Skip to main content

2013 | OriginalPaper | Buchkapitel

Interpenetrating Polymer Networks: Processing, Properties and Applications

verfasst von : Aji. P. Mathew

Erschienen in: Advances in Elastomers I

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Interpenetrating polymer networks (IPNs) are defined as combination of two or more polymers in network form with at least one of which is polymerised and/or crosslinked in the immediate presence of the others. IPNs are based on combinations of two or more polymers and are younger cousins to polymer blends, blocks and grafts. All these are members of a larger class of multicomponent polymeric systems, where as in IPNs, the polymers are crosslinked, thus providing a mechanism for controlling the domain sizes and reducing creep and flow. Though the idea behind IPN synthesis is to effect molecular level interpenetration of the polymer networks, most IPNs form immiscible systems with phase separation during some stage of synthesis. Aylsworth, in 1914 invented the first known IPN, but the term IPN was coined much later in 1960, by Millar who developed PS/PS IPNs to be used as ion exchange resin matrices (Aylsworth, US Patent 1, 111, 284, 1914), (Millar, J. Chem. Soc. 1311, 1960). The literature review shows that Sperling and coworkers at Lehigh university, USA followed by Frisch from University of Detroit and Frisch from Suny, Albany have made the most contributions to this research area. The current review on IPNs summarises the processing, properties and applications of IPNs, with special focus on some recent developments and trends.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aylsworth, J.W.: US Patent 1, 111, 284 (1914) Aylsworth, J.W.: US Patent 1, 111, 284 (1914)
2.
Zurück zum Zitat Millar, J.R.: Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J. Chem. Soc. 1311 (1960) Millar, J.R.: Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J. Chem. Soc. 1311 (1960)
3.
Zurück zum Zitat Work, J.L.: Solid-state structure of melt blended incompatible polymeric mixtures involving poly(vinyl chloride). Polym. Eng. Sci. 13, 46 (1973)CrossRef Work, J.L.: Solid-state structure of melt blended incompatible polymeric mixtures involving poly(vinyl chloride). Polym. Eng. Sci. 13, 46 (1973)CrossRef
4.
Zurück zum Zitat Molau, G.E.: Colloidal and morphological behavior of block and graft copolymers. Plenum, New york (1971)CrossRef Molau, G.E.: Colloidal and morphological behavior of block and graft copolymers. Plenum, New york (1971)CrossRef
5.
Zurück zum Zitat Szwarc, M.: Block and graft polymers their synthesis, especially by living polymer technique, and their properties. Polym. Eng. Sci. 13, 1 (1973)CrossRef Szwarc, M.: Block and graft polymers their synthesis, especially by living polymer technique, and their properties. Polym. Eng. Sci. 13, 1 (1973)CrossRef
6.
Zurück zum Zitat Sperling, L.H., Mishra, V.: The current status of interpenetrating polymer networks. Polym. Adv. Technol. 7, 197 (1996)CrossRef Sperling, L.H., Mishra, V.: The current status of interpenetrating polymer networks. Polym. Adv. Technol. 7, 197 (1996)CrossRef
7.
Zurück zum Zitat Mathew, A.P., Packirisamy, S., Thomas, S.: Morphology, mechanical properties failure topography of semi-interpentrating polymer networks based on natural rubber polystyrene. J. Appl. Polym. Sci. 78, 2327–2344 (2000)CrossRef Mathew, A.P., Packirisamy, S., Thomas, S.: Morphology, mechanical properties failure topography of semi-interpentrating polymer networks based on natural rubber polystyrene. J. Appl. Polym. Sci. 78, 2327–2344 (2000)CrossRef
8.
Zurück zum Zitat Sperling, L.H.: IPN and relatedmaterials. Plenum press, Newyork (1981) Sperling, L.H.: IPN and relatedmaterials. Plenum press, Newyork (1981)
9.
Zurück zum Zitat Chakraborty, D., Das, B., Roy, S.: Epoxy resin–poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, mechanical, and thermal properties. J. Appl. Polym. Sci. 67, 1051 (1998)CrossRef Chakraborty, D., Das, B., Roy, S.: Epoxy resin–poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, mechanical, and thermal properties. J. Appl. Polym. Sci. 67, 1051 (1998)CrossRef
10.
Zurück zum Zitat Tan, S., Zhang, D., Zhou, E.: Dynamic mechanical properties of interpenetrating polymer networks based on polyacrylates and epoxy. Acta Polymerca 47, 507 (1996)CrossRef Tan, S., Zhang, D., Zhou, E.: Dynamic mechanical properties of interpenetrating polymer networks based on polyacrylates and epoxy. Acta Polymerca 47, 507 (1996)CrossRef
11.
Zurück zum Zitat Frisch, H.L., Klempner, D.: Topological Isomerism and Macromolecules. In: Pasika, W.M. (ed.) Advances in Macromolecular Chemistry, vol. 2, Academic Press(1970) Frisch, H.L., Klempner, D.: Topological Isomerism and Macromolecules. In: Pasika, W.M. (ed.) Advances in Macromolecular Chemistry, vol. 2, Academic Press(1970)
12.
Zurück zum Zitat Coran, A.Y., Patel, R.P.: In: Holden, G., Legge, N.R., Quirk, R., Schroeder, H.E. (eds.) Thermoplastic elastomers. Hanser, Munich (1996) Coran, A.Y., Patel, R.P.: In: Holden, G., Legge, N.R., Quirk, R., Schroeder, H.E. (eds.) Thermoplastic elastomers. Hanser, Munich (1996)
13.
Zurück zum Zitat Lipatov, Y.S., Karanova, L.V., Gorbach, L.A., Lutsyk, E.D., Sergeeva, L.M.: Temperature transitions and compatibility in gradient interpenetrating polymer networks. Polym. Int. 28(2), 99 (1992)CrossRef Lipatov, Y.S., Karanova, L.V., Gorbach, L.A., Lutsyk, E.D., Sergeeva, L.M.: Temperature transitions and compatibility in gradient interpenetrating polymer networks. Polym. Int. 28(2), 99 (1992)CrossRef
14.
Zurück zum Zitat Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: Epoxy/acrylic simultaneous interpenetrating networks. J Polym. Sci. 46C, 175 (1974) Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: Epoxy/acrylic simultaneous interpenetrating networks. J Polym. Sci. 46C, 175 (1974)
15.
Zurück zum Zitat Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: In: Deanin, R.D., Crugnola, A.M. (eds.) Toughness and brittleness of plastics. Advances in Chemistry, Ser. 154. American Chemical Society, Washington (1976) Touhsaent, R.E., Thomas, D.A., Sperling, L.H.: In: Deanin, R.D., Crugnola, A.M. (eds.) Toughness and brittleness of plastics. Advances in Chemistry, Ser. 154. American Chemical Society, Washington (1976)
16.
Zurück zum Zitat Wang, S.H., Zawadzki, S., Akcelrud, L.: Morphology and Damping Behavior of Polyurethane/PMMA Simultaneous Interpenetrating Networks. Mater. Res. 4(1), 27–33 (2001) Wang, S.H., Zawadzki, S., Akcelrud, L.: Morphology and Damping Behavior of Polyurethane/PMMA Simultaneous Interpenetrating Networks. Mater. Res. 4(1), 27–33 (2001)
17.
Zurück zum Zitat Mathew, A.P., Packirisamy, S., Thomas Eur, S.: Effect of initiating system, blend ratio crosslink density on the mechaical properties failure topography of nano-structured full-interpenetrating polymer networks from natural rubber polystyrene. Polym. J. 37, 1921 (2001) Mathew, A.P., Packirisamy, S., Thomas Eur, S.: Effect of initiating system, blend ratio crosslink density on the mechaical properties failure topography of nano-structured full-interpenetrating polymer networks from natural rubber polystyrene. Polym. J. 37, 1921 (2001)
18.
Zurück zum Zitat Shyu, S.S., Cen, D.S.: Polycarbonate-polyurethane semi-interpenetrating polymer networks: Tg behavior and morphology. J. Appl. Polym. Sci. 34, 2151 (1987)CrossRef Shyu, S.S., Cen, D.S.: Polycarbonate-polyurethane semi-interpenetrating polymer networks: Tg behavior and morphology. J. Appl. Polym. Sci. 34, 2151 (1987)CrossRef
19.
Zurück zum Zitat Kim, S.C., Klempner, D., Frisch, K.C., Frisch, H.L.: Polyurethane interpenetrating Polymer Networks. II. Density and Glass Transition Behavior of Polyurethane-Poly(methyl methacrylate) and Polyurethane-Polystyrene IPN's . Macromolecules 9(2), 263 (1976)CrossRef Kim, S.C., Klempner, D., Frisch, K.C., Frisch, H.L.: Polyurethane interpenetrating Polymer Networks. II. Density and Glass Transition Behavior of Polyurethane-Poly(methyl methacrylate) and Polyurethane-Polystyrene IPN's . Macromolecules 9(2), 263 (1976)CrossRef
20.
Zurück zum Zitat Kong, X., Narine, S.S.: Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Biomacromolecules 9(8), 2221 (2008)CrossRef Kong, X., Narine, S.S.: Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Biomacromolecules 9(8), 2221 (2008)CrossRef
21.
Zurück zum Zitat Heulck, V., Thomas, D.A., Sperling, L.H.: Interpenetrating Polymer Networks of Poly(ethyl acrylate) and Poly(styrene-co-methly methacrylate). I. Morphology via Electron Microscopy. Macromolecules 5, 340 (1972) Heulck, V., Thomas, D.A., Sperling, L.H.: Interpenetrating Polymer Networks of Poly(ethyl acrylate) and Poly(styrene-co-methly methacrylate). I. Morphology via Electron Microscopy. Macromolecules 5, 340 (1972)
22.
23.
Zurück zum Zitat Suthar, B., Xiao, H.X., Klempner, D., Frisch, K.C.: A review of kinetic studies on the formation of interpenetrating polymer networks. Polym. Adv. Technol. 7, 221 (1996) Suthar, B., Xiao, H.X., Klempner, D., Frisch, K.C.: A review of kinetic studies on the formation of interpenetrating polymer networks. Polym. Adv. Technol. 7, 221 (1996)
24.
Zurück zum Zitat Robeson, L.M.: Polymer Blends: A comprehensive review, Hanser (2007) Robeson, L.M.: Polymer Blends: A comprehensive review, Hanser (2007)
25.
Zurück zum Zitat Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 1. Control of Morphology by Level of Cross-Linking. Macromolecules 9(4), 676 (1976)CrossRef Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 1. Control of Morphology by Level of Cross-Linking. Macromolecules 9(4), 676 (1976)CrossRef
26.
Zurück zum Zitat Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 2. Influence of Synthetic Detail and Morphology on Mechanical Behavior. Macromolecules 9(4), 671 (1976)CrossRef Donatelli, A.A., Sperling, L.H., Thomas, D.A.: Interpenetrating Polymer Networks Based on SBR/PS. 2. Influence of Synthetic Detail and Morphology on Mechanical Behavior. Macromolecules 9(4), 671 (1976)CrossRef
27.
Zurück zum Zitat Yeo, J.K., Sperling, L.H., Thomas, D.A.: Theoretical prediction of domain sizes in IPN's and related materials. Polymer 24, 307 (1983)CrossRef Yeo, J.K., Sperling, L.H., Thomas, D.A.: Theoretical prediction of domain sizes in IPN's and related materials. Polymer 24, 307 (1983)CrossRef
28.
Zurück zum Zitat Mathew, A.P., Groeninckx, G., Radhusch, H.J., Michler, G.H., Thomas, S.: Viscoelastic properties of nanostructured natural rubber/polystyrene interpenetrating polymer networks. J. Polym. Sci. Polym. Phys. 41, 1680 (2003)CrossRef Mathew, A.P., Groeninckx, G., Radhusch, H.J., Michler, G.H., Thomas, S.: Viscoelastic properties of nanostructured natural rubber/polystyrene interpenetrating polymer networks. J. Polym. Sci. Polym. Phys. 41, 1680 (2003)CrossRef
29.
Zurück zum Zitat Chen, C.H., Chen, W.J., Chen, M.H., Li, Y.M.: Simultaneous full-interpenetrating polymer networks of blocked polyurethane and vinyl ester Part I. Synthesis, swelling ratio, thermal properties and morphology. Polymer 41, 7961 (2000)CrossRef Chen, C.H., Chen, W.J., Chen, M.H., Li, Y.M.: Simultaneous full-interpenetrating polymer networks of blocked polyurethane and vinyl ester Part I. Synthesis, swelling ratio, thermal properties and morphology. Polymer 41, 7961 (2000)CrossRef
30.
Zurück zum Zitat Hourston, D.J., Schafer, F.U.: Poly(ether urethane)/poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, phase continuity and mechanical properties as a function of composition. Polymer 37, 3521 (1996)CrossRef Hourston, D.J., Schafer, F.U.: Poly(ether urethane)/poly(ethyl methacrylate) interpenetrating polymer networks: Morphology, phase continuity and mechanical properties as a function of composition. Polymer 37, 3521 (1996)CrossRef
31.
Zurück zum Zitat Klempner, D., Berkowski, L.: Encyclopedia of polymer science and engineering, vol. 8. Wiley, New York (1988) Klempner, D., Berkowski, L.: Encyclopedia of polymer science and engineering, vol. 8. Wiley, New York (1988)
32.
Zurück zum Zitat Sun, Y-Y., Chen, C-H: Interpenetrating polymer network of blocked polyurethane and phenolic resin. I. synthesis, morphology, and mechanical properties. Polym. Eng. Sci. 51, 285–293 (2011) Sun, Y-Y., Chen, C-H: Interpenetrating polymer network of blocked polyurethane and phenolic resin. I. synthesis, morphology, and mechanical properties. Polym. Eng. Sci. 51, 285–293 (2011)
33.
Zurück zum Zitat Roha, M., Dong, F., Appl, J.: The effects of functional azo initiator on PMMA and polyurethane IPN systems. III. Tear resistance and crack growth of PBD(1,2)-PU/PMMA (50%) blends. Polym. Sci. 45, 1397–1409 (1992) Roha, M., Dong, F., Appl, J.: The effects of functional azo initiator on PMMA and polyurethane IPN systems. III. Tear resistance and crack growth of PBD(1,2)-PU/PMMA (50%) blends. Polym. Sci. 45, 1397–1409 (1992)
34.
Zurück zum Zitat Valero, M.F.: Polyurethane–Polystyrene simultaneous interpenetrating networks from modified castor oil. J. Elast. Plast. 42, 255–265 (2010) Valero, M.F.: Polyurethane–Polystyrene simultaneous interpenetrating networks from modified castor oil. J. Elast. Plast. 42, 255–265 (2010)
35.
Zurück zum Zitat Valero, M.F., Pudino, J.E., Ramirez, A., Cheng, Z.: Simultaneous interpenetrating polymer networks from pentaerythritol-modified castor oil and polystyrene: Structure-property relationship. J. Am. O Chem. Soc. 86 (4), 383–392 (2009) Valero, M.F., Pudino, J.E., Ramirez, A., Cheng, Z.: Simultaneous interpenetrating polymer networks from pentaerythritol-modified castor oil and polystyrene: Structure-property relationship. J. Am. O Chem. Soc. 86 (4), 383–392 (2009)
36.
Zurück zum Zitat Bird, S.A., Clary, D., Jajam, K.C., Tippur, H.V., Auad, M.L.: Synthesis and characterization of high performance, transparent interpenetrating polymer networks with polyurethane and poly(methyl methacrylate). Polym. Eng. Sci. (2012). doi:10.1002/pen.23305 Bird, S.A., Clary, D., Jajam, K.C., Tippur, H.V., Auad, M.L.: Synthesis and characterization of high performance, transparent interpenetrating polymer networks with polyurethane and poly(methyl methacrylate). Polym. Eng. Sci. (2012). doi:10.​1002/​pen.​23305
37.
Zurück zum Zitat Dongyan, T., Hong, L., Weimin, C.: Synthesis and application studies of castor oil PU/PMMA IPNs with BaTiO3 fiber nanocomposites. Ferroelectrics 265, 259 (2002)CrossRef Dongyan, T., Hong, L., Weimin, C.: Synthesis and application studies of castor oil PU/PMMA IPNs with BaTiO3 fiber nanocomposites. Ferroelectrics 265, 259 (2002)CrossRef
38.
Zurück zum Zitat Lei, Z., Yang, Q., Wu, S., Song, X.: Reinforcement of polyurethane/epoxy interpenetrating network nanocomposites with an organically modified palygorskite. J. Appl. Polym. Sci. 111, 3150 (2009)CrossRef Lei, Z., Yang, Q., Wu, S., Song, X.: Reinforcement of polyurethane/epoxy interpenetrating network nanocomposites with an organically modified palygorskite. J. Appl. Polym. Sci. 111, 3150 (2009)CrossRef
39.
Zurück zum Zitat Luo, Y.-L., Feng, Q.S., Xu, F.: Preparation and Properties of PVA/PAAm IPN Hydrogels-Copper Nanoparticles Nanocomposites. Adv. Mater. Res. 2397, 284–286 (2011) Luo, Y.-L., Feng, Q.S., Xu, F.: Preparation and Properties of PVA/PAAm IPN Hydrogels-Copper Nanoparticles Nanocomposites. Adv. Mater. Res. 2397, 284–286 (2011)
40.
Zurück zum Zitat Zhan, K., You, H., Liu, W., Lu, J., Lu, P., Dong, J.: Pd nanoparticles encaged in nanoporous interpenetrating polymer networks: A robust recyclable catalyst for Heck reactions. React. Func. Polym 71, 756 (2011)CrossRef Zhan, K., You, H., Liu, W., Lu, J., Lu, P., Dong, J.: Pd nanoparticles encaged in nanoporous interpenetrating polymer networks: A robust recyclable catalyst for Heck reactions. React. Func. Polym 71, 756 (2011)CrossRef
41.
Zurück zum Zitat Peterson, A.M., Kotthapalli H., Pahmathullah, M.A.M., Palmsese, G.R.: Investigation of interpenetrating polymer networks for self-healing applications. Comp. Sci. Tech. 72(2), 330 (2012) Peterson, A.M., Kotthapalli H., Pahmathullah, M.A.M., Palmsese, G.R.: Investigation of interpenetrating polymer networks for self-healing applications. Comp. Sci. Tech. 72(2), 330 (2012)
42.
Zurück zum Zitat Wang, J., Liu, F., Wei, J.: Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal. Polym. Bull. 67(8), 1709 (2011)CrossRef Wang, J., Liu, F., Wei, J.: Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal. Polym. Bull. 67(8), 1709 (2011)CrossRef
43.
Zurück zum Zitat Chung, C_W., Kang, J.Y., Yoon, I-S., Hwang, H-D., Balakrishnan, P., Cho, H-J., Chung, K-D., Kang, D-H., Kim, D–D.: Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloids Surf. B. 88, 711 (2011) Chung, C_W., Kang, J.Y., Yoon, I-S., Hwang, H-D., Balakrishnan, P., Cho, H-J., Chung, K-D., Kang, D-H., Kim, D–D.: Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloids Surf. B. 88, 711 (2011)
44.
Zurück zum Zitat Myung, D., Waters, D., Wiseman, M., Duhamel, P-E., Noolandi, J., Ta, C.N., Frank, C.W.: Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol. 19, 647 (2008) Myung, D., Waters, D., Wiseman, M., Duhamel, P-E., Noolandi, J., Ta, C.N., Frank, C.W.: Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol. 19, 647 (2008)
45.
Zurück zum Zitat Owens, D.E., Jian, Y., Fang, J-E., Slaughter, B.V., Chen, Y-H., Peppas, N.A.: Thermally responsive swelling properties of polyacrylamide/poly (acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40, 7306 (2007) Owens, D.E., Jian, Y., Fang, J-E., Slaughter, B.V., Chen, Y-H., Peppas, N.A.: Thermally responsive swelling properties of polyacrylamide/poly (acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40, 7306 (2007)
46.
Zurück zum Zitat Chekina, N.A., Pavlyunchenko, V.N., Danilichev, V.F., Ushakov, N.A., Novikov, S.A., Ivanchev, S.S.: A new polymeric silicone hydrogel for medical applications: synthesis and properties. Poym. Adv. Technol. 17, 872 (2006) Chekina, N.A., Pavlyunchenko, V.N., Danilichev, V.F., Ushakov, N.A., Novikov, S.A., Ivanchev, S.S.: A new polymeric silicone hydrogel for medical applications: synthesis and properties. Poym. Adv. Technol. 17, 872 (2006)
47.
Zurück zum Zitat Sperling L.H.: Multicomponent polymeric materials. In: Paul, D.R., Sperling, L.H. (eds.) Advances in chemistry 211, American Chemical Society, Washington (1986) Sperling L.H.: Multicomponent polymeric materials. In: Paul, D.R., Sperling, L.H. (eds.) Advances in chemistry 211, American Chemical Society, Washington (1986)
48.
Zurück zum Zitat Predecki, P.: A method for hydron impregnation of silicone rubber. J. Biomed. Mater. Res. 8, 487 (1974)CrossRef Predecki, P.: A method for hydron impregnation of silicone rubber. J. Biomed. Mater. Res. 8, 487 (1974)CrossRef
49.
Zurück zum Zitat Odian, G., Bernstein, B.S.: Monomers improve radiation crosslinking in polymers. Nucleonics 21, 80 (1963) Odian, G., Bernstein, B.S.: Monomers improve radiation crosslinking in polymers. Nucleonics 21, 80 (1963)
50.
Zurück zum Zitat Sperling, L.H., Florenza, V.A., Manson, J.A.: Interpenetrating polymer networks as piezodialysis membranes. J. Poly, Sci Polym. Lett. Ed. 13, 713 (1975)CrossRef Sperling, L.H., Florenza, V.A., Manson, J.A.: Interpenetrating polymer networks as piezodialysis membranes. J. Poly, Sci Polym. Lett. Ed. 13, 713 (1975)CrossRef
51.
Zurück zum Zitat Balaji, R., Loileau, S., Guerin, P., Grande, D.: Design of Porous Polymeric Materials from Miscellaneous Macromolecular Architectures: An Overview. Polym. News 29, 205 (2004)CrossRef Balaji, R., Loileau, S., Guerin, P., Grande, D.: Design of Porous Polymeric Materials from Miscellaneous Macromolecular Architectures: An Overview. Polym. News 29, 205 (2004)CrossRef
Metadaten
Titel
Interpenetrating Polymer Networks: Processing, Properties and Applications
verfasst von
Aji. P. Mathew
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-20925-3_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.