Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 6/2017

24-03-2017 | Original Article

Interactive segmentation in MRI for orthopedic surgery planning: bone tissue

Authors: Firat Ozdemir, Neerav Karani, Philipp Fürnstahl, Orcun Goksel

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Planning orthopedic surgeries is commonly performed in computed tomography (CT) images due to the higher contrast of bony structure. However, soft tissues such as muscles and ligaments that may determine the functional outcome of a procedure are not easy to identify in CT, for which fast and accurate segmentation in MRI would be desirable. To be usable in daily practice, such method should provide convenient means of interaction for modifications and corrections, e.g., during perusal by the surgeon or the planning physician for quality control.

Methods

We propose an interactive segmentation framework for MR images and evaluate the outcome for segmentation of bones. We use a random forest classification and a random walker-based spatial regularization. The latter enables the incorporation of user input as well as enforcing a single connected anatomical structures, thanks to which a selective sampling strategy is proposed to substantially improve the supervised learning performance.

Results

We evaluated our segmentation framework on 10 patient humerus MRI as well as 4 high-resolution MRI from volunteers. Interactive humerus segmentations for patients took on average 150 s with over 3.5 times time-gain compared to manual segmentations, with accuracies comparable (converging) to that of much longer interactions. For high-resolution data, a novel multi-resolution random walker strategy further reduced the run time over 20 times of the manual segmentation, allowing for a feasible interactive segmentation framework.

Conclusions

We present a segmentation framework that allows iterative corrections leading to substantial speed gains in bone annotation in MRI. This will allow us to pursue semi-automatic segmentations of other musculoskeletal anatomy first in a user-in-the-loop manner, where later less user interactions or perhaps only few for quality control will be necessary as our annotation suggestions improve.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fürnstahl P, Schweizer A, Graf M, Vlachopoulos L, Fucentese S, Wirth S, Nagy L, Szekely G, Goksel O (2016) Surgical treatment of long-bone deformities: 3D preoperative planning and patient-specific instrumentation. In: Zheng G, Li S (eds) Computational radiology for orthopaedic interventions. Springer, pp 123–149 Fürnstahl P, Schweizer A, Graf M, Vlachopoulos L, Fucentese S, Wirth S, Nagy L, Szekely G, Goksel O (2016) Surgical treatment of long-bone deformities: 3D preoperative planning and patient-specific instrumentation. In: Zheng G, Li S (eds) Computational radiology for orthopaedic interventions. Springer, pp 123–149
2.
go back to reference Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. CMMM 2015:23–45. doi:10.1155/2015/450341 Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. CMMM 2015:23–45. doi:10.​1155/​2015/​450341
3.
go back to reference An HJ, Seo S, Kang H, Choi H, Cheon GJ, Kim H-J, Lee DS, Song IC, Kim YK, Lee JS (2016) Mri-based attenuation correction for pet/mri using multiphase level-set method. J Nucl Med 57(4):587–593CrossRefPubMed An HJ, Seo S, Kang H, Choi H, Cheon GJ, Kim H-J, Lee DS, Song IC, Kim YK, Lee JS (2016) Mri-based attenuation correction for pet/mri using multiphase level-set method. J Nucl Med 57(4):587–593CrossRefPubMed
4.
go back to reference Preusser T, Bezzi M, Jenne J, Langø T, Levy Y, Mueller M, Sat G, Tanner C, Zangos S, Guenther M, Melzer A (2015) Trans-fusimo: clinical translation of patient specific planning and conduction of FUS treatment in moving organs. J Ther Ultrasound 3(1):O85CrossRefPubMedCentral Preusser T, Bezzi M, Jenne J, Langø T, Levy Y, Mueller M, Sat G, Tanner C, Zangos S, Guenther M, Melzer A (2015) Trans-fusimo: clinical translation of patient specific planning and conduction of FUS treatment in moving organs. J Ther Ultrasound 3(1):O85CrossRefPubMedCentral
5.
go back to reference Dodin P, Martel-Pelletier J, Pelletier J-P, Abram F (2011) A fully automated human knee 3D MRI bone segmentation using the ray casting technique. Med Biol Eng Comput 49(12):1413–1424CrossRefPubMed Dodin P, Martel-Pelletier J, Pelletier J-P, Abram F (2011) A fully automated human knee 3D MRI bone segmentation using the ray casting technique. Med Biol Eng Comput 49(12):1413–1424CrossRefPubMed
6.
go back to reference Koch M, Schwing AG, Comaniciu D, Pollefeys M (2011) Fully automatic segmentation of wrist bones for arthritis patients. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 636–640 Koch M, Schwing AG, Comaniciu D, Pollefeys M (2011) Fully automatic segmentation of wrist bones for arthritis patients. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 636–640
7.
go back to reference Gass T, Szekely G, Goksel O (2014) Simultaneous segmentation and multi-resolution nonrigid atlas registration. IEEE Trans Image Process 23:2931–2943CrossRefPubMed Gass T, Szekely G, Goksel O (2014) Simultaneous segmentation and multi-resolution nonrigid atlas registration. IEEE Trans Image Process 23:2931–2943CrossRefPubMed
8.
go back to reference Criminisi A, Sharp T, Blake A, (2008) Geos: geodesic image segmentation. In: European conference on computer vision (ECCV) (Marseille, France), pp 99–112 Criminisi A, Sharp T, Blake A, (2008) Geos: geodesic image segmentation. In: European conference on computer vision (ECCV) (Marseille, France), pp 99–112
9.
go back to reference Zhu L, Kolesov I, Gao Y, Kikinis R, Tannenbaum A (2014) An effective interactive medical image segmentation method using fast growcut. In: MICCAI W IMIC Zhu L, Kolesov I, Gao Y, Kikinis R, Tannenbaum A (2014) An effective interactive medical image segmentation method using fast growcut. In: MICCAI W IMIC
10.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMed
12.
go back to reference Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random forests: a survey and results of new tests. Pattern Recogn 44:330–349CrossRef Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random forests: a survey and results of new tests. Pattern Recogn 44:330–349CrossRef
13.
go back to reference Kirsanova EN, Sadovsky MG (2002) Entropy approach in the analysis of anisotropy of digital images. Open Syst Inf Dyn 9:239–250CrossRef Kirsanova EN, Sadovsky MG (2002) Entropy approach in the analysis of anisotropy of digital images. Open Syst Inf Dyn 9:239–250CrossRef
14.
go back to reference Thoma J, Ozdemir F, Goksel O (2016) Automatic segmentation of abdominal MRI using selective sampling and random walker. In: MICCAI W MCV, pp 1–11 Thoma J, Ozdemir F, Goksel O (2016) Automatic segmentation of abdominal MRI using selective sampling and random walker. In: MICCAI W MCV, pp 1–11
15.
go back to reference Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE TMI 27(11):1668–1681 Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE TMI 27(11):1668–1681
16.
go back to reference Petrou M, Kovalev VA, Reichenbach JR (2006) Three-dimensional nonlinear invisible boundary detection. IEEE Trans Image process 15:3020–3032CrossRefPubMed Petrou M, Kovalev VA, Reichenbach JR (2006) Three-dimensional nonlinear invisible boundary detection. IEEE Trans Image process 15:3020–3032CrossRefPubMed
17.
go back to reference Mahapatra D, Schuffler PJ, Tielbeek JAW, Makanyanga JC, Stoker J, Taylor SA, Vos FM, Buhmann JM (2013) Automatic detection and segmentation of crohn’s disease tissues from abdominal MRI. IEEE TMI 32:2332–2347 Mahapatra D, Schuffler PJ, Tielbeek JAW, Makanyanga JC, Stoker J, Taylor SA, Vos FM, Buhmann JM (2013) Automatic detection and segmentation of crohn’s disease tissues from abdominal MRI. IEEE TMI 32:2332–2347
18.
go back to reference Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783CrossRefPubMed Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783CrossRefPubMed
19.
go back to reference Dakua SP, Sahambi JS (2009) LV contour extraction from cardiac MR images using random walks approach. In: Advance computing conference (IACC), p 228 Dakua SP, Sahambi JS (2009) LV contour extraction from cardiac MR images using random walks approach. In: Advance computing conference (IACC), p 228
20.
go back to reference Maier F, Wimmer A, Soza G, Kaftan JN, Fritz D, Dillmann R (2008) Automatic liver segmentation using the random walker algorithm. In: Tolxdorff T, Braun J, Deserno TM, Horsch A, Handels H, Meinzer HP (eds) Bildverarbeitung für die Medizin 2008. Springer, pp 56–61 Maier F, Wimmer A, Soza G, Kaftan JN, Fritz D, Dillmann R (2008) Automatic liver segmentation using the random walker algorithm. In: Tolxdorff T, Braun J, Deserno TM, Horsch A, Handels H, Meinzer HP (eds) Bildverarbeitung für die Medizin 2008. Springer, pp 56–61
22.
go back to reference Grady L, Sinop AK (2008) Fast approximate random walker segmentation using eigenvector precomputation. In: CVPR 2008. IEEE, pp 1–8 Grady L, Sinop AK (2008) Fast approximate random walker segmentation using eigenvector precomputation. In: CVPR 2008. IEEE, pp 1–8
23.
go back to reference Andrews S, Hamarneh G, Saad A (2010) Fast random walker with priors using precomputation for interactive medical image segmentation. In: MICCAI, pp 9–16 Andrews S, Hamarneh G, Saad A (2010) Fast random walker with priors using precomputation for interactive medical image segmentation. In: MICCAI, pp 9–16
24.
go back to reference Gueziri H-E, McGuffin MJ, Laporte C (2016) A generalized graph reduction framework for interactive segmentation of large images. CVIU 150:44–57 Gueziri H-E, McGuffin MJ, Laporte C (2016) A generalized graph reduction framework for interactive segmentation of large images. CVIU 150:44–57
25.
go back to reference Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer H-P (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604CrossRefPubMed Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer H-P (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604CrossRefPubMed
Metadata
Title
Interactive segmentation in MRI for orthopedic surgery planning: bone tissue
Authors
Firat Ozdemir
Neerav Karani
Philipp Fürnstahl
Orcun Goksel
Publication date
24-03-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 6/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1570-0

Other articles of this Issue 6/2017

International Journal of Computer Assisted Radiology and Surgery 6/2017 Go to the issue

Premium Partner