Skip to main content
Top

2013 | OriginalPaper | Chapter

Interpenetrating Polymer Networks: Processing, Properties and Applications

Author : Aji. P. Mathew

Published in: Advances in Elastomers I

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interpenetrating polymer networks (IPNs) are defined as combination of two or more polymers in network form with at least one of which is polymerised and/or crosslinked in the immediate presence of the others. IPNs are based on combinations of two or more polymers and are younger cousins to polymer blends, blocks and grafts. All these are members of a larger class of multicomponent polymeric systems, where as in IPNs, the polymers are crosslinked, thus providing a mechanism for controlling the domain sizes and reducing creep and flow. Though the idea behind IPN synthesis is to effect molecular level interpenetration of the polymer networks, most IPNs form immiscible systems with phase separation during some stage of synthesis. Aylsworth, in 1914 invented the first known IPN, but the term IPN was coined much later in 1960, by Millar who developed PS/PS IPNs to be used as ion exchange resin matrices (Aylsworth, US Patent 1, 111, 284, 1914), (Millar, J. Chem. Soc. 1311, 1960). The literature review shows that Sperling and coworkers at Lehigh university, USA followed by Frisch from University of Detroit and Frisch from Suny, Albany have made the most contributions to this research area. The current review on IPNs summarises the processing, properties and applications of IPNs, with special focus on some recent developments and trends.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aylsworth, J.W.: US Patent 1, 111, 284 (1914) Aylsworth, J.W.: US Patent 1, 111, 284 (1914)
2.
go back to reference Millar, J.R.: Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J. Chem. Soc. 1311 (1960) Millar, J.R.: Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J. Chem. Soc. 1311 (1960)
3.
go back to reference Work, J.L.: Solid-state structure of melt blended incompatible polymeric mixtures involving poly(vinyl chloride). Polym. Eng. Sci. 13, 46 (1973)CrossRef Work, J.L.: Solid-state structure of melt blended incompatible polymeric mixtures involving poly(vinyl chloride). Polym. Eng. Sci. 13, 46 (1973)CrossRef
4.
go back to reference Molau, G.E.: Colloidal and morphological behavior of block and graft copolymers. Plenum, New york (1971)CrossRef Molau, G.E.: Colloidal and morphological behavior of block and graft copolymers. Plenum, New york (1971)CrossRef
5.
go back to reference Szwarc, M.: Block and graft polymers their synthesis, especially by living polymer technique, and their properties. Polym. Eng. Sci. 13, 1 (1973)CrossRef Szwarc, M.: Block and graft polymers their synthesis, especially by living polymer technique, and their properties. Polym. Eng. Sci. 13, 1 (1973)CrossRef
6.
go back to reference Sperling, L.H., Mishra, V.: The current status of interpenetrating polymer networks. Polym. Adv. Technol. 7, 197 (1996)CrossRef Sperling, L.H., Mishra, V.: The current status of interpenetrating polymer networks. Polym. Adv. Technol. 7, 197 (1996)CrossRef
7.
go back to reference Mathew, A.P., Packirisamy, S., Thomas, S.: Morphology, mechanical properties failure topography of semi-interpentrating polymer networks based on natural rubber polystyrene. J. Appl. Polym. Sci. 78, 2327–2344 (2000)CrossRef Mathew, A.P., Packirisamy, S., Thomas, S.: Morphology, mechanical properties failure topography of semi-interpentrating polymer networks based on natural rubber polystyrene. J. Appl. Polym. Sci. 78, 2327–2344 (2000)CrossRef
8.
go back to reference Sperling, L.H.: IPN and relatedmaterials. Plenum press, Newyork (1981) Sperling, L.H.: IPN and relatedmaterials. Plenum press, Newyork (1981)
9.
go back to reference Chakraborty, D., Das, B., Roy, S.: Epoxy resin–poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, mechanical, and thermal properties. J. Appl. Polym. Sci. 67, 1051 (1998)CrossRef Chakraborty, D., Das, B., Roy, S.: Epoxy resin–poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, mechanical, and thermal properties. J. Appl. Polym. Sci. 67, 1051 (1998)CrossRef
10.
go back to reference Tan, S., Zhang, D., Zhou, E.: Dynamic mechanical properties of interpenetrating polymer networks based on polyacrylates and epoxy. Acta Polymerca 47, 507 (1996)CrossRef Tan, S., Zhang, D., Zhou, E.: Dynamic mechanical properties of interpenetrating polymer networks based on polyacrylates and epoxy. Acta Polymerca 47, 507 (1996)CrossRef
11.
go back to reference Frisch, H.L., Klempner, D.: Topological Isomerism and Macromolecules. In: Pasika, W.M. (ed.) Advances in Macromolecular Chemistry, vol. 2, Academic Press(1970) Frisch, H.L., Klempner, D.: Topological Isomerism and Macromolecules. In: Pasika, W.M. (ed.) Advances in Macromolecular Chemistry, vol. 2, Academic Press(1970)
12.
go back to reference Coran, A.Y., Patel, R.P.: In: Holden, G., Legge, N.R., Quirk, R., Schroeder, H.E. (eds.) Thermoplastic elastomers. Hanser, Munich (1996) Coran, A.Y., Patel, R.P.: In: Holden, G., Legge, N.R., Quirk, R., Schroeder, H.E. (eds.) Thermoplastic elastomers. Hanser, Munich (1996)
13.
go back to reference Lipatov, Y.S., Karanova, L.V., Gorbach, L.A., Lutsyk, E.D., Sergeeva, L.M.: Temperature transitions and compatibility in gradient interpenetrating polymer networks. Polym. Int. 28(2), 99 (1992)CrossRef Lipatov, Y.S., Karanova, L.V., Gorbach, L.A., Lutsyk, E.D., Sergeeva, L.M.: Temperature transitions and compatibility in gradient interpenetrating polymer networks. Polym. Int. 28(2), 99 (1992)CrossRef
14.
go back to reference Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: Epoxy/acrylic simultaneous interpenetrating networks. J Polym. Sci. 46C, 175 (1974) Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: Epoxy/acrylic simultaneous interpenetrating networks. J Polym. Sci. 46C, 175 (1974)
15.
go back to reference Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: In: Deanin, R.D., Crugnola, A.M. (eds.) Toughness and brittleness of plastics. Advances in Chemistry, Ser. 154. American Chemical Society, Washington (1976) Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: In: Deanin, R.D., Crugnola, A.M. (eds.) Toughness and brittleness of plastics. Advances in Chemistry, Ser. 154. American Chemical Society, Washington (1976)
16.
go back to reference Wang, S.H., Zawadzki, S., Akcelrud, L.: Morphology and Damping Behavior of Polyurethane/PMMA Simultaneous Interpenetrating Networks. Mater. Res. 4(1), 27–33 (2001) Wang, S.H., Zawadzki, S., Akcelrud, L.: Morphology and Damping Behavior of Polyurethane/PMMA Simultaneous Interpenetrating Networks. Mater. Res. 4(1), 27–33 (2001)
17.
go back to reference Mathew, A.P., Packirisamy, S., Thomas Eur, S.: Effect of initiating system, blend ratio crosslink density on the mechaical properties failure topography of nano-structured full-interpenetrating polymer networks from natural rubber polystyrene. Polym. J. 37, 1921 (2001) Mathew, A.P., Packirisamy, S., Thomas Eur, S.: Effect of initiating system, blend ratio crosslink density on the mechaical properties failure topography of nano-structured full-interpenetrating polymer networks from natural rubber polystyrene. Polym. J. 37, 1921 (2001)
18.
go back to reference Shyu, S.S., Cen, D.S.: Polycarbonate-polyurethane semi-interpenetrating polymer networks: Tg behavior and morphology. J. Appl. Polym. Sci. 34, 2151 (1987)CrossRef Shyu, S.S., Cen, D.S.: Polycarbonate-polyurethane semi-interpenetrating polymer networks: Tg behavior and morphology. J. Appl. Polym. Sci. 34, 2151 (1987)CrossRef
19.
go back to reference Kim, S.C., Klempner, D., Frisch, K.C., Frisch, H.L.: Polyurethane interpenetrating Polymer Networks. II. Density and Glass Transition Behavior of Polyurethane-Poly(methyl methacrylate) and Polyurethane-Polystyrene IPN's . Macromolecules 9(2), 263 (1976)CrossRef Kim, S.C., Klempner, D., Frisch, K.C., Frisch, H.L.: Polyurethane interpenetrating Polymer Networks. II. Density and Glass Transition Behavior of Polyurethane-Poly(methyl methacrylate) and Polyurethane-Polystyrene IPN's . Macromolecules 9(2), 263 (1976)CrossRef
20.
go back to reference Kong, X., Narine, S.S.: Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Biomacromolecules 9(8), 2221 (2008)CrossRef Kong, X., Narine, S.S.: Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Biomacromolecules 9(8), 2221 (2008)CrossRef
21.
go back to reference Heulck, V., Thomas, D.A., Sperling, L.H.: Interpenetrating Polymer Networks of Poly(ethyl acrylate) and Poly(styrene-co-methly methacrylate). I. Morphology via Electron Microscopy. Macromolecules 5, 340 (1972) Heulck, V., Thomas, D.A., Sperling, L.H.: Interpenetrating Polymer Networks of Poly(ethyl acrylate) and Poly(styrene-co-methly methacrylate). I. Morphology via Electron Microscopy. Macromolecules 5, 340 (1972)
23.
go back to reference Suthar, B., Xiao, H.X., Klempner, D., Frisch, K.C.: A review of kinetic studies on the formation of interpenetrating polymer networks. Polym. Adv. Technol. 7, 221 (1996) Suthar, B., Xiao, H.X., Klempner, D., Frisch, K.C.: A review of kinetic studies on the formation of interpenetrating polymer networks. Polym. Adv. Technol. 7, 221 (1996)
24.
go back to reference Robeson, L.M.: Polymer Blends: A comprehensive review, Hanser (2007) Robeson, L.M.: Polymer Blends: A comprehensive review, Hanser (2007)
25.
go back to reference Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 1. Control of Morphology by Level of Cross-Linking. Macromolecules 9(4), 676 (1976)CrossRef Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 1. Control of Morphology by Level of Cross-Linking. Macromolecules 9(4), 676 (1976)CrossRef
26.
go back to reference Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 2. Influence of Synthetic Detail and Morphology on Mechanical Behavior. Macromolecules 9(4), 671 (1976)CrossRef Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 2. Influence of Synthetic Detail and Morphology on Mechanical Behavior. Macromolecules 9(4), 671 (1976)CrossRef
27.
go back to reference Yeo, J.K., Sperling, L.H., Thomas, D.A.: Theoretical prediction of domain sizes in IPN's and related materials. Polymer 24, 307 (1983)CrossRef Yeo, J.K., Sperling, L.H., Thomas, D.A.: Theoretical prediction of domain sizes in IPN's and related materials. Polymer 24, 307 (1983)CrossRef
28.
go back to reference Mathew, A.P., Groeninckx, G., Radhusch, H.J., Michler, G.H., Thomas, S.: Viscoelastic properties of nanostructured natural rubber/polystyrene interpenetrating polymer networks. J. Polym. Sci. Polym. Phys. 41, 1680 (2003)CrossRef Mathew, A.P., Groeninckx, G., Radhusch, H.J., Michler, G.H., Thomas, S.: Viscoelastic properties of nanostructured natural rubber/polystyrene interpenetrating polymer networks. J. Polym. Sci. Polym. Phys. 41, 1680 (2003)CrossRef
29.
go back to reference Chen, C.H., Chen, W.J., Chen, M.H., Li, Y.M.: Simultaneous full-interpenetrating polymer networks of blocked polyurethane and vinyl ester Part I. Synthesis, swelling ratio, thermal properties and morphology. Polymer 41, 7961 (2000)CrossRef Chen, C.H., Chen, W.J., Chen, M.H., Li, Y.M.: Simultaneous full-interpenetrating polymer networks of blocked polyurethane and vinyl ester Part I. Synthesis, swelling ratio, thermal properties and morphology. Polymer 41, 7961 (2000)CrossRef
30.
go back to reference Hourston, D.J., Schafer, F.U.: Poly(ether urethane)/poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, phase continuity and mechanical properties as a function of composition. Polymer 37, 3521 (1996)CrossRef Hourston, D.J., Schafer, F.U.: Poly(ether urethane)/poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, phase continuity and mechanical properties as a function of composition. Polymer 37, 3521 (1996)CrossRef
31.
go back to reference Klempner, D., Berkowski, L.: Encyclopedia of polymer science and engineering, vol. 8. Wiley, New York (1988) Klempner, D., Berkowski, L.: Encyclopedia of polymer science and engineering, vol. 8. Wiley, New York (1988)
32.
go back to reference Sun, Y-Y., Chen, C-H: Interpenetrating polymer network of blocked polyurethane and phenolic resin. I. synthesis, morphology, and mechanical properties. Polym. Eng. Sci. 51, 285–293 (2011) Sun, Y-Y., Chen, C-H: Interpenetrating polymer network of blocked polyurethane and phenolic resin. I. synthesis, morphology, and mechanical properties. Polym. Eng. Sci. 51, 285–293 (2011)
33.
go back to reference Roha, M., Dong, F., Appl, J.: The effects of functional azo initiator on PMMA and polyurethane IPN systems. III. Tear resistance and crack growth of PBD(1,2)-PU/PMMA (50%) blends. Polym. Sci. 45, 1397–1409 (1992) Roha, M., Dong, F., Appl, J.: The effects of functional azo initiator on PMMA and polyurethane IPN systems. III. Tear resistance and crack growth of PBD(1,2)-PU/PMMA (50%) blends. Polym. Sci. 45, 1397–1409 (1992)
34.
go back to reference Valero, M.F.: Polyurethane–Polystyrene simultaneous interpenetrating networks from modified castor oil. J. Elast. Plast. 42, 255–265 (2010) Valero, M.F.: Polyurethane–Polystyrene simultaneous interpenetrating networks from modified castor oil. J. Elast. Plast. 42, 255–265 (2010)
35.
go back to reference Valero, M.F., Pudino, J.E., Ramirez, A., Cheng, Z.: Simultaneous interpenetrating polymer networks from pentaerythritol-modified castor oil and polystyrene: Structure-property relationship. J. Am. O Chem. Soc. 86 (4), 383–392 (2009) Valero, M.F., Pudino, J.E., Ramirez, A., Cheng, Z.: Simultaneous interpenetrating polymer networks from pentaerythritol-modified castor oil and polystyrene: Structure-property relationship. J. Am. O Chem. Soc. 86 (4), 383–392 (2009)
36.
go back to reference Bird, S.A., Clary, D., Jajam, K.C., Tippur, H.V., Auad, M.L.: Synthesis and characterization of high performance, transparent interpenetrating polymer networks with polyurethane and poly(methyl methacrylate). Polym. Eng. Sci. (2012). doi:10.1002/pen.23305 Bird, S.A., Clary, D., Jajam, K.C., Tippur, H.V., Auad, M.L.: Synthesis and characterization of high performance, transparent interpenetrating polymer networks with polyurethane and poly(methyl methacrylate). Polym. Eng. Sci. (2012). doi:10.​1002/​pen.​23305
37.
go back to reference Dongyan, T., Hong, L., Weimin, C.: Synthesis and application studies of castor oil PU/PMMA IPNs with BaTiO3 fiber nanocomposites. Ferroelectrics 265, 259 (2002)CrossRef Dongyan, T., Hong, L., Weimin, C.: Synthesis and application studies of castor oil PU/PMMA IPNs with BaTiO3 fiber nanocomposites. Ferroelectrics 265, 259 (2002)CrossRef
38.
go back to reference Lei, Z., Yang, Q., Wu, S., Song, X.: Reinforcement of polyurethane/epoxy interpenetrating network nanocomposites with an organically modified palygorskite. J. Appl. Polym. Sci. 111, 3150 (2009)CrossRef Lei, Z., Yang, Q., Wu, S., Song, X.: Reinforcement of polyurethane/epoxy interpenetrating network nanocomposites with an organically modified palygorskite. J. Appl. Polym. Sci. 111, 3150 (2009)CrossRef
39.
go back to reference Luo, Y.-L., Feng, Q.S., Xu, F.: Preparation and Properties of PVA/PAAm IPN Hydrogels-Copper Nanoparticles Nanocomposites. Adv. Mater. Res. 2397, 284–286 (2011) Luo, Y.-L., Feng, Q.S., Xu, F.: Preparation and Properties of PVA/PAAm IPN Hydrogels-Copper Nanoparticles Nanocomposites. Adv. Mater. Res. 2397, 284–286 (2011)
40.
go back to reference Zhan, K., You, H., Liu, W., Lu, J., Lu, P., Dong, J.: Pd nanoparticles encaged in nanoporous interpenetrating polymer networks: A robust recyclable catalyst for Heck reactions. React. Func. Polym 71, 756 (2011)CrossRef Zhan, K., You, H., Liu, W., Lu, J., Lu, P., Dong, J.: Pd nanoparticles encaged in nanoporous interpenetrating polymer networks: A robust recyclable catalyst for Heck reactions. React. Func. Polym 71, 756 (2011)CrossRef
41.
go back to reference Peterson, A.M., Kotthapalli H., Pahmathullah, M.A.M., Palmsese, G.R.: Investigation of interpenetrating polymer networks for self-healing applications. Comp. Sci. Tech. 72(2), 330 (2012) Peterson, A.M., Kotthapalli H., Pahmathullah, M.A.M., Palmsese, G.R.: Investigation of interpenetrating polymer networks for self-healing applications. Comp. Sci. Tech. 72(2), 330 (2012)
42.
go back to reference Wang, J., Liu, F., Wei, J.: Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal. Polym. Bull. 67(8), 1709 (2011)CrossRef Wang, J., Liu, F., Wei, J.: Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal. Polym. Bull. 67(8), 1709 (2011)CrossRef
43.
go back to reference Chung, C_W., Kang, J.Y., Yoon, I-S., Hwang, H-D., Balakrishnan, P., Cho, H-J., Chung, K-D., Kang, D-H., Kim, D–D.: Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloids Surf. B. 88, 711 (2011) Chung, C_W., Kang, J.Y., Yoon, I-S., Hwang, H-D., Balakrishnan, P., Cho, H-J., Chung, K-D., Kang, D-H., Kim, D–D.: Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloids Surf. B. 88, 711 (2011)
44.
go back to reference Myung, D., Waters, D., Wiseman, M., Duhamel, P-E., Noolandi, J., Ta, C.N., Frank, C.W.: Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol. 19, 647 (2008) Myung, D., Waters, D., Wiseman, M., Duhamel, P-E., Noolandi, J., Ta, C.N., Frank, C.W.: Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol. 19, 647 (2008)
45.
go back to reference Owens, D.E., Jian, Y., Fang, J-E., Slaughter, B.V., Chen, Y-H., Peppas, N.A.: Thermally responsive swelling properties of polyacrylamide/poly (acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40, 7306 (2007) Owens, D.E., Jian, Y., Fang, J-E., Slaughter, B.V., Chen, Y-H., Peppas, N.A.: Thermally responsive swelling properties of polyacrylamide/poly (acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40, 7306 (2007)
46.
go back to reference Chekina, N.A., Pavlyunchenko, V.N., Danilichev, V.F., Ushakov, N.A., Novikov, S.A., Ivanchev, S.S.: A new polymeric silicone hydrogel for medical applications: synthesis and properties. Poym. Adv. Technol. 17, 872 (2006) Chekina, N.A., Pavlyunchenko, V.N., Danilichev, V.F., Ushakov, N.A., Novikov, S.A., Ivanchev, S.S.: A new polymeric silicone hydrogel for medical applications: synthesis and properties. Poym. Adv. Technol. 17, 872 (2006)
47.
go back to reference Sperling L.H.: Multicomponent polymeric materials. In: Paul, D.R., Sperling, L.H. (eds.) Advances in chemistry 211, American Chemical Society, Washington (1986) Sperling L.H.: Multicomponent polymeric materials. In: Paul, D.R., Sperling, L.H. (eds.) Advances in chemistry 211, American Chemical Society, Washington (1986)
48.
go back to reference Predecki, P.: A method for hydron impregnation of silicone rubber. J. Biomed. Mater. Res. 8, 487 (1974)CrossRef Predecki, P.: A method for hydron impregnation of silicone rubber. J. Biomed. Mater. Res. 8, 487 (1974)CrossRef
49.
go back to reference Odian, G., Bernstein, B.S.: Monomers improve radiation crosslinking in polymers. Nucleonics 21, 80 (1963) Odian, G., Bernstein, B.S.: Monomers improve radiation crosslinking in polymers. Nucleonics 21, 80 (1963)
50.
go back to reference Sperling, L.H., Florenza, V.A., Manson, J.A.: Interpenetrating polymer networks as piezodialysis membranes. J. Poly, Sci Polym. Lett. Ed. 13, 713 (1975)CrossRef Sperling, L.H., Florenza, V.A., Manson, J.A.: Interpenetrating polymer networks as piezodialysis membranes. J. Poly, Sci Polym. Lett. Ed. 13, 713 (1975)CrossRef
51.
go back to reference Balaji, R., Loileau, S., Guerin, P., Grande, D.: Design of Porous Polymeric Materials from Miscellaneous Macromolecular Architectures: An Overview. Polym. News 29, 205 (2004)CrossRef Balaji, R., Loileau, S., Guerin, P., Grande, D.: Design of Porous Polymeric Materials from Miscellaneous Macromolecular Architectures: An Overview. Polym. News 29, 205 (2004)CrossRef
Metadata
Title
Interpenetrating Polymer Networks: Processing, Properties and Applications
Author
Aji. P. Mathew
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-20925-3_10

Premium Partners