Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 8/2012

01-08-2012 | Symposium: Bulk Metallic Glasses VIII

Interface Constraints on Shear Band Patterns in Bonded Metallic Glass Films Under Microindentation

Authors: Z. N. An, W. D. Li, F. X. Liu, P. K. Liaw, Y. F. Gao

Published in: Metallurgical and Materials Transactions A | Issue 8/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When using the bonded interface technique for indentation tests, the semicircular and radial shear bands can be observed on the top surfaces and bonded interfaces in bulk metallic glasses (BMGs). In addition to the stress relaxation effects at the bonded interface, indentation tests on bonded BMG films on the steel platen further demonstrate the effects of the film/substrate interface on shear band patterns. The understanding of these shear band patterns will help design internal constraints to confine shear bands and thus to prevent brittle failure of BMGs. In contrast to previous studies, which connect shear band directions to principal shear stress or effective stress, as in the Mohr–Coulomb model, this article adopts the Rudnick–Rice instability theory—shear bands are a result of loss of material stability but are not a yield phenomenon. Shear band directions depend on material constitutive parameters (including Poisson’s ratio, coefficient of internal friction, and dilatancy factor) and principal stresses. Consequently, internal constraints such as the bonded interface and film/substrate interface may redistribute the stress fields and thus affect the shear band propagation directions. Finite element simulations were performed to determine the contact stress fields using continuum plasticity model. It is found that semicircular shear bands on the bonded interface follow the direction of the second principal stress, while radial shear band patterns depend on the two in-plane principal stresses. With the presence of film/substrate interfaces, the radial shear bands will be “reflected” at the interface, and the semicircular shear bands change directions and end at the interface. It should be noted that the actual stress field differs from the continuum plasticity simulations because of the strain localizations associated with shear bands. To this end, an explicit history of shear band nucleation and propagation is simulated by the free volume model, which reproduces the change from radial to semicircular shear bands when interface relaxation is introduced. These predictions agree well with our experimental observations of microindentation tests on two Zr-based BMG films laterally bonded and placed on a steel platen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56. W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56.
3.
go back to reference C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1811–20.CrossRef C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1811–20.CrossRef
4.
go back to reference W.J. Wright, R. Saha, and W.D. Nix: Mater. Trans., 2001, vol. 42, pp. 642–49.CrossRef W.J. Wright, R. Saha, and W.D. Nix: Mater. Trans., 2001, vol. 42, pp. 642–49.CrossRef
5.
go back to reference C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.CrossRef C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.CrossRef
6.
go back to reference R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, and T.C. Hufnagel: Acta Mater., 2005, vol. 53, pp. 1883–93.CrossRef R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, and T.C. Hufnagel: Acta Mater., 2005, vol. 53, pp. 1883–93.CrossRef
7.
go back to reference F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, and P.K. Liaw: Surf. Coat. Technol., 2009, vol. 203, pp. 3480–84.CrossRef F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, and P.K. Liaw: Surf. Coat. Technol., 2009, vol. 203, pp. 3480–84.CrossRef
8.
go back to reference F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, and P.D. Rack: Mater. Sci. Eng. A, 2007, vols. 468–470, pp. 246–52. F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, and P.D. Rack: Mater. Sci. Eng. A, 2007, vols. 468–470, pp. 246–52.
9.
go back to reference F.X. Liu, Y.F. Gao, and P.K. Liaw: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1862–67.CrossRef F.X. Liu, Y.F. Gao, and P.K. Liaw: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1862–67.CrossRef
11.
go back to reference R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Acta Mater., 2001, vol. 49, pp. 3781–89.CrossRef R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Acta Mater., 2001, vol. 49, pp. 3781–89.CrossRef
12.
go back to reference Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.CrossRef Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.CrossRef
13.
14.
go back to reference V. Keryvin: J. Phys., Condens Matter., 2008, vol. 20, Article no. 114119. V. Keryvin: J. Phys., Condens Matter., 2008, vol. 20, Article no. 114119.
15.
go back to reference B.G. Yoo and J.I. Jang: J. Phys. D: Appl. Phys., 2008, vol. 41, Article no. 074017. B.G. Yoo and J.I. Jang: J. Phys. D: Appl. Phys., 2008, vol. 41, Article no. 074017.
16.
go back to reference L. Wang, H. Bei, Y.F. Gao, Z.P. Lu, and T.G. Nieh: Acta Mater., 2011, vol. 59, pp. 2858–64.CrossRef L. Wang, H. Bei, Y.F. Gao, Z.P. Lu, and T.G. Nieh: Acta Mater., 2011, vol. 59, pp. 2858–64.CrossRef
17.
go back to reference M. Zhao and M. Li: Appl. Phys. Lett., 2008, vol. 93, Article no. 241906. M. Zhao and M. Li: Appl. Phys. Lett., 2008, vol. 93, Article no. 241906.
18.
19.
go back to reference Y.F. Gao, L. Wang, H. Bei, and T.G. Nieh: Acta Mater., 2011, vol. 59, pp. 4159–67.CrossRef Y.F. Gao, L. Wang, H. Bei, and T.G. Nieh: Acta Mater., 2011, vol. 59, pp. 4159–67.CrossRef
20.
go back to reference J.W. Rudnicki and J.R. Rice: J. Mech. Phys. Solids, 1975, vol. 23, pp. 371–94.CrossRef J.W. Rudnicki and J.R. Rice: J. Mech. Phys. Solids, 1975, vol. 23, pp. 371–94.CrossRef
21.
go back to reference L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Phys. Rev. B, 2001, vol. 64, Article no. 180201. L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Phys. Rev. B, 2001, vol. 64, Article no. 180201.
22.
go back to reference S. Jana, U. Ramamurty, K. Chattopadhyay, and Y. Kawamura: Mater. Sci. Eng. A, 2004, vol. 375, pp. 1191–95.CrossRef S. Jana, U. Ramamurty, K. Chattopadhyay, and Y. Kawamura: Mater. Sci. Eng. A, 2004, vol. 375, pp. 1191–95.CrossRef
23.
go back to reference U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay: Acta Mater., 2005, vol. 53, pp. 705–17.CrossRef U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay: Acta Mater., 2005, vol. 53, pp. 705–17.CrossRef
24.
go back to reference H.W. Zhang, X.N. Jing, G. Subhash, L.J. Kecskes, and R.J. Dowding: Acta Mater., 2005, vol. 53, pp. 3849–59.CrossRef H.W. Zhang, X.N. Jing, G. Subhash, L.J. Kecskes, and R.J. Dowding: Acta Mater., 2005, vol. 53, pp. 3849–59.CrossRef
25.
26.
27.
go back to reference C.G. Tang, Y. Li, and K.Y. Zeng: Mater. Sci. Eng. A, 2004, vol. 384, pp. 215–23.CrossRef C.G. Tang, Y. Li, and K.Y. Zeng: Mater. Sci. Eng. A, 2004, vol. 384, pp. 215–23.CrossRef
28.
go back to reference G.S. Yu, J.G. Lin, and W. Li: Philos. Mag. Lett., 2010, vol. 90, pp. 393–401.CrossRef G.S. Yu, J.G. Lin, and W. Li: Philos. Mag. Lett., 2010, vol. 90, pp. 393–401.CrossRef
29.
go back to reference G.R. Trichy, R.O. Scattergood, C.C. Koch, and K.L. Murty: Scripta Mater., 2005, vol. 53, pp. 1461–65.CrossRef G.R. Trichy, R.O. Scattergood, C.C. Koch, and K.L. Murty: Scripta Mater., 2005, vol. 53, pp. 1461–65.CrossRef
30.
go back to reference V. Keryvin, K.E. Prasad, Y. Gueguen, J.C. Sangleboeuf, and U. Ramamurty: Phil. Mag., 2008, vol. 88, pp. 1773–90.CrossRef V. Keryvin, K.E. Prasad, Y. Gueguen, J.C. Sangleboeuf, and U. Ramamurty: Phil. Mag., 2008, vol. 88, pp. 1773–90.CrossRef
33.
34.
go back to reference Y.F. Gao, B. Yang, and T.G. Nieh: Acta Mater., 2007, vol. 55, pp. 2319–27.CrossRef Y.F. Gao, B. Yang, and T.G. Nieh: Acta Mater., 2007, vol. 55, pp. 2319–27.CrossRef
35.
go back to reference M.Q. Jiang and L.H. Dai: J. Mech. Phys. Solids, 2009, vol. 57, pp. 1267–92.CrossRef M.Q. Jiang and L.H. Dai: J. Mech. Phys. Solids, 2009, vol. 57, pp. 1267–92.CrossRef
Metadata
Title
Interface Constraints on Shear Band Patterns in Bonded Metallic Glass Films Under Microindentation
Authors
Z. N. An
W. D. Li
F. X. Liu
P. K. Liaw
Y. F. Gao
Publication date
01-08-2012
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 8/2012
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0992-5

Other articles of this Issue 8/2012

Metallurgical and Materials Transactions A 8/2012 Go to the issue

Symposium: Fatigue & Corrosion Damage in Metallic Materials

Corrosion-Fatigue Behavior of Aluminum Alloy 5083-H131 Sensitized at 448 K (175 °C)

Symposium: Fatigue & Corrosion Damage in Metallic Materials

Resistivity-Based Evaluation of the Fatigue Behavior of Cast Irons

Symposium: Fatigue and Corrosion Damage in Metallic Materials

Foreword: Fatigue and Corrosion Damage in Metallic Materials

Premium Partners