Skip to main content
Top

2018 | OriginalPaper | Chapter

Interface-Reproducing Capturing (IRC) Technique for Fluid-Structure Interaction: Methods and Applications

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

How to enhance the interface-capturing (IC) computation of fluid–structure interaction (FSI) is a long-standing issue for IC approaches. This chapter introduces approaches based on an extended finite element method (XFEM) and a Lagrange multiplier (LM) method, as well as our contribution to the problem. The XFEM-based approach develops a framework for an interface-reproducing capturing (IRC) method whose spatial functions are locally equivalent to those of interface-tracking (IT) methods. The XFEM enriches the velocity and pressure function spaces of the local flow around the interface. This enrichment reproduces requisite discontinuities at the interface. Simultaneously, the LM method imposes continuity on the fluid and structure to couple them, and thus the fluid captures the interface. This chapter gives an overview, describes the methods and solution techniques, and shows verifications and applications, focusing mainly on computing the fluid–thin-structure interaction (FTSI). The verifications reveal how continuity and discontinuity at the interface affect the FSI computation and why the IRC method is effective. Applications to flow-induced flutter of flexible thin objects show the ability of the proposed method to take on the challenge of computing complex FSI problems. Applications to flows past fixed objects show its ability to compute simple problems with ease. The IRC method therefore has two aspects and potentials. Open issues mentioned in this chapter indicate that there is still much room for advancing the IC method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
An elegant technique and concept proposed by Tezduyar and named FSILT-ED (fluid–solid interface locator technique-extended domain) can be found in [28, 33, 34, 37]. FSILT-ED applies a stabilized LM method or a penalty method at the interface, with an elaborate treatment of the interpolation of pressure across the interface, introducing fluid domains extended virtually from one side of the interface to the other. We consider the ED technique as a way to extrapolate from one side to the interface in a finite element. See [28, 33, 34, 37].
 
2
XFEM can accept various types of enrichment function ϕ(x, t). For example, as well as the edge function e(x, t), the ramp function r(x, t) given by
$$\displaystyle \begin{aligned} r\left(\mathbf{x},t\right) =\sum_{I\in Q_{f}}N_{I}\left|F_{I}\right|-e\left(\mathbf{x},t\right) {} \end{aligned} $$
(53)
can reproduce a weak discontinuity and is generally considered superior to the edge function in doing so because it can reproduce the discontinuity within crossed elements without the need for partially enriched surrounding elements called blending elements in XFEM. However, if we adopt the ramp function, the interfacial velocity has time-dependent enrichment terms as follows:
$$\displaystyle \begin{aligned} \mathbf{v}\left({\mathbf{x}}_{i},t\right)=\sum_{I\in Q_{fi}}N_{I}{\mathbf{V}}_{I}+r\left({\mathbf{x}}_{i},t\right)\sum_{I\in Q_{fi}}N_{I}\tilde{\mathbf{V}}_{I}, \quad \mathrm{with}\quad r\left({\mathbf{x}}_{i},t\right)=\sum_{I\in Q_{fi}}N_{I}\left|F_{I}\right|. {} \end{aligned} $$
(54)
For FSI and flow with moving boundaries, enrichment functions that meet neither ∂ϕ(xi, t)∕∂t = 0 nor ϕ(xi, t) = 0 seem to cause temporal instability even if the time dependence is accounted for in the computation. We therefore select the edge function for the enrichment.
 
3
The multiplier mesh for 𝜖 = 2 is twice as coarse as that for 𝜖 = 1 if nf is fixed. Therefore, the multipliers shown in Figs. 11 and 12 are twice as coarse as those of Figs. 9 and 10, respectively.
 
Literature
1.
go back to reference Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Engrg 29:329–349.MathSciNetMATHCrossRef Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Engrg 29:329–349.MathSciNetMATHCrossRef
2.
go back to reference Belytschko T, Flanagan DP, Kennedy J (1982) Finite element method with user-controlled meshes for fluid–structure interactions. Comput Methods Appl Mech Engrg 33:689–723.MATHCrossRef Belytschko T, Flanagan DP, Kennedy J (1982) Finite element method with user-controlled meshes for fluid–structure interactions. Comput Methods Appl Mech Engrg 33:689–723.MATHCrossRef
3.
go back to reference Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Engrg 69:277–324.MATHCrossRef Huerta A, Liu WK (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Engrg 69:277–324.MATHCrossRef
4.
go back to reference Huerta A, Liu W (1988), Viscous flow structure interaction. J Pressure Vessel Tech 110:15–21.CrossRef Huerta A, Liu W (1988), Viscous flow structure interaction. J Pressure Vessel Tech 110:15–21.CrossRef
5.
go back to reference Nitikitpaiboon C, Bathe KJ (1993) An arbitrary Lagrangian–Eulerian velocity potential formulation for fluid–structure interaction. Comput Struct 47(4):871–891.MATHCrossRef Nitikitpaiboon C, Bathe KJ (1993) An arbitrary Lagrangian–Eulerian velocity potential formulation for fluid–structure interaction. Comput Struct 47(4):871–891.MATHCrossRef
6.
go back to reference Bathe K, Zhang H, Wang M (1995) Finite element analysis of incompressible and compressible fluid flows with free interfaces and structural interactions. Comput Struct 56:193–213.MATHCrossRef Bathe K, Zhang H, Wang M (1995) Finite element analysis of incompressible and compressible fluid flows with free interfaces and structural interactions. Comput Struct 56:193–213.MATHCrossRef
7.
go back to reference Zhang Q, Hisada T (2001) Analysis of fluid–structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput Methods Appl Mech Engrg 190:6341–6357.MATHCrossRef Zhang Q, Hisada T (2001) Analysis of fluid–structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput Methods Appl Mech Engrg 190:6341–6357.MATHCrossRef
8.
go back to reference Watanabe H, Hisada T, Sugiura S, Okada J, Fukunari H (2002) Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid–structure interaction finite element method. JSME Int J Ser C 45(4):1003–1012.CrossRef Watanabe H, Hisada T, Sugiura S, Okada J, Fukunari H (2002) Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid–structure interaction finite element method. JSME Int J Ser C 45(4):1003–1012.CrossRef
9.
go back to reference Kuhl E, Hulshoff S, Borst DR (2003) An arbitrary Lagrangian Eulerian finite-element approach for fluid–structure interaction phenomena. Int J Numer Meth Engng 57:117–142.MATHCrossRef Kuhl E, Hulshoff S, Borst DR (2003) An arbitrary Lagrangian Eulerian finite-element approach for fluid–structure interaction phenomena. Int J Numer Meth Engng 57:117–142.MATHCrossRef
10.
go back to reference Watanabe H, Sugiura S, Hisada T (2004) Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J 87(3):2074–2085.CrossRef Watanabe H, Sugiura S, Hisada T (2004) Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J 87(3):2074–2085.CrossRef
11.
go back to reference Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Meth Engng 64:167–203.MATHCrossRef Ishihara D, Yoshimura S (2005) A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Int J Numer Meth Engng 64:167–203.MATHCrossRef
12.
go back to reference Sawada T, Hisada T (2006) Fluid–structure interaction analysis of a two-dimensional flag-in-wind problem by the ALE finite element method. JSME Int J Ser A 49(2):170–179.MATHCrossRef Sawada T, Hisada T (2006) Fluid–structure interaction analysis of a two-dimensional flag-in-wind problem by the ALE finite element method. JSME Int J Ser A 49(2):170–179.MATHCrossRef
13.
go back to reference Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method. Comput Fluids 36:136–146.MATHCrossRef Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method. Comput Fluids 36:136–146.MATHCrossRef
14.
go back to reference Sawada T, Tezuka A, Hisada T (2007) Overlaying mesh method for large deformation fluid–shell interaction analysis using interface-tracking ALE local mesh and immersed boundary global mesh. Trans JSCES 20070029:1–10 (in Japanese Language). Sawada T, Tezuka A, Hisada T (2007) Overlaying mesh method for large deformation fluid–shell interaction analysis using interface-tracking ALE local mesh and immersed boundary global mesh. Trans JSCES 20070029:1–10 (in Japanese Language).
15.
16.
go back to reference Sawada T, Tezuka A, Hisada T (2008) Performance comparison between the fluid–shell coupled overlaying mesh method and the immersed boundary method. Trans JSCES 20080005:1–14 (in Japanese Language). Sawada T, Tezuka A, Hisada T (2008) Performance comparison between the fluid–shell coupled overlaying mesh method and the immersed boundary method. Trans JSCES 20080005:1–14 (in Japanese Language).
17.
go back to reference Ishihara D, Horie Y, Denda M (2009) Two dimensional computational study on fluid–structure interaction cause of wing pitch changes in dipteran flapping flight. J Exp Bio 212:1–10.CrossRef Ishihara D, Horie Y, Denda M (2009) Two dimensional computational study on fluid–structure interaction cause of wing pitch changes in dipteran flapping flight. J Exp Bio 212:1–10.CrossRef
18.
go back to reference Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Engrg 249–252: 28–41.MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Engrg 249–252: 28–41.MathSciNetMATHCrossRef
19.
go back to reference Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Comput Methods Appl Mech Engrg 284: 1005–1053.MathSciNetMATHCrossRef Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Comput Methods Appl Mech Engrg 284: 1005–1053.MathSciNetMATHCrossRef
20.
go back to reference Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – The deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Engrg 94:339–351.MathSciNetMATHCrossRef Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – The deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Engrg 94:339–351.MathSciNetMATHCrossRef
21.
go back to reference Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – The deforming-spatial-domain/space–time procedure: II. Computations of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Engrg 94:353–371.MathSciNetMATHCrossRef Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – The deforming-spatial-domain/space–time procedure: II. Computations of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Engrg 94:353–371.MathSciNetMATHCrossRef
22.
go back to reference Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations. New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, 7–24. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations. New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, 7–24.
23.
go back to reference Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36.MATHCrossRef Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36.MATHCrossRef
24.
go back to reference Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Engrg 119:73–94.MATHCrossRef Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Engrg 119:73–94.MATHCrossRef
25.
go back to reference Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows – fluid–structure interactions. Int J Numer Meth Fluids 21:933–953.MATHCrossRef Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows – fluid–structure interactions. Int J Numer Meth Fluids 21:933–953.MATHCrossRef
26.
go back to reference Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Engrg 190:321–332.MATHCrossRef Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Engrg 190:321–332.MATHCrossRef
27.
go back to reference Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Engrg 191:705–716.MATHCrossRef Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Engrg 191:705–716.MATHCrossRef
28.
go back to reference Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Meth Engng 8:83–130.MATHCrossRef Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Meth Engng 8:83–130.MATHCrossRef
29.
go back to reference Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63.MATHCrossRef Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63.MATHCrossRef
30.
go back to reference Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Engrg 193:2019–2032.MATHCrossRef Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Engrg 193:2019–2032.MATHCrossRef
31.
go back to reference Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Engrg 195:1885–1895.MathSciNetMATHCrossRef Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Engrg 195:1885–1895.MathSciNetMATHCrossRef
32.
go back to reference Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Engrg 195:2002–2027.MathSciNetMATHCrossRef Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Engrg 195:2002–2027.MathSciNetMATHCrossRef
33.
go back to reference Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Engrg 195:2983–3000.MathSciNetMATHCrossRef Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Engrg 195:2983–3000.MathSciNetMATHCrossRef
34.
go back to reference Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11.MATHCrossRef Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11.MATHCrossRef
35.
go back to reference Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int J Numer Meth Fluids 54:855–900.MATHCrossRef Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int J Numer Meth Fluids 54:855–900.MATHCrossRef
36.
go back to reference Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Meth Fluids 54:901–922.MATHCrossRef Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Meth Fluids 54:901–922.MATHCrossRef
37.
go back to reference Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Meth Fluids 54:1021–1030.MATHCrossRef Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Meth Fluids 54:1021–1030.MATHCrossRef
38.
go back to reference Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: Contact problems. Comput Mech 43:51–60.MATHCrossRef Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: Contact problems. Comput Mech 43:51–60.MATHCrossRef
39.
go back to reference Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Comput Mech 43:151–159.MATHCrossRef Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Comput Mech 43:151–159.MATHCrossRef
40.
go back to reference Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29.MathSciNetMATHCrossRef Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29.MathSciNetMATHCrossRef
41.
go back to reference Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Meth Fluids 64:1201–1218.MATHCrossRef Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Meth Fluids 64:1201–1218.MATHCrossRef
42.
go back to reference Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Meth Biomed Engng 26:101–116.MATHCrossRef Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Meth Biomed Engng 26:101–116.MATHCrossRef
43.
44.
go back to reference Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Meth Fluids 65:271–285.MATHCrossRef Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Meth Fluids 65:271–285.MATHCrossRef
45.
go back to reference Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Meth Fluids 65:324–340.MATHCrossRef Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Meth Fluids 65:324–340.MATHCrossRef
46.
go back to reference Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Meth Engng 19:125–169.MathSciNetMATHCrossRef Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Meth Engng 19:125–169.MathSciNetMATHCrossRef
47.
go back to reference Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Meth Engng 19:171–225.MathSciNetMATHCrossRef Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Meth Engng 19:171–225.MathSciNetMATHCrossRef
48.
go back to reference Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Mathematical Models and Methods in Applied Sciences 22(supp02):1230001.MathSciNetMATHCrossRef Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Mathematical Models and Methods in Applied Sciences 22(supp02):1230001.MathSciNetMATHCrossRef
49.
go back to reference Takizawa K, Tezduyar TE (2014) Main aspects of the space–time computational FSI techniques and examples of challenging problems solved. Mechanical Engineering Reviews 1:CM0005, inaugural issue.CrossRef Takizawa K, Tezduyar TE (2014) Main aspects of the space–time computational FSI techniques and examples of challenging problems solved. Mechanical Engineering Reviews 1:CM0005, inaugural issue.CrossRef
50.
go back to reference Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971.MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971.MathSciNetMATHCrossRef
51.
go back to reference Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476.MathSciNetMATHCrossRef Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476.MathSciNetMATHCrossRef
52.
go back to reference Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathematical Models and Methods in Applied Sciences 24:2437–2486.MathSciNetMATHCrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathematical Models and Methods in Applied Sciences 24:2437–2486.MathSciNetMATHCrossRef
53.
go back to reference Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Meth Engng 21:481–508.MathSciNetMATHCrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Meth Engng 21:481–508.MathSciNetMATHCrossRef
54.
go back to reference Peskin CS (1972) Flow patterns around heart valves: A numerical method. J Comput Phys 10:252–271.MATHCrossRef Peskin CS (1972) Flow patterns around heart valves: A numerical method. J Comput Phys 10:252–271.MATHCrossRef
56.
go back to reference Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468.MathSciNetMATHCrossRef Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468.MathSciNetMATHCrossRef
59.
go back to reference Huang WX, Shin SJ, Sung HJ (2007) Simulation of flexible filaments in a uniform flow by the immersed boundary method. J Comput Phys 226:2206–2228.MathSciNetMATHCrossRef Huang WX, Shin SJ, Sung HJ (2007) Simulation of flexible filaments in a uniform flow by the immersed boundary method. J Comput Phys 226:2206–2228.MathSciNetMATHCrossRef
62.
63.
64.
65.
go back to reference Wang H, Chessa J, Liu WK, Belytschko T (2008) The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members. Int J Numer Meth Engng 74:32–55.MathSciNetMATHCrossRef Wang H, Chessa J, Liu WK, Belytschko T (2008) The immersed/fictitious element method for fluid–structure interaction: Volumetric consistency, compressibility and thin members. Int J Numer Meth Engng 74:32–55.MathSciNetMATHCrossRef
66.
go back to reference Glowinski R, Pan TW, Périaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Engrg 151:181–194.MathSciNetMATHCrossRef Glowinski R, Pan TW, Périaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Engrg 151:181–194.MathSciNetMATHCrossRef
67.
go back to reference Glowinski R, Pan TW, Hesla TI, Joseph DD, and Périaux J (1999) A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application of particulate flow. Int J Numer Meth Fluids 30:1043–1066.MATHCrossRef Glowinski R, Pan TW, Hesla TI, Joseph DD, and Périaux J (1999) A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application of particulate flow. Int J Numer Meth Fluids 30:1043–1066.MATHCrossRef
68.
go back to reference Hart DJ, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure interaction model of the aortic valve. J Biomech 33:1079–1088.CrossRef Hart DJ, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure interaction model of the aortic valve. J Biomech 33:1079–1088.CrossRef
69.
go back to reference Hart DJ, Baaijens FPT, Peters GWM, Schreurs PJG (2003) A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve, J Biomech 36:699–712.CrossRef Hart DJ, Baaijens FPT, Peters GWM, Schreurs PJG (2003) A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve, J Biomech 36:699–712.CrossRef
70.
go back to reference Loon RV, Anderson PD, Hart DJ, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numer Meth Fluids 46:533–544.MATHCrossRef Loon RV, Anderson PD, Hart DJ, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numer Meth Fluids 46:533–544.MATHCrossRef
71.
go back to reference Yu Z (2005) A DLM/FD method for fluid/flexible-body interactions. J Comput Phys 207(1):1–27.MATHCrossRef Yu Z (2005) A DLM/FD method for fluid/flexible-body interactions. J Comput Phys 207(1):1–27.MATHCrossRef
72.
go back to reference Wagner GJ, Moës N, Liu WK, Belytschko T (2001) The extended finite element method for rigid particles in Stokes flow. Int J Numer Meth Engng 51:293–313.MathSciNetMATHCrossRef Wagner GJ, Moës N, Liu WK, Belytschko T (2001) The extended finite element method for rigid particles in Stokes flow. Int J Numer Meth Engng 51:293–313.MathSciNetMATHCrossRef
73.
go back to reference Wagner GJ, Ghosal S, Liu WK (2003) Particulate flow simulations using lubrication theory solution enrichment. Int J Numer Meth Engng 56:1261–1289.MathSciNetMATHCrossRef Wagner GJ, Ghosal S, Liu WK (2003) Particulate flow simulations using lubrication theory solution enrichment. Int J Numer Meth Engng 56:1261–1289.MathSciNetMATHCrossRef
74.
go back to reference Chessa J, Belytschko T (2003) An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. Int J Numer Meth Engng 58:2041–2064.MathSciNetMATHCrossRef Chessa J, Belytschko T (2003) An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. Int J Numer Meth Engng 58:2041–2064.MathSciNetMATHCrossRef
75.
go back to reference Sawada T, Nakasumi S, Tezuka A, Fukushima M, Yoshizawa Y (2009) Extended-FEM for the solid–fluid mixture two-scale problems with BCC and FCC microstructures. Interaction & Multiscale Mech Int J 2(1):45–68.CrossRef Sawada T, Nakasumi S, Tezuka A, Fukushima M, Yoshizawa Y (2009) Extended-FEM for the solid–fluid mixture two-scale problems with BCC and FCC microstructures. Interaction & Multiscale Mech Int J 2(1):45–68.CrossRef
76.
go back to reference Legay A, Chessa J, Belytschko T (2006) An Eulerian–Lagrangian method for fluid–structure interaction based on level sets. Comput Methods Appl Mech Engrg 195:2070–2087.MathSciNetMATHCrossRef Legay A, Chessa J, Belytschko T (2006) An Eulerian–Lagrangian method for fluid–structure interaction based on level sets. Comput Methods Appl Mech Engrg 195:2070–2087.MathSciNetMATHCrossRef
77.
go back to reference Legay A, Kölke A (2006) An enriched space–time finite element method for fluid–structure interaction – Part I: Prescribed structural displacement. Proc III ECCM, Solid Struct Coupling Prob Eng, Lisbon Portugal, 5–8 Jun 2006. Legay A, Kölke A (2006) An enriched space–time finite element method for fluid–structure interaction – Part I: Prescribed structural displacement. Proc III ECCM, Solid Struct Coupling Prob Eng, Lisbon Portugal, 5–8 Jun 2006.
78.
go back to reference Kölke A, Legay A (2006) An enriched space–time finite element method for fluid–structure interaction – Part II: Thin flexible structures. Proc III ECCM, Solid Struct Coupling Prob Eng, Lisbon Portugal, 5–8 Jun 2006. Kölke A, Legay A (2006) An enriched space–time finite element method for fluid–structure interaction – Part II: Thin flexible structures. Proc III ECCM, Solid Struct Coupling Prob Eng, Lisbon Portugal, 5–8 Jun 2006.
79.
go back to reference Sawada T, Tezuka A, Hisada T (2007) Extended finite element method for the fluid–structure interaction problems based on discontinuous interpolations on level set interfaces. Proc APCOM’07–EPMESC XI, MS20-3(2):1–10, Kyoto Japan, 3–6 Dec 2007. Sawada T, Tezuka A, Hisada T (2007) Extended finite element method for the fluid–structure interaction problems based on discontinuous interpolations on level set interfaces. Proc APCOM’07–EPMESC XI, MS20-3(2):1–10, Kyoto Japan, 3–6 Dec 2007.
80.
go back to reference Zilian A, Legay A (2008) The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction. Int J Numer Meth Engng 75:305–334.MathSciNetMATHCrossRef Zilian A, Legay A (2008) The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction. Int J Numer Meth Engng 75:305–334.MathSciNetMATHCrossRef
81.
go back to reference Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Engrg 197:1699–1714.MathSciNetMATHCrossRef Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Engrg 197:1699–1714.MathSciNetMATHCrossRef
82.
go back to reference Gerstenberger A, Wall WA. (2008) Enhancement of fixed-grid methods towards complex fluid–structure interaction applications. Int J Numer Meth Fluids 57:1227–1248.MathSciNetMATHCrossRef Gerstenberger A, Wall WA. (2008) Enhancement of fixed-grid methods towards complex fluid–structure interaction applications. Int J Numer Meth Fluids 57:1227–1248.MathSciNetMATHCrossRef
83.
go back to reference Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional higher-order XFEM-computations in fluid–structure interaction. Int J Numer Meth Engng 79:846–869.MATHCrossRef Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional higher-order XFEM-computations in fluid–structure interaction. Int J Numer Meth Engng 79:846–869.MATHCrossRef
84.
go back to reference Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Meth Engng 82:537–563.MathSciNetMATH Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Meth Engng 82:537–563.MathSciNetMATH
85.
go back to reference Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid–structure–contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Struct 46:53–67.MathSciNetMATH Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid–structure–contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Struct 46:53–67.MathSciNetMATH
86.
go back to reference Sawada T, Tezuka A (2010) High-order Gaussian quadrature in X-FEM with the Lagrange-multiplier for fluid–structure coupling. Int J Numer Meth Fluids 64:1219–1239.MathSciNetMATHCrossRef Sawada T, Tezuka A (2010) High-order Gaussian quadrature in X-FEM with the Lagrange-multiplier for fluid–structure coupling. Int J Numer Meth Fluids 64:1219–1239.MathSciNetMATHCrossRef
87.
go back to reference Nakamoto H, Sawada T, Hattori S, Tezuka A (2010) Advanced simulation technology for innovating air-assisted paper-feed mechanism. Toshiba Review 65(8):35–39 (in Japanese Language). Nakamoto H, Sawada T, Hattori S, Tezuka A (2010) Advanced simulation technology for innovating air-assisted paper-feed mechanism. Toshiba Review 65(8):35–39 (in Japanese Language).
88.
go back to reference Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech 48:319–332.MathSciNetMATHCrossRef Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech 48:319–332.MathSciNetMATHCrossRef
89.
go back to reference Sawada T, Nagahama S, Sasaki S, Tezuka A (2011) Development of simulation-based design (SBD) framework for flow with structure interfaces using X-FEM. Trans JSCES 20110003:1–13 (in Japanese language). Sawada T, Nagahama S, Sasaki S, Tezuka A (2011) Development of simulation-based design (SBD) framework for flow with structure interfaces using X-FEM. Trans JSCES 20110003:1–13 (in Japanese language).
90.
go back to reference Sawada T (2013) Foundation and application of extended finite element method. Nagare 32:221–225 (in Japanese language). Sawada T (2013) Foundation and application of extended finite element method. Nagare 32:221–225 (in Japanese language).
91.
go back to reference Farnell DJJ, David T, Barton DC (2004) Numerical simulations of a filament in a flowing soap film. Int J Numer Meth Fluids 44:313–330.MATHCrossRef Farnell DJJ, David T, Barton DC (2004) Numerical simulations of a filament in a flowing soap film. Int J Numer Meth Fluids 44:313–330.MATHCrossRef
92.
go back to reference Farnell DJJ, David T, Barton DC (2004) Coupled states of flapping flags. J Fluids Struct 19:29–36.CrossRef Farnell DJJ, David T, Barton DC (2004) Coupled states of flapping flags. J Fluids Struct 19:29–36.CrossRef
93.
go back to reference Cirak F, Radovitzky R (2005) A Lagrangian–Eulerian shell–fluid coupling algorithm base on level sets. Comput Struct 85:491–498.CrossRef Cirak F, Radovitzky R (2005) A Lagrangian–Eulerian shell–fluid coupling algorithm base on level sets. Comput Struct 85:491–498.CrossRef
94.
go back to reference Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40:167–183.MATHCrossRef Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40:167–183.MATHCrossRef
95.
go back to reference Wang H, Belytschko T (2009) Fluid–structure interaction by the discontinuous-Galerkin method for large deformations. Int J Numer Meth Engng 77:30–49.MathSciNetMATHCrossRef Wang H, Belytschko T (2009) Fluid–structure interaction by the discontinuous-Galerkin method for large deformations. Int J Numer Meth Engng 77:30–49.MathSciNetMATHCrossRef
96.
go back to reference Hashimoto G, Ono K (2010) Interface treatment under no-slip conditions using level-set virtual particles for fluid–structure interaction. Theor Appl Mech Japan 58:325–342. Hashimoto G, Ono K (2010) Interface treatment under no-slip conditions using level-set virtual particles for fluid–structure interaction. Theor Appl Mech Japan 58:325–342.
97.
go back to reference Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Engrg 32:199–259.MathSciNetMATHCrossRef Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Engrg 32:199–259.MathSciNetMATHCrossRef
98.
go back to reference Tezduyar TE, Liou J, Ganjoo DK (1990) Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. Comput Struct 35:445–472.MATHCrossRef Tezduyar TE, Liou J, Ganjoo DK (1990) Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. Comput Struct 35:445–472.MATHCrossRef
99.
go back to reference Tezduyar TE, Mittal S, Shih R (1991) Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. Comput Methods Appl Mech Engrg 87:363–384.MATHCrossRef Tezduyar TE, Mittal S, Shih R (1991) Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. Comput Methods Appl Mech Engrg 87:363–384.MATHCrossRef
100.
go back to reference Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Engrg 95:221–242.MATHCrossRef Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Engrg 95:221–242.MATHCrossRef
101.
go back to reference Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adva Appl Mech 28:1–44.MathSciNetMATH Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adva Appl Mech 28:1–44.MathSciNetMATH
102.
go back to reference Hannani SK, Stanislas M, Dupont P (1995) Incompressible Navier–Stokes computations with SUPG and GLS formulations – A comparison study. Comput Methods Appl Mech Engrg 124:153–170.CrossRef Hannani SK, Stanislas M, Dupont P (1995) Incompressible Navier–Stokes computations with SUPG and GLS formulations – A comparison study. Comput Methods Appl Mech Engrg 124:153–170.CrossRef
103.
go back to reference Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Engrg 127:387–401.MathSciNetMATHCrossRef Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Engrg 127:387–401.MathSciNetMATHCrossRef
104.
go back to reference Hughes TJR, Feij’oo GR, Mazzei L, Quincy JB (1998) The variational multiscale method – a paradigm for computational mechanics. Comput Methods Appl Mech Engrg 166:3–24.MathSciNetMATHCrossRef Hughes TJR, Feij’oo GR, Mazzei L, Quincy JB (1998) The variational multiscale method – a paradigm for computational mechanics. Comput Methods Appl Mech Engrg 166:3–24.MathSciNetMATHCrossRef
105.
go back to reference Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Engrg 190:411–430.MATHCrossRef Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Engrg 190:411–430.MATHCrossRef
106.
go back to reference Hughes TJR, Mazzei L, Jansen KE (2000) Large Eddy Simulation and the variational multiscale method. Comput Visual Sci 3:47–59.MATHCrossRef Hughes TJR, Mazzei L, Jansen KE (2000) Large Eddy Simulation and the variational multiscale method. Comput Visual Sci 3:47–59.MATHCrossRef
107.
go back to reference Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575.MathSciNetMATHCrossRef Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575.MathSciNetMATHCrossRef
108.
go back to reference Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Greenfs function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539–557.MathSciNetMATHCrossRef Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Greenfs function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539–557.MathSciNetMATHCrossRef
109.
go back to reference Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Engrg 199:828–840.MathSciNetMATHCrossRef Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Engrg 199:828–840.MathSciNetMATHCrossRef
110.
go back to reference Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Engng 46(1):131–150.MATHCrossRef Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Engng 46(1):131–150.MATHCrossRef
111.
go back to reference Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Meth Engng 50(4):993–1013.MATHCrossRef Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Meth Engng 50(4):993–1013.MATHCrossRef
112.
go back to reference Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Engrg 190:6183–6200.MathSciNetMATHCrossRef Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Engrg 190:6183–6200.MathSciNetMATHCrossRef
113.
go back to reference Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Engrg 192:3163–3177.MATHCrossRef Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Engrg 192:3163–3177.MATHCrossRef
114.
go back to reference Chessa J, Belytschko T (2004) Arbitrary discontinuities in space–time finite elements by level sets and X-FEM. Int J Numer Meth Engng 61:2595–2614.MathSciNetMATHCrossRef Chessa J, Belytschko T (2004) Arbitrary discontinuities in space–time finite elements by level sets and X-FEM. Int J Numer Meth Engng 61:2595–2614.MathSciNetMATHCrossRef
115.
go back to reference Barbosa HJC, Hughes TJR (1991) The finite element method with Lagrange multipliers on the boundary: Circumventing the Babuska–Brezzi condition. Comput Methods Appl Mech Engrg 85(1):109–128.MathSciNetMATHCrossRef Barbosa HJC, Hughes TJR (1991) The finite element method with Lagrange multipliers on the boundary: Circumventing the Babuska–Brezzi condition. Comput Methods Appl Mech Engrg 85(1):109–128.MathSciNetMATHCrossRef
116.
go back to reference Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Meth Engng 61:2508–2535.MATHCrossRef Ji H, Dolbow JE (2004) On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int J Numer Meth Engng 61:2508–2535.MATHCrossRef
117.
go back to reference Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Engrg 193(12–14):1257–1275.MathSciNetMATHCrossRef Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Engrg 193(12–14):1257–1275.MathSciNetMATHCrossRef
118.
go back to reference Moës N, Béchet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Meth Engng 67(12):1641–1669.MathSciNetMATHCrossRef Moës N, Béchet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Meth Engng 67(12):1641–1669.MathSciNetMATHCrossRef
119.
go back to reference Newmark NM (1959) A method of computation for structural dynamics. J Engng Mech Div, Proc ASCE 85(EM3):67–94. Newmark NM (1959) A method of computation for structural dynamics. J Engng Mech Div, Proc ASCE 85(EM3):67–94.
121.
go back to reference Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408:835–839.CrossRef Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408:835–839.CrossRef
122.
go back to reference Watanabe Y, Suzuki S, Sugihara M, Sueoka Y (2002) An experimental study of paper flutter. J Fluids Struct 16:529–542.CrossRef Watanabe Y, Suzuki S, Sugihara M, Sueoka Y (2002) An experimental study of paper flutter. J Fluids Struct 16:529–542.CrossRef
123.
go back to reference Watanabe Y, Isogai K, Suzuki S, Sugihara M (2002) An theoretical study of paper flutter. J Fluids Struct 16:543–560.CrossRef Watanabe Y, Isogai K, Suzuki S, Sugihara M (2002) An theoretical study of paper flutter. J Fluids Struct 16:543–560.CrossRef
124.
go back to reference Shelley M, Vandenberghe N, Zhang J (2005) Heavy flags undergo spontaneous oscillations in flowing water. Phys Rev Lett 94:094302(4).CrossRef Shelley M, Vandenberghe N, Zhang J (2005) Heavy flags undergo spontaneous oscillations in flowing water. Phys Rev Lett 94:094302(4).CrossRef
125.
go back to reference Eloy C, Souilliez C, Schouveiler L (2007) Flutter of a rectangular plate. J Fluids Struct 23:904–919.CrossRef Eloy C, Souilliez C, Schouveiler L (2007) Flutter of a rectangular plate. J Fluids Struct 23:904–919.CrossRef
126.
127.
go back to reference Alben S, Shelley MJ (2008) Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys Rev Lett 100:074301(4).CrossRef Alben S, Shelley MJ (2008) Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys Rev Lett 100:074301(4).CrossRef
128.
129.
go back to reference Singh RK, Kant T, Kakodkar A (1991) Coupled shell–fluid interaction problems with degenerate shell and three-dimensional fluid elements. Comput Struct 38(5):515–528.MATHCrossRef Singh RK, Kant T, Kakodkar A (1991) Coupled shell–fluid interaction problems with degenerate shell and three-dimensional fluid elements. Comput Struct 38(5):515–528.MATHCrossRef
130.
go back to reference Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in the extended finite element method. Int J Numer Meth Engng 77(1):1–29.MathSciNetMATHCrossRef Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in the extended finite element method. Int J Numer Meth Engng 77(1):1–29.MathSciNetMATHCrossRef
131.
go back to reference Mousavi SE, Sukumar N (2010) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554.MathSciNetMATHCrossRef Mousavi SE, Sukumar N (2010) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47:535–554.MathSciNetMATHCrossRef
132.
go back to reference Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Engrg 197: 3768–3782.MathSciNetMATHCrossRef Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Engrg 197: 3768–3782.MathSciNetMATHCrossRef
133.
go back to reference Flemisch B, Wohlmuth BI (2007) Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Comput Methods Appl Mech Engrg 196(8):1589–1602.MathSciNetMATHCrossRef Flemisch B, Wohlmuth BI (2007) Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Comput Methods Appl Mech Engrg 196(8):1589–1602.MathSciNetMATHCrossRef
134.
go back to reference Cho JY, Song YM, Choi YH (2008) Boundary locking induced by penalty enforcement of essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Engrg 197(13–16): 167–1183.MathSciNetMATH Cho JY, Song YM, Choi YH (2008) Boundary locking induced by penalty enforcement of essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Engrg 197(13–16): 167–1183.MathSciNetMATH
135.
go back to reference Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88.CrossRef Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88.CrossRef
136.
go back to reference Dvorkin EN (1988) On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Meth Engng 26:1597–1613.MATHCrossRef Dvorkin EN (1988) On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Meth Engng 26:1597–1613.MATHCrossRef
137.
go back to reference Parisch H (1991) An investigation of a finite rotation four node assumed strain shell element. Int J Numer Meth Engng 31:127–150.MATHCrossRef Parisch H (1991) An investigation of a finite rotation four node assumed strain shell element. Int J Numer Meth Engng 31:127–150.MATHCrossRef
138.
go back to reference Noguchi H, Hisada T (1993) Sensivity analysis in post-buckling problems of shell structures. Comput Struct 47(4):699–710.MATHCrossRef Noguchi H, Hisada T (1993) Sensivity analysis in post-buckling problems of shell structures. Comput Struct 47(4):699–710.MATHCrossRef
139.
go back to reference Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869.MathSciNetMATHCrossRef Saad Y, Schultz MH (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869.MathSciNetMATHCrossRef
Metadata
Title
Interface-Reproducing Capturing (IRC) Technique for Fluid-Structure Interaction: Methods and Applications
Author
Tomohiro Sawada
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-96469-0_11

Premium Partners