H. Ahn, Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromech. Syst. 17(2), 334–341 (2008)CrossRef
68.
go back to reference K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, K.J. Lee, Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014)CrossRef K.I. Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, K.J. Lee, Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014)CrossRef
69.
go back to reference C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y.S. Kim, Y. Huang, A.R. Damadoran, J. Xia, L.W. Martin, Y. Huang, Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5(1), 4496 (2014)CrossRef C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y.S. Kim, Y. Huang, A.R. Damadoran, J. Xia, L.W. Martin, Y. Huang, Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5(1), 4496 (2014)CrossRef
70.
go back to reference L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4(1), 1633 (2013)CrossRef L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4(1), 1633 (2013)CrossRef
71.
go back to reference J. Fang, X. Wang, T. Lin, Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 21(30), 11088–11091 (2011)CrossRef J. Fang, X. Wang, T. Lin, Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 21(30), 11088–11091 (2011)CrossRef
72.
go back to reference S.H. Shin, D.H. Park, J.Y. Jung, M.H. Lee, J. Nah, Ferroelectric zinc oxide nanowire embedded flexible sensor for motion and temperature sensing. ACS Appl. Mater. Interfaces 9(11), 9233–9238 (2017)CrossRef S.H. Shin, D.H. Park, J.Y. Jung, M.H. Lee, J. Nah, Ferroelectric zinc oxide nanowire embedded flexible sensor for motion and temperature sensing. ACS Appl. Mater. Interfaces 9(11), 9233–9238 (2017)CrossRef
73.
go back to reference I. Ueda, S. Ikegami, Piezoelectric properties of modified PbTiO3 ceramics. Jpn. J. Appl. Phys. 7(3), 236 (1968)CrossRef I. Ueda, S. Ikegami, Piezoelectric properties of modified PbTiO3 ceramics. Jpn. J. Appl. Phys. 7(3), 236 (1968)CrossRef
74.
go back to reference Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.B. Xu, Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11(5), 4507–4513 (2017)CrossRef Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.B. Xu, Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11(5), 4507–4513 (2017)CrossRef
75.
go back to reference W. Gao, S. Emaminejad, H.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.H. Lien, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016)CrossRef W. Gao, S. Emaminejad, H.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.H. Lien, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016)CrossRef
76.
go back to reference X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)CrossRef X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)CrossRef
77.
go back to reference M.A. Raluca, B. Pascal, S. Rodica, in International Symposium on Fundamentals of Electrical Engineering (University of Politehnica of Bucharest, Romania, 28–29 Nov 2014) M.A. Raluca, B. Pascal, S. Rodica, in International Symposium on Fundamentals of Electrical Engineering (University of Politehnica of Bucharest, Romania, 28–29 Nov 2014)
78.
go back to reference R.M. Aileni, A. Iftene, Cloud computing healthcare service for optimizes patients virtual monitoring. ICVL (2014) R.M. Aileni, A. Iftene, Cloud computing healthcare service for optimizes patients virtual monitoring. ICVL (2014)
79.
go back to reference Y. Li, Y.A. Samad, T. Taha, G. Cai, S.Y. Fu, K. Liao, Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain. Chem. Eng. 4(8), 4288–4295 (2016)CrossRef Y. Li, Y.A. Samad, T. Taha, G. Cai, S.Y. Fu, K. Liao, Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain. Chem. Eng. 4(8), 4288–4295 (2016)CrossRef
80.
go back to reference Y. Chu, J. Zhong, H. Liu, Y. Ma, N. Liu, Y. Song, J. Liang, Z. Shao, Y. Sun, Y. Dong, X. Wang, Human pulse diagnosis for medical assessments using a wearable piezoelectric sensing system. Adv. Funct. Mater. 28(40), 1803413 (2018)CrossRef Y. Chu, J. Zhong, H. Liu, Y. Ma, N. Liu, Y. Song, J. Liang, Z. Shao, Y. Sun, Y. Dong, X. Wang, Human pulse diagnosis for medical assessments using a wearable piezoelectric sensing system. Adv. Funct. Mater. 28(40), 1803413 (2018)CrossRef
81.
go back to reference J. Mei, D.H. Kim, A.L. Ayzner, M.F. Toney, Z. Bao, Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133(50), 20130–20133 (2011)CrossRef J. Mei, D.H. Kim, A.L. Ayzner, M.F. Toney, Z. Bao, Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133(50), 20130–20133 (2011)CrossRef
82.
go back to reference C. Yu, Z. Wang, H. Yu, H. Jiang, A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates. Appl. Phys. Lett. 95(14), 141912 (2009)CrossRef C. Yu, Z. Wang, H. Yu, H. Jiang, A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates. Appl. Phys. Lett. 95(14), 141912 (2009)CrossRef
83.
go back to reference C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A.C. Hinckley, I. Pochorovski, X. Yan, To JW, J.Y. Oh, J.B. Tok, Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1(3), 183–190 (2018)CrossRef C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A.C. Hinckley, I. Pochorovski, X. Yan, To JW, J.Y. Oh, J.B. Tok, Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1(3), 183–190 (2018)CrossRef
84.
go back to reference N.T. Tien, Y.G. Seol, L.H. Dao, H.Y. Noh, N.E. Lee, Utilizing highly crystalline pyroelectric material as functional gate dielectric in organic thin-film transistors. Adv. Mater. 21(8), 910–915 (2009)CrossRef N.T. Tien, Y.G. Seol, L.H. Dao, H.Y. Noh, N.E. Lee, Utilizing highly crystalline pyroelectric material as functional gate dielectric in organic thin-film transistors. Adv. Mater. 21(8), 910–915 (2009)CrossRef
85.
go back to reference N.T. Tien, S. Jeon, D.I. Kim, T.Q. Trung, M. Jang, B.U. Hwang, K.E. Byun, J. Bae, E. Lee, J.B. Tok, Z. Bao, A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 26(5), 796–804 (2014)CrossRef N.T. Tien, S. Jeon, D.I. Kim, T.Q. Trung, M. Jang, B.U. Hwang, K.E. Byun, J. Bae, E. Lee, J.B. Tok, Z. Bao, A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 26(5), 796–804 (2014)CrossRef
86.
go back to reference Y. Chen, S. Lu, S. Zhang, Y. Li, Z. Qu, Y. Chen, B. Lu, X. Wang, X. Feng, Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3(12), e1701629 (2017)CrossRef Y. Chen, S. Lu, S. Zhang, Y. Li, Z. Qu, Y. Chen, B. Lu, X. Wang, X. Feng, Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3(12), e1701629 (2017)CrossRef
87.
go back to reference J. Coosemans, B. Hermans, R. Puers, Integrating wireless ECG monitoring in textiles. Sensors Actuators A Phys. 130, 48–53 (2006)CrossRef J. Coosemans, B. Hermans, R. Puers, Integrating wireless ECG monitoring in textiles. Sensors Actuators A Phys. 130, 48–53 (2006)CrossRef
88.
go back to reference J. Löfhede, F. Seoane, M. Thordstein, Textile electrodes for EEG recording—a pilot study. Sensors 12(12), 16907–16919 (2012)CrossRef J. Löfhede, F. Seoane, M. Thordstein, Textile electrodes for EEG recording—a pilot study. Sensors 12(12), 16907–16919 (2012)CrossRef
89.
go back to reference M. Sibinski, M. Jakubowska, M. Sloma, Flexible temperature sensors on fibers. Sensors 10(9), 7934–7946 (2010)CrossRef M. Sibinski, M. Jakubowska, M. Sloma, Flexible temperature sensors on fibers. Sensors 10(9), 7934–7946 (2010)CrossRef
90.
go back to reference J. Meyer, P. Lukowicz, G. Tröster, Textile pressure sensor for muscle activity and motion detection, in Proceeding of the 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006 J. Meyer, P. Lukowicz, G. Tröster, Textile pressure sensor for muscle activity and motion detection, in Proceeding of the 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006
91.
go back to reference A.S. Muhammad Sayem, S. Hon Teay, H. Shahariar, P.L. Fink, A. Albarbar, Review on smart electro-clothing systems (SeCSs). Sensors 20(3), 587 (2020)CrossRef A.S. Muhammad Sayem, S. Hon Teay, H. Shahariar, P.L. Fink, A. Albarbar, Review on smart electro-clothing systems (SeCSs). Sensors 20(3), 587 (2020)CrossRef
92.
go back to reference C. Hertleer, M. Grabowska, L. Van Langenhove, M. Catrysse, B. Hermans, R. Puers, A. Kalmar, H. Van Egmond, D. Matthys, Toward a smart suit, in Proceeding of Wearable Electronic and Smart Textiles, Leeds, UK, 11 June 2004 C. Hertleer, M. Grabowska, L. Van Langenhove, M. Catrysse, B. Hermans, R. Puers, A. Kalmar, H. Van Egmond, D. Matthys, Toward a smart suit, in Proceeding of Wearable Electronic and Smart Textiles, Leeds, UK, 11 June 2004
93.
go back to reference P. Gough, Electronics and clothes: watt to wear?, in Proceeding of Wearable Electronic and Smart Textiles, Leeds, UK, 11 June 2004 P. Gough, Electronics and clothes: watt to wear?, in Proceeding of Wearable Electronic and Smart Textiles, Leeds, UK, 11 June 2004
94.
go back to reference D. Sapargaliyev, Wearable technology in education: from handheld to hands-free learning, in Technology in Education. Transforming Educational Practices with Technology, (Springer, Berlin, Heidelberg, 2015), pp. 55–60CrossRef D. Sapargaliyev, Wearable technology in education: from handheld to hands-free learning, in Technology in Education. Transforming Educational Practices with Technology, (Springer, Berlin, Heidelberg, 2015), pp. 55–60CrossRef
96.
go back to reference A. Labus, M. Milutinovic, Ð. Stepanic, M. Stevanovic, S. Milinovic, Wearable computing in e-education. RUO. Revija za Univerzalno Odlicnost, 4(1), A39 (2015) A. Labus, M. Milutinovic, Ð. Stepanic, M. Stevanovic, S. Milinovic, Wearable computing in e-education. RUO. Revija za Univerzalno Odlicnost, 4(1), A39 (2015)
97.
go back to reference F. Sanfilippo, K.Y. Pettersen, A sensor fusion wearable health-monitoring system with haptic feedback, in Proceedings—11th International Conference on Innovations in Information Technology, IIT 2015 (Jan 2016), pp. 262–266 F. Sanfilippo, K.Y. Pettersen, A sensor fusion wearable health-monitoring system with haptic feedback, in Proceedings—11th International Conference on Innovations in Information Technology, IIT 2015 (Jan 2016), pp. 262–266
98.
go back to reference I. Psychoula, L. Chen, O. Amft, K. Van Laerhoven, Privacy risk awareness in wearables and the Internet of Things. IEEE Pervasive Comput. 19(3), 60–66 (2020)CrossRef I. Psychoula, L. Chen, O. Amft, K. Van Laerhoven, Privacy risk awareness in wearables and the Internet of Things. IEEE Pervasive Comput. 19(3), 60–66 (2020)CrossRef
101.
go back to reference G. Udovičić, A. Topić, M. Russo, Wearable technologies for smart environments: a review with emphasis on BCI, in 2016 24th International Conference on Software, Telecommunications and Computer Networks, SoftCOM (Dec 2016) G. Udovičić, A. Topić, M. Russo, Wearable technologies for smart environments: a review with emphasis on BCI, in 2016 24th International Conference on Software, Telecommunications and Computer Networks, SoftCOM (Dec 2016)
Metadata
Title
Intelligent Wearable Electronics: A New Paradigm in Smart Electronics
Authors
Ribu Matthew
Jyotirmoy Dutta
R. Maheswar
Kawsar Ahmed
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-70183-3_7

Premium Partner