Skip to main content
Top
Published in: Cellulose 3/2012

01-06-2012

Interactions between inorganic nanoparticles and cellulose nanofibrils

Authors: Tiina Nypelö, Hanna Pynnönen, Monika Österberg, Jouni Paltakari, Janne Laine

Published in: Cellulose | Issue 3/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanofibrillated cellulose (NFC) is increasingly utilized in materials and biomedical applications consequently increasing interest in the modification of its surface properties. Besides modification using polyelectrolytes and polysaccharides, NFC can be combined with solid particles enabling formation of fibril network loaded with particles. Use of particles enabling easy functionalization could be beneficial for the development of hybrid structures, and lead to preparation of nanocomposites and functional materials. In order to explore interactions related to preparation of such structures, the interactions between nanosized precipitated calcium carbonate (nanoPCC) and nanoclay particles and NFC were examined by observing adsorption of the particles on NFC substrate using a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) imaging. By a treatment with carboxymethylated cellulose (CMC), the anionicity of the NFC substrate could be increased, providing an additional tool to affect the interplay between NFC and the inorganic particles. For slightly cationic nanoPCC particles an increase in the anionicity of the NFC by the CMC treatment increased the affinity, while the opposite was true for anionic nanoclay. Additionally, for interactions between nanoclay and NFC, dispersion stability was an important factor. QCM-D was successfully used to examine the adsorption characteristics of nanoparticles although the technique is commonly used to study the adsorption of thin polymer layers. Distinct adsorption characteristics were observed depending on the nanoparticle used; nanoclay particles deposited as a thin layer, whereas nanoPCC particles formed clusters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahola S, Österberg M, Laine J (2008a) Cellulose nanofibrils—adsorption with poly(amide-amine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314CrossRef Ahola S, Österberg M, Laine J (2008a) Cellulose nanofibrils—adsorption with poly(amide-amine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314CrossRef
go back to reference Ahola S, Turon X, Österberg M, Laine J, Rojas OJ (2008b) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599CrossRef Ahola S, Turon X, Österberg M, Laine J, Rojas OJ (2008b) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599CrossRef
go back to reference Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008c) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282CrossRef Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008c) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282CrossRef
go back to reference Ahola S, Myllytie P, Österberg M, Teerinen T, Laine J (2008d) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. Bioresources 3:1315–1328 Ahola S, Myllytie P, Österberg M, Teerinen T, Laine J (2008d) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. Bioresources 3:1315–1328
go back to reference Ariga K, Lvov Y, Ichinose I, Kunitake T (1999) Ultrathin films of inorganic materials (SiO2 nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions. Appl Clay Sci 15:137–152CrossRef Ariga K, Lvov Y, Ichinose I, Kunitake T (1999) Ultrathin films of inorganic materials (SiO2 nanoparticle, montmorillonite microplate, and molybdenum oxide) prepared by alternate layer-by-layer assembly with organic polyions. Appl Clay Sci 15:137–152CrossRef
go back to reference Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25:7675–7685CrossRef Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25:7675–7685CrossRef
go back to reference Aulin C, Gällstedt M, Lindström T (2010a) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRef Aulin C, Gällstedt M, Lindström T (2010a) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRef
go back to reference Aulin C, Johansson E, Wågberg L, Lindström T (2010b) Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules 11:872–882CrossRef Aulin C, Johansson E, Wågberg L, Lindström T (2010b) Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules 11:872–882CrossRef
go back to reference Bitinis N, Hernandez M, Verdejo R, Kenny J, Lopez-Manchado M (2011) Recent advances in clay/polymer nanocomposites. Adv Mater 23:5229–5236CrossRef Bitinis N, Hernandez M, Verdejo R, Kenny J, Lopez-Manchado M (2011) Recent advances in clay/polymer nanocomposites. Adv Mater 23:5229–5236CrossRef
go back to reference Burgentzlé D, Duchet J, Gérard JF, Jupin A, Fillon B (2004) Solvent-based nanocomposite coatings: I. Dispersion of organophilic montmorillonite in organic solvents. J Colloid Interface Sci 278:26–39CrossRef Burgentzlé D, Duchet J, Gérard JF, Jupin A, Fillon B (2004) Solvent-based nanocomposite coatings: I. Dispersion of organophilic montmorillonite in organic solvents. J Colloid Interface Sci 278:26–39CrossRef
go back to reference Cadene A, Durand-Vidal S, Turq P, Brendle J (2005) Study of individual Na-montmorillonite particle size, morphology, and apparent charge. J Colloid Interface Sci 285:719–730CrossRef Cadene A, Durand-Vidal S, Turq P, Brendle J (2005) Study of individual Na-montmorillonite particle size, morphology, and apparent charge. J Colloid Interface Sci 285:719–730CrossRef
go back to reference Cerruti P, Ambrogi V, Postiglione A, Rychly J, Matisova-Rychla L, Carfagna C (2008) Morphological and thermal properties of cellulose-montmorillonite nanocomposites. Biomacromolecules 9:3004–3013CrossRef Cerruti P, Ambrogi V, Postiglione A, Rychly J, Matisova-Rychla L, Carfagna C (2008) Morphological and thermal properties of cellulose-montmorillonite nanocomposites. Biomacromolecules 9:3004–3013CrossRef
go back to reference Chang FRC, Skipper N, Sposito G (1995) Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates. Langmuir 11:2734–2741CrossRef Chang FRC, Skipper N, Sposito G (1995) Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates. Langmuir 11:2734–2741CrossRef
go back to reference Chivrac F, Pollet E, Averous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R 67:1–17CrossRef Chivrac F, Pollet E, Averous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R 67:1–17CrossRef
go back to reference Choi YY, Lee SH, Ryu SH (2009) Effect of silane functionalization of montmorillonite on epoxy/montmorillonite nanocomposite. Polym Bull 63:47–55CrossRef Choi YY, Lee SH, Ryu SH (2009) Effect of silane functionalization of montmorillonite on epoxy/montmorillonite nanocomposite. Polym Bull 63:47–55CrossRef
go back to reference Choudalakis G, Gotsis A (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45:967–984CrossRef Choudalakis G, Gotsis A (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45:967–984CrossRef
go back to reference Cosgrove T (2005) Colloid science: principles, methods and applications. Wiley-Blackwell, Chichester Cosgrove T (2005) Colloid science: principles, methods and applications. Wiley-Blackwell, Chichester
go back to reference Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef
go back to reference Delhom CD, White-Ghoorahoo LA, Pang SS (2010) Development and characterization of cellulose/clay nanocomposites. Compos B Eng 41:475–481CrossRef Delhom CD, White-Ghoorahoo LA, Pang SS (2010) Development and characterization of cellulose/clay nanocomposites. Compos B Eng 41:475–481CrossRef
go back to reference Delville A, Laszlo P (1990) The origin of the swelling of clays by water. Langmuir 6:1289–1294CrossRef Delville A, Laszlo P (1990) The origin of the swelling of clays by water. Langmuir 6:1289–1294CrossRef
go back to reference Díez I, Eronen P, Österberg M, Linder MB, Ikkala O, Ras RHA (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: Fluorescence and antibacterial activity. Macromol Biosci 11:1185–1191CrossRef Díez I, Eronen P, Österberg M, Linder MB, Ikkala O, Ras RHA (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: Fluorescence and antibacterial activity. Macromol Biosci 11:1185–1191CrossRef
go back to reference Du B, Johannsmann D (2004) Operation of the quartz crystal microbalance in liquids: derivation of the elastic compliance of a film from the ratio of band width shift and frequency shift. Langmuir 20:2809–2812CrossRef Du B, Johannsmann D (2004) Operation of the quartz crystal microbalance in liquids: derivation of the elastic compliance of a film from the ratio of band width shift and frequency shift. Langmuir 20:2809–2812CrossRef
go back to reference Duncan TV (2011) Application of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRef Duncan TV (2011) Application of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRef
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Toman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Toman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef
go back to reference Eronen P, Junka K, Laine J, Österberg M (2011) Interaction between water-soluble polysaccharides and native nanofibrillar cellulose thin films. Bioresources 6:4200–4217 Eronen P, Junka K, Laine J, Österberg M (2011) Interaction between water-soluble polysaccharides and native nanofibrillar cellulose thin films. Bioresources 6:4200–4217
go back to reference Eronen P, Laine J, Ruokolainen J, Österberg M. (in press) Comparison of multilayer formation between different cellulose nano-fibrils and cationic polymers. J Colloid Interface Sci. doi:10.1016/j.jcis.2011.09.028 Eronen P, Laine J, Ruokolainen J, Österberg M. (in press) Comparison of multilayer formation between different cellulose nano-fibrils and cationic polymers. J Colloid Interface Sci. doi:10.​1016/​j.​jcis.​2011.​09.​028
go back to reference Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley, New York Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley, New York
go back to reference Fernandes S, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60:875–882CrossRef Fernandes S, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60:875–882CrossRef
go back to reference Fimbel P, Siffert B (1986) Interaction of calcium carbonate (calcite) with cellulose fibers in aqueous medium. Colloids Surf 20:1–16CrossRef Fimbel P, Siffert B (1986) Interaction of calcium carbonate (calcite) with cellulose fibers in aqueous medium. Colloids Surf 20:1–16CrossRef
go back to reference Fitch A, Du J, Gan H, Stucki J (1995) Effect of clay charge on swelling: a clay-modified electrode study. Clays Clay Miner 43:607–614CrossRef Fitch A, Du J, Gan H, Stucki J (1995) Effect of clay charge on swelling: a clay-modified electrode study. Clays Clay Miner 43:607–614CrossRef
go back to reference Foxall T, Peterson GC, Rendall HM, Smith AL (1979) Charge determination at calcium salt/aqueous solution interface. J Chem Soc Faraday Trans 75:1034–1039CrossRef Foxall T, Peterson GC, Rendall HM, Smith AL (1979) Charge determination at calcium salt/aqueous solution interface. J Chem Soc Faraday Trans 75:1034–1039CrossRef
go back to reference García-García S, Wold S, Jonsson M (2007) Kinetic determination of critical coagulation concentrations for sodium- and calcium-montmorillonite colloids in NaCl and CaCl2 aqueous solutions. J Colloid Interface Sci 315:512–519CrossRef García-García S, Wold S, Jonsson M (2007) Kinetic determination of critical coagulation concentrations for sodium- and calcium-montmorillonite colloids in NaCl and CaCl2 aqueous solutions. J Colloid Interface Sci 315:512–519CrossRef
go back to reference Guimond R, Chabot B, Law K-, Daneault C (2010) The use of cellulose nanofibres in papermaking. J Pulp Pap Sci 36:55–61 Guimond R, Chabot B, Law K-, Daneault C (2010) The use of cellulose nanofibres in papermaking. J Pulp Pap Sci 36:55–61
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef
go back to reference Höök F, Rodahl M, Brzezinski P, Kasemo B (1998a) Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir 14:729–734CrossRef Höök F, Rodahl M, Brzezinski P, Kasemo B (1998a) Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir 14:729–734CrossRef
go back to reference Höök F, Rodahl M, Kasemo B, Brzezinski P (1998b) Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Proc Natl Acad Sci 95:12271–12276CrossRef Höök F, Rodahl M, Kasemo B, Brzezinski P (1998b) Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Proc Natl Acad Sci 95:12271–12276CrossRef
go back to reference Hu Z, Deng Y (2010) Superhydrophobic surface fabricated from fatty acid-modified precipitated calcium carbonate. Ind Eng Chem Res 49:5625–5630CrossRef Hu Z, Deng Y (2010) Superhydrophobic surface fabricated from fatty acid-modified precipitated calcium carbonate. Ind Eng Chem Res 49:5625–5630CrossRef
go back to reference Huang YC, Fowkes FM, Lloyd TB, Sanders ND (1991) Adsorption of calcium ions from calcium chloride solutions onto calcium carbonate particles. Langmuir 7:1742–1748CrossRef Huang YC, Fowkes FM, Lloyd TB, Sanders ND (1991) Adsorption of calcium ions from calcium chloride solutions onto calcium carbonate particles. Langmuir 7:1742–1748CrossRef
go back to reference Hubbe MA, Rojas OJ, Lucia LA, Mohini S (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980 Hubbe MA, Rojas OJ, Lucia LA, Mohini S (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980
go back to reference Hult E, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17:575–586CrossRef Hult E, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17:575–586CrossRef
go back to reference Johannsmann D, Mathauer K, Wegner G, Knoll W (1992) Viscoelastic properties of thin films produced with a quartz-crystal resonator. Phys Rev B 46:7808–7815CrossRef Johannsmann D, Mathauer K, Wegner G, Knoll W (1992) Viscoelastic properties of thin films produced with a quartz-crystal resonator. Phys Rev B 46:7808–7815CrossRef
go back to reference Kapole SA, Kulkarni RD, Sonawane SH (2011) Performance properties of acrylic and acrylic polyol–polyurethane based hybrid system via addition of nano-CaCO3 and nanoclay. Can J Chem Eng 89:1590–1595CrossRef Kapole SA, Kulkarni RD, Sonawane SH (2011) Performance properties of acrylic and acrylic polyol–polyurethane based hybrid system via addition of nano-CaCO3 and nanoclay. Can J Chem Eng 89:1590–1595CrossRef
go back to reference Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21:510–517CrossRef Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21:510–517CrossRef
go back to reference Kim DS, Lee CK (2002) Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid. Appl Surf Sci 202:15–23CrossRef Kim DS, Lee CK (2002) Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid. Appl Surf Sci 202:15–23CrossRef
go back to reference Kotov N, Haraszti T, Turi L, Zavala G, Geer R, Dekany I, Fendler J (1997) Mechanism of and defect formation in the self-assembly of polymeric polycation-montmorillonite ultrathin films. J Am Chem Soc 119:6821–6832CrossRef Kotov N, Haraszti T, Turi L, Zavala G, Geer R, Dekany I, Fendler J (1997) Mechanism of and defect formation in the self-assembly of polymeric polycation-montmorillonite ultrathin films. J Am Chem Soc 119:6821–6832CrossRef
go back to reference Lagaly G, Ziesmer S (2003) Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Adv Colloid Interface Sci 100–102:105–128CrossRef Lagaly G, Ziesmer S (2003) Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Adv Colloid Interface Sci 100–102:105–128CrossRef
go back to reference Laine J, Lindström T, Nordmark GG, Risinger G (2000) Studies on topochemical modification of cellulosic fibers. Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibers. Nord Pulp Pap Res J 15:520–526CrossRef Laine J, Lindström T, Nordmark GG, Risinger G (2000) Studies on topochemical modification of cellulosic fibers. Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibers. Nord Pulp Pap Res J 15:520–526CrossRef
go back to reference Lin Z, Renneckar S, Hindman DP (2008) Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 15:333–346CrossRef Lin Z, Renneckar S, Hindman DP (2008) Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 15:333–346CrossRef
go back to reference Liu W, Ni Y, Xiao H (2004) Montmorillonite intercalated with polyaminoamide-epichlorohydrin: preparation, characterization, and sorption behavior. J Colloid Interface Sci 275:584–589CrossRef Liu W, Ni Y, Xiao H (2004) Montmorillonite intercalated with polyaminoamide-epichlorohydrin: preparation, characterization, and sorption behavior. J Colloid Interface Sci 275:584–589CrossRef
go back to reference Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011a) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641CrossRef Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011a) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641CrossRef
go back to reference Liu Z, Choi H, Gatenholm P, Esker AR (2011b) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27:8718–8728CrossRef Liu Z, Choi H, Gatenholm P, Esker AR (2011b) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27:8718–8728CrossRef
go back to reference Ludvik CN, Glenn GM, Klamczynski AP, Wood DF (2007) Cellulose fiber/bentonite clay/biodegradable thermoplastic composites. J Polym Environ 15:251–257CrossRef Ludvik CN, Glenn GM, Klamczynski AP, Wood DF (2007) Cellulose fiber/bentonite clay/biodegradable thermoplastic composites. J Polym Environ 15:251–257CrossRef
go back to reference Lvov Y, Ariga K, Ichinose I, Kunitake T (1996) Formation of ultrathin multilayer and hydrated gel from montmorillonite and linear polycations. Langmuir 12:3038–3044CrossRef Lvov Y, Ariga K, Ichinose I, Kunitake T (1996) Formation of ultrathin multilayer and hydrated gel from montmorillonite and linear polycations. Langmuir 12:3038–3044CrossRef
go back to reference Lvov Y, Ariga K, Onda M, Ichinose I, Kunitake T (1997) Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir 13:6195–6203CrossRef Lvov Y, Ariga K, Onda M, Ichinose I, Kunitake T (1997) Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir 13:6195–6203CrossRef
go back to reference Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRef Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRef
go back to reference Mishra S, Sonawane S, Singh R (2005) Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites. J Polym Sci B: Polym Phys 43:107–113CrossRef Mishra S, Sonawane S, Singh R (2005) Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites. J Polym Sci B: Polym Phys 43:107–113CrossRef
go back to reference Mörseburg K, Chinga-Carrasco G (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16:795–806CrossRef Mörseburg K, Chinga-Carrasco G (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16:795–806CrossRef
go back to reference Naderi A, Claesson PM (2006) Adsorption properties of polyelectrolyte-surfactant complexes on hydrophobic surfaces studied by QCM-D. Langmuir 22:7639–7645CrossRef Naderi A, Claesson PM (2006) Adsorption properties of polyelectrolyte-surfactant complexes on hydrophobic surfaces studied by QCM-D. Langmuir 22:7639–7645CrossRef
go back to reference Nakagaito AN, Yano H (2004) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80:155–159 Nakagaito AN, Yano H (2004) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80:155–159
go back to reference Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRef Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRef
go back to reference Norrish K (1954) The swelling of montmorillonite. Discuss Faraday Soc 18:120–134CrossRef Norrish K (1954) The swelling of montmorillonite. Discuss Faraday Soc 18:120–134CrossRef
go back to reference Nypelö T, Österberg M, Laine J (2011) Tailoring surface properties of paper using nanosized precipitated calcium carbonate particles. ACS Appl Mater Interfaces 3:3725–3731CrossRef Nypelö T, Österberg M, Laine J (2011) Tailoring surface properties of paper using nanosized precipitated calcium carbonate particles. ACS Appl Mater Interfaces 3:3725–3731CrossRef
go back to reference Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961CrossRef Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961CrossRef
go back to reference Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2011) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRef Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2011) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588CrossRef
go back to reference Olszewska A, Eronen P, Johansson LS, Malho JM, Ankerfors M, Lindström T, Ruokolainen J, Laine J, Österberg M (2011) The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 18:1213–1226CrossRef Olszewska A, Eronen P, Johansson LS, Malho JM, Ankerfors M, Lindström T, Ruokolainen J, Laine J, Österberg M (2011) The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 18:1213–1226CrossRef
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
go back to reference Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppälä J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212 Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppälä J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212
go back to reference Pashley R, Quirk J (1984) The effect of cation valency on DLVO and hydration forces between macroscopic sheets of muscovite mica in relation to clay swelling. Colloids Surf 9:1–17CrossRef Pashley R, Quirk J (1984) The effect of cation valency on DLVO and hydration forces between macroscopic sheets of muscovite mica in relation to clay swelling. Colloids Surf 9:1–17CrossRef
go back to reference Plunkett MA, Wang Z, Rutland MW, Johannsmann D (2003) Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir 19:6837–6844CrossRef Plunkett MA, Wang Z, Rutland MW, Johannsmann D (2003) Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir 19:6837–6844CrossRef
go back to reference Pomorska A, Shchukin D, Hammond R, Cooper MA, Grundmeier G, Johannsmann D (2010) Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal Chem 82:2237–2242CrossRef Pomorska A, Shchukin D, Hammond R, Cooper MA, Grundmeier G, Johannsmann D (2010) Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal Chem 82:2237–2242CrossRef
go back to reference Ras RHA, Nemeth J, Johnston CT, Dekany I, Schoonheydt RA (2004) Orientation and conformation of octadecyl rhodamine B in hybrid Langmuir-Blodgett monolayers containing clay minerals. Phys Chem Chem Phys 6:5347–5352CrossRef Ras RHA, Nemeth J, Johnston CT, Dekany I, Schoonheydt RA (2004) Orientation and conformation of octadecyl rhodamine B in hybrid Langmuir-Blodgett monolayers containing clay minerals. Phys Chem Chem Phys 6:5347–5352CrossRef
go back to reference Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2010) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134CrossRef Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2010) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134CrossRef
go back to reference Saarinen T, Österberg M, Laine J (2008) Adsorption of polyelectrolyte multilayers and complexes on silica and cellulose surfaces studied by QCM-D. Colloids Surf A 330:134–142CrossRef Saarinen T, Österberg M, Laine J (2008) Adsorption of polyelectrolyte multilayers and complexes on silica and cellulose surfaces studied by QCM-D. Colloids Surf A 330:134–142CrossRef
go back to reference Sanders ND (1992) The effect of surface modification of pigments on colloidal stability and structural performance. J Pulp Pap Sci 18:169–175 Sanders ND (1992) The effect of surface modification of pigments on colloidal stability and structural performance. J Pulp Pap Sci 18:169–175
go back to reference Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys 155:206–222CrossRef Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys 155:206–222CrossRef
go back to reference Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRef Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRef
go back to reference Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350CrossRef Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350CrossRef
go back to reference Solomon DH, Hawthorne DG (1983) Chemistry of pigments and fillers. Wiley, New York Solomon DH, Hawthorne DG (1983) Chemistry of pigments and fillers. Wiley, New York
go back to reference Song J, Li Y, Hinestroza JP, Rojas OJ (2009) Tools to probe nanoscale surface phenomena in cellulose thin films: application in the area of adsorption and friction. In: Lucia LA, Rojas OJ (eds) Nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 91–121CrossRef Song J, Li Y, Hinestroza JP, Rojas OJ (2009) Tools to probe nanoscale surface phenomena in cellulose thin films: application in the area of adsorption and friction. In: Lucia LA, Rojas OJ (eds) Nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 91–121CrossRef
go back to reference Subramani S, Choi SW, Lee JY, Kim JH (2007) Aqueous dispersion of novel silylated (polyurethane-acrylic hybrid/clay) nanocomposite. Polymer 48:4691–4703CrossRef Subramani S, Choi SW, Lee JY, Kim JH (2007) Aqueous dispersion of novel silylated (polyurethane-acrylic hybrid/clay) nanocomposite. Polymer 48:4691–4703CrossRef
go back to reference Subramanian R, Fordsmand H, Paltakari J, Paulapuro H (2008) A new composite fine paper with high filler loading and functional cellulosic microfines. J Pulp Paper Sci 34:146–152 Subramanian R, Fordsmand H, Paltakari J, Paulapuro H (2008) A new composite fine paper with high filler loading and functional cellulosic microfines. J Pulp Paper Sci 34:146–152
go back to reference Sun Q, Schork FJ, Deng Y (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Compos Sci Technol 67:1823–1829CrossRef Sun Q, Schork FJ, Deng Y (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Compos Sci Technol 67:1823–1829CrossRef
go back to reference Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13:773–782CrossRef Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13:773–782CrossRef
go back to reference Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRef Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRef
go back to reference Tellechea E, Johannsmann D, Steinmetz NF, Richter RP, Reviakine I (2009) Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25:5177–5184CrossRef Tellechea E, Johannsmann D, Steinmetz NF, Richter RP, Reviakine I (2009) Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25:5177–5184CrossRef
go back to reference Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563CrossRef Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563CrossRef
go back to reference Tunc S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48:414–424CrossRef Tunc S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48:414–424CrossRef
go back to reference Uddin F (2008) Clays, nanoclays, and montmorillonite minerals. Metall Mater Trans A 39:2804–2814CrossRef Uddin F (2008) Clays, nanoclays, and montmorillonite minerals. Metall Mater Trans A 39:2804–2814CrossRef
go back to reference Utracki LA, Sepehr M, Boccaleri E (2007) Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polym Adv Technol 18:1–37CrossRef Utracki LA, Sepehr M, Boccaleri E (2007) Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polym Adv Technol 18:1–37CrossRef
go back to reference Van Olphen H (1977) An introduction to clay colloid chemistry: for clay technologists, geologists, and soil scientists. Wiley-Interscience Publication, New York Van Olphen H (1977) An introduction to clay colloid chemistry: for clay technologists, geologists, and soil scientists. Wiley-Interscience Publication, New York
go back to reference Vartiainen J, Tammelin T, Pere J, Tapper U, Harlin A (2010) Biohybrid barrier films from fluidized pectin and nanoclay. Carbohydr Polym 82:989–996CrossRef Vartiainen J, Tammelin T, Pere J, Tapper U, Harlin A (2010) Biohybrid barrier films from fluidized pectin and nanoclay. Carbohydr Polym 82:989–996CrossRef
go back to reference Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef
go back to reference Wågberg L, Österberg M, Enarsson LE (2010) Interactions at cellulose model surfaces. Encycl Surf Colloid Sci 1:1–19 Wågberg L, Österberg M, Enarsson LE (2010) Interactions at cellulose model surfaces. Encycl Surf Colloid Sci 1:1–19
go back to reference Walecka JA (1956) Low degree of substitution carboxymethylcelluloses. Tappi J 39:458–463 Walecka JA (1956) Low degree of substitution carboxymethylcelluloses. Tappi J 39:458–463
go back to reference Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef
go back to reference Zhu J, Wilkie CA (2007) Intercalation compounds and clay nanocomposites. In: Kickelbick G (ed) Hybrid materials. Synthesis, characterization and applications. Wiley-VCH, Weinheim, pp 151–173 Zhu J, Wilkie CA (2007) Intercalation compounds and clay nanocomposites. In: Kickelbick G (ed) Hybrid materials. Synthesis, characterization and applications. Wiley-VCH, Weinheim, pp 151–173
Metadata
Title
Interactions between inorganic nanoparticles and cellulose nanofibrils
Authors
Tiina Nypelö
Hanna Pynnönen
Monika Österberg
Jouni Paltakari
Janne Laine
Publication date
01-06-2012
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2012
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9656-x

Other articles of this Issue 3/2012

Cellulose 3/2012 Go to the issue