Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Interpretations and Modeling

Author : Stéphane Sainson

Published in: Electromagnetic Seabed Logging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes the various methods of interpretation of electromagnetic data. After a succinct recollection of the approach to solve the forward problem determined from the Maxwell equations and Ohm’s law, several methods of resolution are proposed. These involve either analytical 1D models considering some (quasistatic) approximations or numerical models for higher-order dimensions. Analytical equation resolutions have been favored for their educational value considering geological canonic models and relatively simple integration methods. Then we recall some data inversion techniques, which allow us to directly access specific resistivity values of the subsoil and therefore to detect the presence or absence of hydrocarbons. Finally we describe the analog models that concretely allow us to establish special detection devices or check some assumptions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
As in previous chapters, we recall, throughout the presentation, a brief history of the interpretation methods, allowing us to follow the evolution of ideas and concepts that have led to current techniques.
 
2
Scope of action of transient methods, for example.
 
3
Only electric logs (wireline or MWD) are able to provide the “true” resistivity. This assumes, of course, that the geological layers are crossed by a drilling (borehole).
 
4
This corresponds, as discussed later, to the resolution of the inverse problem.
 
5
“To interpret is to establish relations of cause and effect between the structure of the subsoil and the highlighted physical phenomena, it is to deduce what are (or possibly what are not) the geological structures compatible with a specific anomaly. These relations of cause and effect between structure and anomaly are conceivable only in numerical form, in other words mathematics. Whether one likes it or not, the interpretation is only a mathematical problem ”(Cagniard 1950).
 
6
The mathematical problem applies above all to geological data, i.e., to facts of observation that fix reality at a certain moment in time and in space. We can thus arrive at valid conclusions only if we take into account this natural reality, which can be obtained by sufficient knowledge of the local geology. The more numerous and reliable the geological data are, the less theoretical and long the mathematical work of the interpretation will be.
 
7
It is easier for now to memorize a series of abacuses than to run numerical calculation codes on embarked units and more particularly on seabed sensors.
 
8
See the definition in Appendix 2.5.
 
9
The first to be put into practice and still used.
 
10
Not always easy to get.
 
11
In the 1950s, these models, locked in cabinets, were completely automated and controlled by a panel where it was possible to set different combinations with electromechanical switches.
 
12
As discussed later, cylindrical and spherical coordinates are also used.
 
13
At the frequencies, the propagation term (second term) disappears.
 
14
Weber’s law allows us to connect the images theory developed by Hummel to that of S. Stefanescu (Lasfargues 1957).
 
15
The integration of linear partial differential equations with a constant coefficient was built very naturally at the beginning (A. Cauchy) based on theorems of existence and uniqueness, then providing analytical integrals in the form of power series, where the coefficients were calculated by recurrence from the initial conditions and boundary conditions. According to their research, physicists realized pretty quickly that certain series of special functions (Bessel functions, Legendre polynomials, etc.) highlighted, better than the power series, the properties of integrals. However, these integrals such as the series converge only very slowly, which limits the calculation of apparent resistivity in practice.
 
16
It is necessary to know that these methods offer incomparable implementation flexibility with respect to the complexity of the considered media, but require on the other hand the monopolization of significant computational resources not always compatible with the data stream.
 
17
The reader will find in the works of Professors Parker (Parker 1994) and Scales (Scales et al. 2001) an excellent introduction to the resolution of the inverse problem in the field of geophysics. The works of Professor Tarantola, however, are more difficult to access (Tarantola 1981, 2005).
 
18
The resolution of the inverse problem must, according to the French mathematician J. Hadamard match to “a well-posed problem”—i.e., that its solution must imperatively respond to three separate criteria: to exist, be unique and stable with respect to measurement errors.
 
19
Cited by Wenner but not demonstrated by the author (see, more precisely, Appendix A2.2).
 
20
With few exceptions (mise à la masse, spontaneous polarization), electrical methods have never been used for the detection of a local anomaly, this type of investigation being reserved for the field of electromagnetic methods. The reader will find details on the development of these techniques in general works on electrical prospecting (Keller and Frischknecht 1966).
 
21
DC marine models (calculations) are not restricted as in situ investigations (measurements) and may in some cases be useful for the interpretation of low frequency data.
 
22
Under these conditions, we introduce the time factor, which must be strictly considered.
 
23
In these cases, the devices then undergo phenomena of induction (a temporal change of flux, creating secondary currents).
 
24
It was in 1932 that Maxwell equations were introduced (for the first time) in the interpretation of geophysical data (Peters and Bardeen 1932).
 
25
The theory is recalled in the Appendix to Chap.2 (cf. Eq. A2.1.4).
 
26
Infinitely resistant layer, with also infinite thickness, being under the sedimentary substratum. This case answers the question of the presence or of the absence of hydrocarbons. It doesn’t give any information about the layer thickness.
 
27
Provided that the depth of water does not exceed a priori, according to some authors, 15 m (Lagabrielle et al. 2001).
 
28
It is possible to acquire this information by performing crossword profiles.
 
29
Theory introduced by Lord Kelvin in 1845 for electrostatics (Thomson 1884; Ramsey 1937) and more generally in electrodynamics by Maxwell in 1848, for which a definition of the electrical image is given on page 246 of his treatise on electricity and magnetism (Maxwell 1892).
 
30
This was the first interpretation method employed in the 1930s by the German Hummel (series expansion), showing that under the reciprocity theorem (see Chap. 2, Appendix A2.2) the question to be addressed was similar to an optical reflection problem. This technique was proposed for the first time by the physicist Thomson (1845–1884). It preceded the methods of the Schlumberger school and particularly those developed by Sabba Stefanescu using, in particular, integration methods for a half-space:
V(r) = RI/2πr [1 + 2r∫ A(t)J o(rt)dt].
Although less elegant than the latter, the Hummel series is more suitable for numerical calculations. We do not detail here the Stefanescu/Schlumberger method, which the reader will find in all books on applied geophysics more particularly about electrical methods (Kunetz 1966; Telford et al. 1978) or more generally about wave propagation in a stratified medium (Bannister 1968).
 
31
The problem of calculating the response of a laminate subsoil to electromagnetic solicitation was resolved early in the twentieth century (Sommerfeld 1909; Weyl 1919).
 
32
Reminder: we can distinguish by electrical sounding only sets powerful enough to affect diagrams in a measurable way. The most favorable structures in this regard are series formed by alternating resistant and conductive sedimentary layers whose thickness increases with depth. The diagram is then formed by a sequence of hollows and bumps that allow us to read:
  • The horizontal conductances (h/ρ) of the conductor sets
  • The transverse resistances (hρ) of the resistant sets
Each survey thus provides:
  • At one point, valuable information on the conductance of the subsoil at this point
  • From one point to another, the changes (deformation of the diagram) in conductors and resistants in space, i.e., in the thicknesses if the facies do not vary
 
33
First (in the 1960s) implemented in big systems (IBM 1620), mathematical models were gradually installed (in the 1970s) on portable microcomputers of the HP85 type (64KB of memory, expandable to 128KB using a specific programming language: HP basic) and then the compatible PC type (in the 1980s).
 
34
The theoretical response of a spherical anomaly in an alternative regime is extremely complex to carry out. Therefore, as a first approximation (low frequency approximation), we prefer calculation in a continuous regime (Telford et al. 1978). Under these conditions, the equation of diffusion is reduced to the Laplace equation.
 
35
It may be assumed that the injection of an alternating current whose injection poles (EM source) are opposed in phase, for example, is similar to the injection of a polarized DC (+/−).
 
36
This can be modeled by arranging some subtleties (see Appendix A5.4 ).
 
37
See Professor Tai’s work (Tai 1971).
 
38
Also called a dyadic Green’s function, this function then connects the scalar equations with vector equations. The Green functions, sensu stricto, are used among others in the methods of numerical resolution by integrals (Roach 1970; Eskola 1992). Their definition is given in Footnote 28 of Chap. 3: Metrology.
 
39
The energy of the source must disperse to infinity (no return).
 
40
Before the inversion operation, the data undergo, if necessary, a migration (see Sect. 4.5.5.1), the results of which can then be compared to the inverted data (Zhdanov et al. 1996; Zhdanov and Portniaguine 1997; Mittet et al. 2005).
 
41
It is therefore important to remove the data that do not check this distribution, thereby improving the variance of the solution. For a series of noisy data (p = 1 or less), other laws are applied.
 
42
We get an idea of the theoretical model, thanks to external elements supplied by seismic or geological data.
 
43
The methods of Levenberg–Macquardt (see below) or those using Gauss/Newton-type optimization techniques, for example, can also be used (Chave and Jones 2012; Amaya 2015). These algorithms (Marquardt 1963) are often complemented by regulation and smoothing techniques to stabilize the inversion process. The latter are based on calculation of the sensitivity matrix at the measurement point. This matrix is calculated numerically by methods such as those for the moments, the finite differences or finite elements.
 
44
The credibility of the model with regard to the measurements is determined by the mean square error or RMS (root mean square).
 
45
We can say, as Professor Claerbout pointed out in his book, that there are as many inversion methods as there are article writers (Claerbout 1992).
 
46
We refer the reader to the specialized literature (Hohmann and Raiche 1987; Glasko 1988; Parker 1994; Colton and Kress 1992; Buland et al. 1996; Zhdanov 2002a, b, c; Hoversten et al. 2006; Stefano and Colombo 2006; Abubakar et al. 2007, 2008; Gribenko and Zhdanov 2007; Bornatici et al. 2007; Roth and Zach 2007; Plessix and Van der Sman 2007; Zeng et al. 2007; Mittet et al. 2007a, 2008; Carrazone et al. 2008; Jing et al. 2008; Plessix and Van der Sman 2008; Price et al. 2008; Zach et al. 2008a, b, c, d; Troyan and Kiselev 2009; Nguyen and Roth 2010; Kumar 2010).
 
47
The first inversion method to be used for electrical soundings.
 
48
Developed by Legendre (1805) and Gauss (1809).
 
49
Software sold by the French company IMAGIR (Brest).
 
50
A similar “holographic” process and details of the calculations are described, for example, in a US patent (Zhdanov 2001).
 
51
For more information, the general principles of migration are treated in various articles and books to which the reader can refer (Zhdanov et al. 1996; Zhdanov 2009). Firstly, as in seismic prospecting, the migration technique was used to correct seabed relief effect and bathemetry raw data errors.
 
52
The principle of Occam’s razor states that if two hypotheses have the same degree of probability, then we favor the simplest hypothesis (the parsimony principle). The procedure is a direct application of Bayestheorem, where the simplest hypothesis then presents the higher probability (see Sect. 5.3.1). The predictive techniques that use the principle of Occam do not guarantee the accuracy of the model.
 
53
Characterizes the evolution of computer power. Probably changed in the future by the appearance of quantum microprocessors.
 
54
Free software originally developed by Apple.
 
55
Technique using the graphic processor unit (GPU) to perform all the calculations instead of the central processor unit (CPU), which is slower.
 
56
Formerly called an electrolytic tank or, more commonly, a bathtub in memory of the first experiments performed in 1911 by Conrad Schlumberger at the Ecole des Mines in Paris (Allaud and Martin 1976; Gruner Schlumberger 1982).
 
57
At this level, it important to take into account the wavelength in order to choose the transmission frequency (tank), while meeting the above criteria.
 
58
In this case, it is recommended to choose not too small a tank and to perform the measurement at its center. One can also choose walls in a conductive material so that they are at the same potential: this was the case with C. Schlumberger’s bath.
 
Literature
go back to reference Abubakar A, van den Berg PM, Mallorqui JJ (2004) Imaging a biomedical data using a multiplicative regularized contrast source inversion method. IEEE Trans Microw Theory Techn 50:1761–1771CrossRef Abubakar A, van den Berg PM, Mallorqui JJ (2004) Imaging a biomedical data using a multiplicative regularized contrast source inversion method. IEEE Trans Microw Theory Techn 50:1761–1771CrossRef
go back to reference Aboubakar A et al (2007) A two and half dimensional model based inversion algorithm for the controlled source electromagnetic data. In: SPE annual technical conference and exhibition California, 11–14 November, SPE 110054 Aboubakar A et al (2007) A two and half dimensional model based inversion algorithm for the controlled source electromagnetic data. In: SPE annual technical conference and exhibition California, 11–14 November, SPE 110054
go back to reference Abubakar A, Habashy TM, Druskin VL, Knizhnerman L, Alumbaugh D (2008) 2.5D forward and inverse modeling for interpreting low frequency electromagnetic measurements. Geophysics 73(4):F165–F177 Abubakar A, Habashy TM, Druskin VL, Knizhnerman L, Alumbaugh D (2008) 2.5D forward and inverse modeling for interpreting low frequency electromagnetic measurements. Geophysics 73(4):F165–F177
go back to reference Allaud LA, Martin MH (1976) Schlumberger. The story of a technique. Ed. Wiley, pp 15–17 Allaud LA, Martin MH (1976) Schlumberger. The story of a technique. Ed. Wiley, pp 15–17
go back to reference Amaya M (2015) High-order optimization methods for large-scale 3D CSEM data inversion. PhD thesis, NTNU, Trondheim, October, pp 53–83 Amaya M (2015) High-order optimization methods for large-scale 3D CSEM data inversion. PhD thesis, NTNU, Trondheim, October, pp 53–83
go back to reference Anderson TW et al (1972) An introduction to multivariate statistical analysis. Series in probability and statistics. Ed. Wiley, New York Anderson TW et al (1972) An introduction to multivariate statistical analysis. Series in probability and statistics. Ed. Wiley, New York
go back to reference Andreis D (2008) Electromagnetic surveying for resistive or conductive bodies. US patent no. 7362102 Andreis D (2008) Electromagnetic surveying for resistive or conductive bodies. US patent no. 7362102
go back to reference Angot A (1982) Compléments de mathématiques à l’usage des ingénieurs de l’électronique et des télécommunications. Ed. Masson, Paris Angot A (1982) Compléments de mathématiques à l’usage des ingénieurs de l’électronique et des télécommunications. Ed. Masson, Paris
go back to reference Arfken B (1968) Mathematical methods for physicists. Academic, New York Arfken B (1968) Mathematical methods for physicists. Academic, New York
go back to reference Backus G, Gilbert F (1967) Numerical applications of a formation for geophysical inverse problems. GJ 13, pp 247–276 Backus G, Gilbert F (1967) Numerical applications of a formation for geophysical inverse problems. GJ 13, pp 247–276
go back to reference Bailey RC (1970) Inversion of the geomagnetic induction problem. Proc R Soc A 315:185–184CrossRef Bailey RC (1970) Inversion of the geomagnetic induction problem. Proc R Soc A 315:185–184CrossRef
go back to reference Bailey RC (2008) The electrical response of an insulating circular disk to uniform field. Progress Electromag Res 88:241–254CrossRef Bailey RC (2008) The electrical response of an insulating circular disk to uniform field. Progress Electromag Res 88:241–254CrossRef
go back to reference Bannister PR (1968) The image theory quasi-static fields of antennas above the earth surface. Naval Underwater Systems Center report Bannister PR (1968) The image theory quasi-static fields of antennas above the earth surface. Naval Underwater Systems Center report
go back to reference Bannister PR et al (1965) Quasi-static electromagnetic fields. Scientific engineering studies. Naval Underwater Systems Center report Bannister PR et al (1965) Quasi-static electromagnetic fields. Scientific engineering studies. Naval Underwater Systems Center report
go back to reference Bannister PR et al (1987a) Quasi-static electromagnetic fields. Scientific and engineering studies, Naval Underwater Systems Center, New-London Bannister PR et al (1987a) Quasi-static electromagnetic fields. Scientific and engineering studies, Naval Underwater Systems Center, New-London
go back to reference Bannister PR (1987b) Simplified expressions for the electromagnetic fields of elevated, surface or buried dipole antennas. Compiled 87 vol. 1, Scientific and Engineering Studies, Naval Underwater Systems Center, New-London, Connecticut Bannister PR (1987b) Simplified expressions for the electromagnetic fields of elevated, surface or buried dipole antennas. Compiled 87 vol. 1, Scientific and Engineering Studies, Naval Underwater Systems Center, New-London, Connecticut
go back to reference Baranov W (1951) lnterprétation quantitative des mesures en prospection par courants telluriques. 3ème congrès mondial du pétrole, The Hague Baranov W (1951) lnterprétation quantitative des mesures en prospection par courants telluriques. 3ème congrès mondial du pétrole, The Hague
go back to reference Bayes (1763) An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F. R. S communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philos Trans, pp 370–418 Bayes (1763) An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F. R. S communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philos Trans, pp 370–418
go back to reference Beaufort L (1944) Etude des champs téllurique en baignoire. Note technique no. 44 (tellurique). Ed. CGG Beaufort L (1944) Etude des champs téllurique en baignoire. Note technique no. 44 (tellurique). Ed. CGG
go back to reference Boissonnas E (1946) Note sur les mesures en baignoire. Note technique no. 74 (tellurique). Ed. CGG Boissonnas E (1946) Note sur les mesures en baignoire. Note technique no. 74 (tellurique). Ed. CGG
go back to reference Bornatici L, Mackie R, Watts MD (2007) 3D inversion of marine CSEM data and its application to survey design. In: EGM conference proceedings, Capri, Italy Bornatici L, Mackie R, Watts MD (2007) 3D inversion of marine CSEM data and its application to survey design. In: EGM conference proceedings, Capri, Italy
go back to reference Boursian WR (1933) La théorie des champs électromagnétiques employés dans la prospection électrique. 1ère partie, GTTI (in Russian) Boursian WR (1933) La théorie des champs électromagnétiques employés dans la prospection électrique. 1ère partie, GTTI (in Russian)
go back to reference Bracewell RN (1986) The Fourier transform and its applications. McGraw-Hill, New York, 474 p Bracewell RN (1986) The Fourier transform and its applications. McGraw-Hill, New York, 474 p
go back to reference Brillouin M (1933) Fonctions sphériques. Formules générales de récurrence. Développement des fonctions non antipodes en séries de polynômes de Legendre et de Laplace. Ed. Gauthier-Villars, Paris, 4 p Brillouin M (1933) Fonctions sphériques. Formules générales de récurrence. Développement des fonctions non antipodes en séries de polynômes de Legendre et de Laplace. Ed. Gauthier-Villars, Paris, 4 p
go back to reference Brillouin M (1938) Qu’apprend-on de l’intérieur du globe par les mesures faites à sa surface? Pesanteur, magnétisme. Annales de l’I.H.P, tome 8, no. 4.Ed. Gauthier-Villars, pp 151–192 Brillouin M (1938) Qu’apprend-on de l’intérieur du globe par les mesures faites à sa surface? Pesanteur, magnétisme. Annales de l’I.H.P, tome 8, no. 4.Ed. Gauthier-Villars, pp 151–192
go back to reference Buland A, More H (2003) Bayesian linearized AVO inversion. Geophysics 68: 185–198 Buland A, More H (2003) Bayesian linearized AVO inversion. Geophysics 68: 185–198
go back to reference Buland A et al (1996) AVO inversion of Troll field data. Geophysics 61: 1589–1602 Buland A et al (1996) AVO inversion of Troll field data. Geophysics 61: 1589–1602
go back to reference Butkov E (1968) Mathematical physics. Ed. Addison-Wesley, Reading Butkov E (1968) Mathematical physics. Ed. Addison-Wesley, Reading
go back to reference Cagniard L (1950) La prospection géophysique. Ed. Presses universitaires de France, Paris, p 32 Cagniard L (1950) La prospection géophysique. Ed. Presses universitaires de France, Paris, p 32
go back to reference Cagniard L, Neale RN (1957) Technique nouvelle de modèles réduits pour la prospection électrique. Geophys Prospect 5:259–271CrossRef Cagniard L, Neale RN (1957) Technique nouvelle de modèles réduits pour la prospection électrique. Geophys Prospect 5:259–271CrossRef
go back to reference Carrazone JJ et al (2008) Inversion study of a large marine CSEM survey. SEG 2008 Expanded Abstracts, Las Vegas Carrazone JJ et al (2008) Inversion study of a large marine CSEM survey. SEG 2008 Expanded Abstracts, Las Vegas
go back to reference Chave AD (1983) Numerical evaluation of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48(12):1671–1686CrossRef Chave AD (1983) Numerical evaluation of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48(12):1671–1686CrossRef
go back to reference Chave AD (2009) On the electromagnetic fields produced by marine frequency domain controlled sources. Geophys J Int 179, 29 p Chave AD (2009) On the electromagnetic fields produced by marine frequency domain controlled sources. Geophys J Int 179, 29 p
go back to reference Chave AD, Cox CS (1982) Controlled electromagnetic sources for measuring electrical conductivity beneath the ocean 1. Forward problem and model study. J Geophys Res 87(B7):5327–5338CrossRef Chave AD, Cox CS (1982) Controlled electromagnetic sources for measuring electrical conductivity beneath the ocean 1. Forward problem and model study. J Geophys Res 87(B7):5327–5338CrossRef
go back to reference Chave AD, Jones AG (2012) The magnetotelluric method: theory and practice, pp 382–383 and 337–420 Chave AD, Jones AG (2012) The magnetotelluric method: theory and practice, pp 382–383 and 337–420
go back to reference Cheesman SJ, Edwards RN, Chave AD (1987) On the theory of sea floor conductivity mapping using transient electromagnetic systems. Geophysics 52:204–217CrossRef Cheesman SJ, Edwards RN, Chave AD (1987) On the theory of sea floor conductivity mapping using transient electromagnetic systems. Geophysics 52:204–217CrossRef
go back to reference Chisholm JSR, Morris RM (1965) Mathematical methods in physics. W B Saunders Company, Philadelphia, 719 p Chisholm JSR, Morris RM (1965) Mathematical methods in physics. W B Saunders Company, Philadelphia, 719 p
go back to reference Claerbout JF (1976) Fundamentals of geophysical data processing with applications to petroleum prospecting. MacGraw-Hill, New York Claerbout JF (1976) Fundamentals of geophysical data processing with applications to petroleum prospecting. MacGraw-Hill, New York
go back to reference Claerbout JF (1992) Earth sounding analysis. Processing versus inversion. Ed. Blackwell Scientific Publications, Boston, p xiv Claerbout JF (1992) Earth sounding analysis. Processing versus inversion. Ed. Blackwell Scientific Publications, Boston, p xiv
go back to reference Colton D, Kress R (1992) Inverse acoustic and electromagnetic inverse scattering theory. Ed. Springer, BerlinCrossRef Colton D, Kress R (1992) Inverse acoustic and electromagnetic inverse scattering theory. Ed. Springer, BerlinCrossRef
go back to reference Commer M, Newman GA (2008a) Optimal conductivity reconstruction using three-dimensional joint and model-based inversion for controlled-source and magnetotelluric data. SEG 2008 Expanded Abstracts, Las VegasCrossRef Commer M, Newman GA (2008a) Optimal conductivity reconstruction using three-dimensional joint and model-based inversion for controlled-source and magnetotelluric data. SEG 2008 Expanded Abstracts, Las VegasCrossRef
go back to reference Commer M, Newman G (2008b) New advances in three dimensional controlled source electromagnetic inversion. Geophys J Int 172:513–535CrossRef Commer M, Newman G (2008b) New advances in three dimensional controlled source electromagnetic inversion. Geophys J Int 172:513–535CrossRef
go back to reference Commer M et al (2008) Massively parallel electrical conductivity imaging of hydrocarbons using the Blue Gene/L supercomputer. University of California. Paper LBNL 63009. 34 p Commer M et al (2008) Massively parallel electrical conductivity imaging of hydrocarbons using the Blue Gene/L supercomputer. University of California. Paper LBNL 63009. 34 p
go back to reference Constable SC, Weiss CJ (2006) Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modelling. Geophysics 71(2) Constable SC, Weiss CJ (2006) Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modelling. Geophysics 71(2)
go back to reference Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300CrossRef Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300CrossRef
go back to reference Cuma M et al (2010) Multiple inversion scenarios for enhanced interpretation of marine CSEM data using iterative migration: a case study for the Shtokman gas field, Barents Sea. SEG Denver, annual meeting, pp 583–587 Cuma M et al (2010) Multiple inversion scenarios for enhanced interpretation of marine CSEM data using iterative migration: a case study for the Shtokman gas field, Barents Sea. SEG Denver, annual meeting, pp 583–587
go back to reference de Stefano M, Colombo D (2006) Geophysical modeling through simultaneous joint inversion of seismic, gravity and magneto-telluric data. WesternGeco EM, Geosystem, Milan de Stefano M, Colombo D (2006) Geophysical modeling through simultaneous joint inversion of seismic, gravity and magneto-telluric data. WesternGeco EM, Geosystem, Milan
go back to reference Durand E (1966) Electrostatique. 3 tomes. 1: Les distributions. 2: Problèmes généraux conducteurs. 3: Méthodes de calcul diélectriques. Ed. Masson, Paris Durand E (1966) Electrostatique. 3 tomes. 1: Les distributions. 2: Problèmes généraux conducteurs. 3: Méthodes de calcul diélectriques. Ed. Masson, Paris
go back to reference Eaton PA, Kaufman AA (2001) The theory of inductive prospecting. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam Eaton PA, Kaufman AA (2001) The theory of inductive prospecting. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam
go back to reference Edwards RN, Chave AD (1986) A transient electric dipole–dipole method for mapping the conductivity of the sea floor. Geophysics 51:984–987CrossRef Edwards RN, Chave AD (1986) A transient electric dipole–dipole method for mapping the conductivity of the sea floor. Geophysics 51:984–987CrossRef
go back to reference Ehrenbourg DO, Watson RJ (1931) Mathematical theory of electrical flow in the stratified strata. AIME Geophys Prospect 1932:423–442 Ehrenbourg DO, Watson RJ (1931) Mathematical theory of electrical flow in the stratified strata. AIME Geophys Prospect 1932:423–442
go back to reference Eskola L (1992) Geophysical interpretation using integral equations. Chapman & Hall, London, 191 pCrossRef Eskola L (1992) Geophysical interpretation using integral equations. Chapman & Hall, London, 191 pCrossRef
go back to reference Everett ME, Edwards RN (1993) Transient marine electromagnetics—the 2.5-D forward problem. Geophys J Int 113(3):545–561 Everett ME, Edwards RN (1993) Transient marine electromagnetics—the 2.5-D forward problem. Geophys J Int 113(3):545–561
go back to reference Flath H (1955) A pratical method of calculating geoelectrical model graphs for horizontally stratified media. Presented at the eighth meeting of the European Association of Exploration Geophysicists, held in Paris, 18/20 May Flath H (1955) A pratical method of calculating geoelectrical model graphs for horizontally stratified media. Presented at the eighth meeting of the European Association of Exploration Geophysicists, held in Paris, 18/20 May
go back to reference Flosadottir AH, Constable S (1996) Marine controlled source electromagnetic sounding: modelling and experimental design. J Geophys Res 101(4):5507–5517CrossRef Flosadottir AH, Constable S (1996) Marine controlled source electromagnetic sounding: modelling and experimental design. J Geophys Res 101(4):5507–5517CrossRef
go back to reference Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data. Geophys Res Lett 30:1658 Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data. Geophys Res Lett 30:1658
go back to reference Glasko VB (1988) Inverse problems of mathematical physics. American Institute of Physics, New York, 97 p Glasko VB (1988) Inverse problems of mathematical physics. American Institute of Physics, New York, 97 p
go back to reference Glinsky ME, Gunning JS (2011) Resolution and uncertainty of inversion CSEM remote sensing data can now be estimated using Bayesian statistic. World Oil, January, pp 87–62 Glinsky ME, Gunning JS (2011) Resolution and uncertainty of inversion CSEM remote sensing data can now be estimated using Bayesian statistic. World Oil, January, pp 87–62
go back to reference Goudswaard W (1957) On the effect of the tank wall material in geo-electrical model experiments. Geophys Prospect 5(3):272–281CrossRef Goudswaard W (1957) On the effect of the tank wall material in geo-electrical model experiments. Geophys Prospect 5(3):272–281CrossRef
go back to reference Grand FS, West GF (1965) Interpretation theory in applied geophysics. McGraw-Hill, New York Grand FS, West GF (1965) Interpretation theory in applied geophysics. McGraw-Hill, New York
go back to reference Gray A, Mathews GB (1922) Treatise on Bessel function and their application to physics. Macmillan, London, 291 p Gray A, Mathews GB (1922) Treatise on Bessel function and their application to physics. Macmillan, London, 291 p
go back to reference Green G (1850) An essay on the application of mathematical analysis to the theory of electricity & magnetism. J Reine Angew Math 39:73–79 Green G (1850) An essay on the application of mathematical analysis to the theory of electricity & magnetism. J Reine Angew Math 39:73–79
go back to reference Grellier S (2005) Suivi géologique des centres de stockage de déchet bio-réacteurs par mesures géophysiques. Doctoral thesis, Université Pierre et Marie Curie Grellier S (2005) Suivi géologique des centres de stockage de déchet bio-réacteurs par mesures géophysiques. Doctoral thesis, Université Pierre et Marie Curie
go back to reference Gribenko A, Zhdanov M (2007) Rigorous 3D inversion of marine CSEM data based on the integral equation method. Geophysics 72:WA73–WA84CrossRef Gribenko A, Zhdanov M (2007) Rigorous 3D inversion of marine CSEM data based on the integral equation method. Geophysics 72:WA73–WA84CrossRef
go back to reference Gruner Schlumberger A (1982) The Schlumberger adventure. Ed. Arco Publishing, New York, p 1 Gruner Schlumberger A (1982) The Schlumberger adventure. Ed. Arco Publishing, New York, p 1
go back to reference Gunning JS, Glinsky ME (2009) Bayesian approaches to resolution in CSEM. In: 71st EAGE conference and exhibition, Amsterdam, 8–11 June Gunning JS, Glinsky ME (2009) Bayesian approaches to resolution in CSEM. In: 71st EAGE conference and exhibition, Amsterdam, 8–11 June
go back to reference Gunning JS, Glinsky ME, Heddith J (2010) Resolution and uncertainty in 1D CSEM inversion: a Bayesian approach and open-source implementation. Geophysics 75:F151–F171 Gunning JS, Glinsky ME, Heddith J (2010) Resolution and uncertainty in 1D CSEM inversion: a Bayesian approach and open-source implementation. Geophysics 75:F151–F171
go back to reference Habashy TM (1985) Quasi-static electromagnetic fields due to dipole antennas in bounded conducting media. EEE Trans Geosci Remote Sens GE-23(3):325–333CrossRef Habashy TM (1985) Quasi-static electromagnetic fields due to dipole antennas in bounded conducting media. EEE Trans Geosci Remote Sens GE-23(3):325–333CrossRef
go back to reference Hansen DA et al (1967) Mining geophysics, vol B: theory. Ed. Society of Exploration geophysicists, Tulsa, pp 63–83 Hansen DA et al (1967) Mining geophysics, vol B: theory. Ed. Society of Exploration geophysicists, Tulsa, pp 63–83
go back to reference Hautot S, Tarits P (2010) 3D magnetotelluric inversion of 2D profiles: application to land and marine data for shallow crustal investigation. ASEG, Sydney Hautot S, Tarits P (2010) 3D magnetotelluric inversion of 2D profiles: application to land and marine data for shallow crustal investigation. ASEG, Sydney
go back to reference Heaviside O (1899) Electromagnetic theory, 3 vols. Ed. Electrician Printing and Publishing, London Heaviside O (1899) Electromagnetic theory, 3 vols. Ed. Electrician Printing and Publishing, London
go back to reference Heiland CA (1931) The department of geophysics. Vol xxvi no. 1, Suppl. A. Ed. Colorado School of Mines, Golden, p 21 Heiland CA (1931) The department of geophysics. Vol xxvi no. 1, Suppl. A. Ed. Colorado School of Mines, Golden, p 21
go back to reference Hohmann GW (1975) Three dimensional induced polarization and electromagnetic modeling. Geophysics 71:309–324CrossRef Hohmann GW (1975) Three dimensional induced polarization and electromagnetic modeling. Geophysics 71:309–324CrossRef
go back to reference Hohmann GW (1989) Numerical modeling for electromagnetic methods of geophysics. Electromagnetic methods in applied geophysics, vol 1 Theory. Ed. Society of Exploration Geophysicists, Tulsa, pp 313–318 Hohmann GW (1989) Numerical modeling for electromagnetic methods of geophysics. Electromagnetic methods in applied geophysics, vol 1 Theory. Ed. Society of Exploration Geophysicists, Tulsa, pp 313–318
go back to reference Hohmann GW, Raiche AP (1987) Inversion of controlled source electromagnetic data in electromagnetic methods in applied geophysics. Geophysics 1:469–503 Hohmann GW, Raiche AP (1987) Inversion of controlled source electromagnetic data in electromagnetic methods in applied geophysics. Geophysics 1:469–503
go back to reference Hou Z et al (2006) Reservoir parameter identification using minimum relative entropy based Bayesien inversion of seismic AVA and marine CSEM. Geophysics 71(6):077–088CrossRef Hou Z et al (2006) Reservoir parameter identification using minimum relative entropy based Bayesien inversion of seismic AVA and marine CSEM. Geophysics 71(6):077–088CrossRef
go back to reference Hoversten GM et al (2006) Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data. Geophysics 71(3):1–13CrossRef Hoversten GM et al (2006) Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data. Geophysics 71(3):1–13CrossRef
go back to reference Hummel JK (1928) Über die Tiefenwirkung bei geoelektrischer Potentiallaienmethoden., Zeitschrift für Geophysik Hummel JK (1928) Über die Tiefenwirkung bei geoelektrischer Potentiallaienmethoden., Zeitschrift für Geophysik
go back to reference Hummel JK (1929a) Der scheinbare spezifische Widerstand. Zeitschrift für Geophysik. T.5, no. 3–5, p 89 Hummel JK (1929a) Der scheinbare spezifische Widerstand. Zeitschrift für Geophysik. T.5, no. 3–5, p 89
go back to reference Hummel JK (1929b) Der scheinbare spezifische Widerstand bei vier plan parallelen Schichten. Zeitschrift für Geophysik. T.5, no. 5–6, p 228 Hummel JK (1929b) Der scheinbare spezifische Widerstand bei vier plan parallelen Schichten. Zeitschrift für Geophysik. T.5, no. 5–6, p 228
go back to reference Inman JR, Ryu J, Ward SH (1973) Resistivity inversion. Geophysics 38:1088–1108CrossRef Inman JR, Ryu J, Ward SH (1973) Resistivity inversion. Geophysics 38:1088–1108CrossRef
go back to reference Jackson JD (1965) Classical electrodynamics. Ed. Wiley, New York, 641 p Jackson JD (1965) Classical electrodynamics. Ed. Wiley, New York, 641 p
go back to reference Janovskij BM, Molocnov G (1959) Modellversuche mit niederfrequenten elektrischen Feld. Freib Forsch, pp 17–29 Janovskij BM, Molocnov G (1959) Modellversuche mit niederfrequenten elektrischen Feld. Freib Forsch, pp 17–29
go back to reference Jaysaval P, Shantsev VD, de la Kethulle de Ryhove S (2015) Efficient 3-D controlled-source electromagnetic modelling using an exponential finite-difference method. Geophys J Int 203:1541–1574 Jaysaval P, Shantsev VD, de la Kethulle de Ryhove S (2015) Efficient 3-D controlled-source electromagnetic modelling using an exponential finite-difference method. Geophys J Int 203:1541–1574
go back to reference Jeans JH (1933) The mathematical theory of electricity and magnetism. Cambridge University Press, Cambridge Jeans JH (1933) The mathematical theory of electricity and magnetism. Cambridge University Press, Cambridge
go back to reference Jeffreys H (1939) Theory of probability. Clarendon, Oxford, 380 p Jeffreys H (1939) Theory of probability. Clarendon, Oxford, 380 p
go back to reference Jeffreys H, Jeffreys B (1956) Methods of mathematical physics. Cambridge University Press, Cambridge, 714 p Jeffreys H, Jeffreys B (1956) Methods of mathematical physics. Cambridge University Press, Cambridge, 714 p
go back to reference Jegen MD, Edwards RN (2000) On the physics of marine magnetotelluric sounding. Geophys Int 142 Jegen MD, Edwards RN (2000) On the physics of marine magnetotelluric sounding. Geophys Int 142
go back to reference Jing C, Green KE, Willen DE (2008) CSEM inversion: impact of anisotropy, data coverage, and initial models. SEG 2008 Expanded Abstracts, Las Vegas Jing C, Green KE, Willen DE (2008) CSEM inversion: impact of anisotropy, data coverage, and initial models. SEG 2008 Expanded Abstracts, Las Vegas
go back to reference Johansen S et al (2008) How EM analysis validates current technology, processing and interpretation methodology. First Break 26:83–88 Johansen S et al (2008) How EM analysis validates current technology, processing and interpretation methodology. First Break 26:83–88
go back to reference Jouanne V (1991) Application des techniques statistiques bayésiennes à l’inversion de données électromagnétiques. Doctoral thesis, Université de Paris Jouanne V (1991) Application des techniques statistiques bayésiennes à l’inversion de données électromagnétiques. Doctoral thesis, Université de Paris
go back to reference Kaufman AA (1994a) Geophysical field theory and method, part B, volume 48: electromagnetic fields I, international geophysics. Ed. Elsevier, Amsterdam Kaufman AA (1994a) Geophysical field theory and method, part B, volume 48: electromagnetic fields I, international geophysics. Ed. Elsevier, Amsterdam
go back to reference Kaufman AA (1994b) Geophysical field theory and method, part C, volume 49: electromagnetic fields II, international geophysics. Ed. Elsevier, Amsterdam, 335 p Kaufman AA (1994b) Geophysical field theory and method, part C, volume 49: electromagnetic fields II, international geophysics. Ed. Elsevier, Amsterdam, 335 p
go back to reference Kaufman AA, Eaton PA (2001) The theory of inductive prospecting. Elsevier, Amsterdam, 681 p Kaufman AA, Eaton PA (2001) The theory of inductive prospecting. Elsevier, Amsterdam, 681 p
go back to reference Kaufman AA, Hoekstra P (2001) Electromagnetic sounding. Elsevier, Amsterdam Kaufman AA, Hoekstra P (2001) Electromagnetic sounding. Elsevier, Amsterdam
go back to reference Kaufman AA, Keller GV (1983) Frequency and transient soundings. Ed. Elsevier, Amsterdam, pp 411–450 Kaufman AA, Keller GV (1983) Frequency and transient soundings. Ed. Elsevier, Amsterdam, pp 411–450
go back to reference Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Ed. Pergamon Press, Oxford, p 1104 Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Ed. Pergamon Press, Oxford, p 1104
go back to reference Key KW (2003) Application of broadband marine magneto-telluric exploration to a 3-D salt structure and a fast spreading ridge. PhD dissertation, University of California, San Diego Key KW (2003) Application of broadband marine magneto-telluric exploration to a 3-D salt structure and a fast spreading ridge. PhD dissertation, University of California, San Diego
go back to reference Key KW (2007) Adaptive finite element modeling for 2D electromagnetic problems using unstructured grids. Scripps Institution of Oceanography, La Jolla Key KW (2007) Adaptive finite element modeling for 2D electromagnetic problems using unstructured grids. Scripps Institution of Oceanography, La Jolla
go back to reference Key KW (2009) 1D inversion of multicomponent, multifrequency marine CSEM data: methodology and synthetic studies for resolving thin resistive layers. Geophysics 74(2):F9–F20CrossRef Key KW (2009) 1D inversion of multicomponent, multifrequency marine CSEM data: methodology and synthetic studies for resolving thin resistive layers. Geophysics 74(2):F9–F20CrossRef
go back to reference Key K, Ovall J (2011) A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophys J Int 186(1):137–154CrossRef Key K, Ovall J (2011) A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophys J Int 186(1):137–154CrossRef
go back to reference Koefoed O (1968) The application of the kernel function in interpreting geoelectrical resistivity measurements. Geoexploration monographs. Series 1, no. 2. Ed. Gebruder Borntraeger, Berlin Koefoed O (1968) The application of the kernel function in interpreting geoelectrical resistivity measurements. Geoexploration monographs. Series 1, no. 2. Ed. Gebruder Borntraeger, Berlin
go back to reference Koefoed O (1980) Geosounding principles, 1. Resistivity sounding measurements. Methods in geochemistry and geophysics 14 A. Ed. Elsevier, Amsterdam Koefoed O (1980) Geosounding principles, 1. Resistivity sounding measurements. Methods in geochemistry and geophysics 14 A. Ed. Elsevier, Amsterdam
go back to reference Korchounov Y (1975) Fondements mathématiques de la cybernétique. Ed. Mir, Moscou, pp 282–290 Korchounov Y (1975) Fondements mathématiques de la cybernétique. Ed. Mir, Moscou, pp 282–290
go back to reference Kraichman MB (1970) Handbook of electromagnetic propagation in conducting media. US Government Printing Office, Washington, DC Kraichman MB (1970) Handbook of electromagnetic propagation in conducting media. US Government Printing Office, Washington, DC
go back to reference Kumar A (2010) Inversion of magnetotelluric data in offshore hydrocarbon exploration. VDM Verlag Dr. Mueller, Saarbrücke, 72 p Kumar A (2010) Inversion of magnetotelluric data in offshore hydrocarbon exploration. VDM Verlag Dr. Mueller, Saarbrücke, 72 p
go back to reference Kunetz G (1966) Principles of direct current resistivity prospecting. Geopublication associates. Geoexploration monographs. Series 1, no. 1. Ed. Gebruder Borntraeger, Berlin Kunetz G (1966) Principles of direct current resistivity prospecting. Geopublication associates. Geoexploration monographs. Series 1, no. 1. Ed. Gebruder Borntraeger, Berlin
go back to reference Lagabrielle R et al (2001) Reconnaissance par prospection électrique du sous-sol marin pour le nouveau port du Havre. Geofcan, Géophysique des sols et des formations superficielles. Actes du 3ème colloque, Orléans, 25–26 September. Ed. INRA, pp 149–153 Lagabrielle R et al (2001) Reconnaissance par prospection électrique du sous-sol marin pour le nouveau port du Havre. Geofcan, Géophysique des sols et des formations superficielles. Actes du 3ème colloque, Orléans, 25–26 September. Ed. INRA, pp 149–153
go back to reference Lamb H (1924) Evolution of mathematical physics. Cambridge University Press, Cambridge Lamb H (1924) Evolution of mathematical physics. Cambridge University Press, Cambridge
go back to reference Langer RE (1933) An inverse problem in differential equations. Am Soc Math J 39:14–28 Langer RE (1933) An inverse problem in differential equations. Am Soc Math J 39:14–28
go back to reference Langer RE (1936) On determination of earth conductivity from observed surface potentials. Am Soc Math J vol 42 Langer RE (1936) On determination of earth conductivity from observed surface potentials. Am Soc Math J vol 42
go back to reference Lasfargues P (1957) Prospection électrique par courants continus. Manuel de prospection géophysique. Ed. Masson, Paris, pp 76–81 Lasfargues P (1957) Prospection électrique par courants continus. Manuel de prospection géophysique. Ed. Masson, Paris, pp 76–81
go back to reference Laurent H (1873) Traité de calcul des probabilités. Ed. Gauthier-Villars, Paris, pp 56–61 Laurent H (1873) Traité de calcul des probabilités. Ed. Gauthier-Villars, Paris, pp 56–61
go back to reference Lee S et al (1987) Phase-field imaging: the electromagnetic equivalent of seismic migration. Geophysics 52(5):678–693CrossRef Lee S et al (1987) Phase-field imaging: the electromagnetic equivalent of seismic migration. Geophysics 52(5):678–693CrossRef
go back to reference Li Y, Key K (2007) 2D marine controlled-source electromagnetic modeling: part 1—an adaptive finite-element algorithm. Geophysics 72(2): WA51–WA62 Li Y, Key K (2007) 2D marine controlled-source electromagnetic modeling: part 1—an adaptive finite-element algorithm. Geophysics 72(2): WA51–WA62
go back to reference Litvinov SY (1941) Electrical sea prospecting.. Gostoptekhizdat Litvinov SY (1941) Electrical sea prospecting.. Gostoptekhizdat
go back to reference Lorentz HA (1927) Lectures on theoretical physics, vol 3. Ed. Macmillan, London Lorentz HA (1927) Lectures on theoretical physics, vol 3. Ed. Macmillan, London
go back to reference Loseth LO (2007) Modeling of controlled source electromagnetic data. PhD thesis, Université norvégienne, 186 p Loseth LO (2007) Modeling of controlled source electromagnetic data. PhD thesis, Université norvégienne, 186 p
go back to reference Maao F (2007) Fast finite-difference time-domain modelling for marine-subsurface electromagnetic problems. Geophysics 72(2):A19–A23CrossRef Maao F (2007) Fast finite-difference time-domain modelling for marine-subsurface electromagnetic problems. Geophysics 72(2):A19–A23CrossRef
go back to reference MacGregor LM (2012) Integrating seismic, CSEM and well log data for reservoir characterisation. The Leading Edge, pp 268–277 MacGregor LM (2012) Integrating seismic, CSEM and well log data for reservoir characterisation. The Leading Edge, pp 268–277
go back to reference MacGregor LM, Tomlinson J (2014a) Marine controlled-source electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice. SEG Interpretation 2(3): SH24–SH25 MacGregor LM, Tomlinson J (2014a) Marine controlled-source electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice. SEG Interpretation 2(3): SH24–SH25
go back to reference MacGregor LM, Tomlinson J (2014b) Marine controlled-source electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice. Interpretation 2(3):SH13–SH32 MacGregor LM, Tomlinson J (2014b) Marine controlled-source electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice. Interpretation 2(3):SH13–SH32
go back to reference MacGregor LM, Constable SC, Sinha MC (1998) The RAMESSES experiment-III. Controlled-source electromagnetic sounding of the Reykjanes Ridge at 57° 45’N. Geophy J Int 135(3):773–789 MacGregor LM, Constable SC, Sinha MC (1998) The RAMESSES experiment-III. Controlled-source electromagnetic sounding of the Reykjanes Ridge at 57° 45’N. Geophy J Int 135(3):773–789
go back to reference MacGregor L, Sinha M, Constable S (2001) Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled-source electromagnetic sounding. Geophys J Int 146:217–236CrossRef MacGregor L, Sinha M, Constable S (2001) Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled-source electromagnetic sounding. Geophys J Int 146:217–236CrossRef
go back to reference MacGregor LM, Bouchrara S, Tomlinson JT, Strecker U, Fan J, Ran X, Yu G (2012) Integrated analysis of CSEM, seismic and well log date for prospect appraisal: a case study from West Africa. First Break 30: 77–82 MacGregor LM, Bouchrara S, Tomlinson JT, Strecker U, Fan J, Ran X, Yu G (2012) Integrated analysis of CSEM, seismic and well log date for prospect appraisal: a case study from West Africa. First Break 30: 77–82
go back to reference Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 12(4): 529–556 Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 12(4): 529–556
go back to reference Marescot L (2006) Un algorithme d’inversion par moindres carrés pondérés: application aux données géophysiques par méthodes électromagnétiques en domaine fréquence. Bulletin de géologie de l’Université de Lausanne, no. 357, pp 277–300 Marescot L (2006) Un algorithme d’inversion par moindres carrés pondérés: application aux données géophysiques par méthodes électromagnétiques en domaine fréquence. Bulletin de géologie de l’Université de Lausanne, no. 357, pp 277–300
go back to reference Marquardt DW (1963) An algorithm for least-squares estimation of non linear parameters. J Soc Ind Appl Math 11:431–441CrossRef Marquardt DW (1963) An algorithm for least-squares estimation of non linear parameters. J Soc Ind Appl Math 11:431–441CrossRef
go back to reference Maxwell JC (1873, 1892) A treatise on electricity and magnetism, vol 1. Ed. Clarendon, Oxford, pp 245–280 Maxwell JC (1873, 1892) A treatise on electricity and magnetism, vol 1. Ed. Clarendon, Oxford, pp 245–280
go back to reference Maxwell JC (1884) Traité élémentaire d’électricité. Ed. Gauthier-Villars, Paris, pp 91–92 Maxwell JC (1884) Traité élémentaire d’électricité. Ed. Gauthier-Villars, Paris, pp 91–92
go back to reference Medkour, M. (1984). Prospection électrique par la technique dipôle-dipôle: interprétation quantitative et application à la géophysique structurale et minière. Doctoral thesis, Université de Nancy Medkour, M. (1984). Prospection électrique par la technique dipôle-dipôle: interprétation quantitative et application à la géophysique structurale et minière. Doctoral thesis, Université de Nancy
go back to reference Meju MA (1994) Geophysical data analysis. Understanding inverse problem theory and practice. Society of Exploration Geophysicists course notes series, vol 6. Ed. SEG Publishers, 296 p Meju MA (1994) Geophysical data analysis. Understanding inverse problem theory and practice. Society of Exploration Geophysicists course notes series, vol 6. Ed. SEG Publishers, 296 p
go back to reference Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic, San Diego Menke W (1984) Geophysical data analysis: discrete inverse theory. Academic, San Diego
go back to reference Menke W (1989) Geophysical data analysis: discrete inverse theory, Edition réviséeth edn. Ed. Elsevier, Amsterdam, 289 p Menke W (1989) Geophysical data analysis: discrete inverse theory, Edition réviséeth edn. Ed. Elsevier, Amsterdam, 289 p
go back to reference Mitsuhata Y (2004) Adjustment of regularization in ill-posed linear inverse problems by the empirical Bayes approach. Geophys Prospect 52(3):213–239CrossRef Mitsuhata Y (2004) Adjustment of regularization in ill-posed linear inverse problems by the empirical Bayes approach. Geophys Prospect 52(3):213–239CrossRef
go back to reference Mittet R, Schaug-Pettersen T (2007) Shaping optimal transmitter waveforms for marine CSEM surveys. In: San SEG 2007 conference proceedings, San Antonio Mittet R, Schaug-Pettersen T (2007) Shaping optimal transmitter waveforms for marine CSEM surveys. In: San SEG 2007 conference proceedings, San Antonio
go back to reference Mittet R et al (2005) A two-step approach to depth migration of low frequency electromagnetic data. Paper presented at the 75th SEG conference & exhibition, Houston, USA, 6–11 November Mittet R et al (2005) A two-step approach to depth migration of low frequency electromagnetic data. Paper presented at the 75th SEG conference & exhibition, Houston, USA, 6–11 November
go back to reference Mittet R et al (2007a) On the orientation and absolute phase of marine CSEM receivers. Geophysics 72:145–155 Mittet R et al (2007a) On the orientation and absolute phase of marine CSEM receivers. Geophysics 72:145–155
go back to reference Mittet R et al (2007b) CMP inversion of marine CSEM data. In: EMG international workshop, innovation in EM, Grav. and Mag. methods, a new perspective for exploration, Capri, Italy, 15–18 April Mittet R et al (2007b) CMP inversion of marine CSEM data. In: EMG international workshop, innovation in EM, Grav. and Mag. methods, a new perspective for exploration, Capri, Italy, 15–18 April
go back to reference Mittet R et al (2008) CMP inversion and post inversion modelling for marine CSEM data. First Break 26:59–57 Mittet R et al (2008) CMP inversion and post inversion modelling for marine CSEM data. First Break 26:59–57
go back to reference Morse PM, Feshbach H (1953) Methods of theoretical physics. Ed. McGraw-Hill, New York, Tome 2, p 1769 Morse PM, Feshbach H (1953) Methods of theoretical physics. Ed. McGraw-Hill, New York, Tome 2, p 1769
go back to reference Nabighian MN (1987) Electromagnetic methods in applied geophysics. Theory, vol 1. Ed. Society of Exploration Geophysicists, Tulsa Nabighian MN (1987) Electromagnetic methods in applied geophysics. Theory, vol 1. Ed. Society of Exploration Geophysicists, Tulsa
go back to reference Neri P (2011) GPU rendering for volume visualization. New capabilities improve accessibility quality of renderings and accelerate workflow. Offshore. Ed. Pennwell, pp 60–63 Neri P (2011) GPU rendering for volume visualization. New capabilities improve accessibility quality of renderings and accelerate workflow. Offshore. Ed. Pennwell, pp 60–63
go back to reference Newman GA, Alumbaugh DL (1997) Three-dimensional massively parallel electromagnetic inversion part I. Theory. Geophys J Int 128:345–354CrossRef Newman GA, Alumbaugh DL (1997) Three-dimensional massively parallel electromagnetic inversion part I. Theory. Geophys J Int 128:345–354CrossRef
go back to reference Newman GA, Høversten, GM (2000) Solution strategies for toward three-dimensional electromagnetic inverse problems. Inverse Prob 16: 1357–1375 Newman GA, Høversten, GM (2000) Solution strategies for toward three-dimensional electromagnetic inverse problems. Inverse Prob 16: 1357–1375
go back to reference Nguyen AK, Roth F (2010) Application of the frequency differenced field to 3D inversion of shallow water CSEM data. In: EGM international workshop. Adding new value to electromagnetic, gravity and magnetic methods for exploration, Capri, 11–14 April Nguyen AK, Roth F (2010) Application of the frequency differenced field to 3D inversion of shallow water CSEM data. In: EGM international workshop. Adding new value to electromagnetic, gravity and magnetic methods for exploration, Capri, 11–14 April
go back to reference Oldenburg (1992) Inversion of magneto-telluric data for a one-dimensional conductivity. Geophysical monograph. Series 1, no. 5. Ed. Gebruder Borntraeger, Berlin Oldenburg (1992) Inversion of magneto-telluric data for a one-dimensional conductivity. Geophysical monograph. Series 1, no. 5. Ed. Gebruder Borntraeger, Berlin
go back to reference Oritaglio M, Spies B (2000) Three-dimensional electromagnetics. Geophys Dev Ser V V:7 Oritaglio M, Spies B (2000) Three-dimensional electromagnetics. Geophys Dev Ser V V:7
go back to reference Panofsky WKH, Phillips M (1955) Classical electricity and magnetism. Ed. Addison-Wesley, Reading Panofsky WKH, Phillips M (1955) Classical electricity and magnetism. Ed. Addison-Wesley, Reading
go back to reference Papoulis A (1962) The Fourier integral and its application. Ed. McGraw-Hill, New York, 318 p Papoulis A (1962) The Fourier integral and its application. Ed. McGraw-Hill, New York, 318 p
go back to reference Parker RL (1970) The inverse problem of electric conductivity in the mantle. Geophys J 22:121–138CrossRef Parker RL (1970) The inverse problem of electric conductivity in the mantle. Geophys J 22:121–138CrossRef
go back to reference Parker RL (1994) Geophysical inverse theory. Ed. Princeton University Press, Princeton, 400 p Parker RL (1994) Geophysical inverse theory. Ed. Princeton University Press, Princeton, 400 p
go back to reference Patella D, Schiavone D (1974) A theoretical study of the kernel function for resistivity prospection with a Schlumberger apparatus in water. Annali di geofisica 27(1–2):295–313 Patella D, Schiavone D (1974) A theoretical study of the kernel function for resistivity prospection with a Schlumberger apparatus in water. Annali di geofisica 27(1–2):295–313
go back to reference Patra HP, Mallick (1980) Geosounding principles, 2. Time varying geo electric soundings. Methods in geochemistry and geophysics 14 B. Ed. Elsevier, Amsterdam, pp 17–45 Patra HP, Mallick (1980) Geosounding principles, 2. Time varying geo electric soundings. Methods in geochemistry and geophysics 14 B. Ed. Elsevier, Amsterdam, pp 17–45
go back to reference Pellerin L, Wannameker PE (2005) Multi-dimensional electromagnetic modelling and inversion with application to near surface earth investigation. Computers and electronics in agriculture. 46. Ed. Elsevier, New York, pp 71–102 Pellerin L, Wannameker PE (2005) Multi-dimensional electromagnetic modelling and inversion with application to near surface earth investigation. Computers and electronics in agriculture. 46. Ed. Elsevier, New York, pp 71–102
go back to reference Peters LJ, Bardeen L (1932) Some aspects of electrical prospecting applied in locating oil structures. Physics 2:1–20CrossRef Peters LJ, Bardeen L (1932) Some aspects of electrical prospecting applied in locating oil structures. Physics 2:1–20CrossRef
go back to reference Piyoosh J, Daniil VS, Sébastien de la Kethulle de Ryhove (2015) Efficient 3-D controlled-source electromagnetic modelling using an exponential finite-difference method. Geophys J Int 203(3): 1541–1574 Piyoosh J, Daniil VS, Sébastien de la Kethulle de Ryhove (2015) Efficient 3-D controlled-source electromagnetic modelling using an exponential finite-difference method. Geophys J Int 203(3): 1541–1574
go back to reference Plessix RE, Van der Sman P (2007) 3D CSEM modeling and inversion in complex geological settings. Expanded Abstracts, SEG 2007 annual meeting, San Antonio Plessix RE, Van der Sman P (2007) 3D CSEM modeling and inversion in complex geological settings. Expanded Abstracts, SEG 2007 annual meeting, San Antonio
go back to reference Plessix RE, Van der Sman P (2008) Regularized and blocky controlled source electromagnetic inversion. PIERS 2008, Cambridge, MA Plessix RE, Van der Sman P (2008) Regularized and blocky controlled source electromagnetic inversion. PIERS 2008, Cambridge, MA
go back to reference Plonsey R, Collin RE (1961) Principles and applications of electromagnetic fields. Ed. McGraw-Hill, New York, 555 p Plonsey R, Collin RE (1961) Principles and applications of electromagnetic fields. Ed. McGraw-Hill, New York, 555 p
go back to reference Poirmeur C (1986). Modélisation tridimensionnelle en courant continu. Méthode et applications à la prospection géophysique. Doctoral thesis, Université de Montpellier, 232 p Poirmeur C (1986). Modélisation tridimensionnelle en courant continu. Méthode et applications à la prospection géophysique. Doctoral thesis, Université de Montpellier, 232 p
go back to reference Porstendorfer G (1960) Tellurik. Grundlagen, Messtechnik und neue Einsatzmoglichkeiten. Ed. Akademie Verlag, Berlin Porstendorfer G (1960) Tellurik. Grundlagen, Messtechnik und neue Einsatzmoglichkeiten. Ed. Akademie Verlag, Berlin
go back to reference Porstendorfer G (1975) Principles of magneto-telluric prospecting. Ed. Gebruder Borntraeger, Berlin, pp 47–51 Porstendorfer G (1975) Principles of magneto-telluric prospecting. Ed. Gebruder Borntraeger, Berlin, pp 47–51
go back to reference Press SJ (2007) Subjective and objective Bayesian statistics: principles, models and applications. Ed. Willey, Hoboken, 558 p Press SJ (2007) Subjective and objective Bayesian statistics: principles, models and applications. Ed. Willey, Hoboken, 558 p
go back to reference Price A et al (2008) 1D, 2D and 3D modeling and inversion of 3D CSEM data offshore West Africa. SEG 2008 Expanded Abstracts, Las Vegas, NV, USA Price A et al (2008) 1D, 2D and 3D modeling and inversion of 3D CSEM data offshore West Africa. SEG 2008 Expanded Abstracts, Las Vegas, NV, USA
go back to reference Rakoto H et al (1997) Réinterprétation par inversion bayésienne des sondages électriques sur le lac Tritrivakely. Colloque Geofcan, 11–12 September, Bondy, France, Rakoto H et al (1997) Réinterprétation par inversion bayésienne des sondages électriques sur le lac Tritrivakely. Colloque Geofcan, 11–12 September, Bondy, France,
go back to reference Ramsey AS (1937) Electricity and magnetism. An introduction to the mathematical theory. Ed. Cambridge University Press, Cambridge, p 115 Ramsey AS (1937) Electricity and magnetism. An introduction to the mathematical theory. Ed. Cambridge University Press, Cambridge, p 115
go back to reference Roach GF (1970) Green’s functions. Introductory theory with applications. Ed. Cambridge University Press, Cambridge, 279 p Roach GF (1970) Green’s functions. Introductory theory with applications. Ed. Cambridge University Press, Cambridge, 279 p
go back to reference Roman I (1934) How to compute tables for determining electrical resistivity of underlying beds and their application to geophysical problems. US Bur. Of Mines. Tech. Pub. 502. AIME Geophysical Prospecting, pp 183–200 Roman I (1934) How to compute tables for determining electrical resistivity of underlying beds and their application to geophysical problems. US Bur. Of Mines. Tech. Pub. 502. AIME Geophysical Prospecting, pp 183–200
go back to reference Roth F, Zach JJ (2007) Inversion of marine CSEM data using up-down wavefield separation and simulated annealing. In: SEG 2007 conference proceedings, San Antonio Roth F, Zach JJ (2007) Inversion of marine CSEM data using up-down wavefield separation and simulated annealing. In: SEG 2007 conference proceedings, San Antonio
go back to reference Sainson S (1984) Etude d’une méthode de détection électrique d’anomalies conductrices voisines d’un forage. Thèse de doctorat en géophysique, Université d’Orléans, 177 p Sainson S (1984) Etude d’une méthode de détection électrique d’anomalies conductrices voisines d’un forage. Thèse de doctorat en géophysique, Université d’Orléans, 177 p
go back to reference Sainson S (2010) Les diagraphies de corrosion. Acquisition et interprétation des données. Ed. Tec et Doc Lavoisier, Paris, pp 77–81 Sainson S (2010) Les diagraphies de corrosion. Acquisition et interprétation des données. Ed. Tec et Doc Lavoisier, Paris, pp 77–81
go back to reference Sarkisov GA, Andreyev LI (1964) Results and potential of marine electrical prospecting in the Caspian Sea. Int Geol Rev 6(9):1573–1584CrossRef Sarkisov GA, Andreyev LI (1964) Results and potential of marine electrical prospecting in the Caspian Sea. Int Geol Rev 6(9):1573–1584CrossRef
go back to reference Scales et al (2001) Introductory geophysical inverse theory. Ed. Samizdat Press, Golden, 208 p Scales et al (2001) Introductory geophysical inverse theory. Ed. Samizdat Press, Golden, 208 p
go back to reference Schiavone D, Patella D (1974) A direct interpretation method for Schlumberger resistivity soundings with the apparatus immersed in water. In: 19th annual international geophysical symposium, Torun, Poland Schiavone D, Patella D (1974) A direct interpretation method for Schlumberger resistivity soundings with the apparatus immersed in water. In: 19th annual international geophysical symposium, Torun, Poland
go back to reference Shantsev D, Maaø F (2015) Rigorous interpolation near tilted interfaces in 3-D finite-difference EM modelling. Geophys J Int 200:745–757CrossRef Shantsev D, Maaø F (2015) Rigorous interpolation near tilted interfaces in 3-D finite-difference EM modelling. Geophys J Int 200:745–757CrossRef
go back to reference Shen LC, Kong JA (1983) Applied electromagnetism. Ed. Brooks, Monterey, pp 326–339 Shen LC, Kong JA (1983) Applied electromagnetism. Ed. Brooks, Monterey, pp 326–339
go back to reference Sinha M, Macgregor LM (2003) Electromagnetic surveying for hydrocarbon reservoirs. University of Southampton. GB patent no. 2 382 875 Sinha M, Macgregor LM (2003) Electromagnetic surveying for hydrocarbon reservoirs. University of Southampton. GB patent no. 2 382 875
go back to reference Slichter LB (1933) The interpretation of the resistivity prospecting method for horizontal structures. Physics 4:307–322CrossRef Slichter LB (1933) The interpretation of the resistivity prospecting method for horizontal structures. Physics 4:307–322CrossRef
go back to reference Smith WH, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55(3):293–305CrossRef Smith WH, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55(3):293–305CrossRef
go back to reference Smythe WR (1939) Static and dynamic electricity. McGraw-Hill, New York Smythe WR (1939) Static and dynamic electricity. McGraw-Hill, New York
go back to reference Sommerfeld A (1909) Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Annalen des Physik 386:1135–1153 Sommerfeld A (1909) Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Annalen des Physik 386:1135–1153
go back to reference Sommerfeld A (1912) Die Greensche Funktionen der Schwingungsgleichung. Jahresber Deutsch Math Verein 21:309–353 Sommerfeld A (1912) Die Greensche Funktionen der Schwingungsgleichung. Jahresber Deutsch Math Verein 21:309–353
go back to reference Sommerfeld A (1952) Electrodynamics. Lectures of theoretical physics, vol 3. Ed. Academic, New York Sommerfeld A (1952) Electrodynamics. Lectures of theoretical physics, vol 3. Ed. Academic, New York
go back to reference Stefanescu S, Schlumberger C (1930) Sur la distribution électrique potentielle autour d'une prise de ponctuelle dans un terrain à couches horizontal, homogènes et isotropes. J Physique et le Radium I 4:132–140CrossRef Stefanescu S, Schlumberger C (1930) Sur la distribution électrique potentielle autour d'une prise de ponctuelle dans un terrain à couches horizontal, homogènes et isotropes. J Physique et le Radium I 4:132–140CrossRef
go back to reference Stokes GG (1880) Mathematical and physical papers. Cambridge University Press, Cambridge Stokes GG (1880) Mathematical and physical papers. Cambridge University Press, Cambridge
go back to reference Strack KM (1999) Exploration with deep transient electromagnetics. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam Strack KM (1999) Exploration with deep transient electromagnetics. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam
go back to reference Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York, 615 p Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York, 615 p
go back to reference Tai CT (1971) Dyadic Green’s function in electromagnetic theory. Ed. Intext Educational Publishers, Scranton, 246 p Tai CT (1971) Dyadic Green’s function in electromagnetic theory. Ed. Intext Educational Publishers, Scranton, 246 p
go back to reference Tarantola A (1981) Essai d’une approche générale du problème inverse. Ed. Université Pierre et Marie Curie, Institut de Physique du Globe de Paris Tarantola A (1981) Essai d’une approche générale du problème inverse. Ed. Université Pierre et Marie Curie, Institut de Physique du Globe de Paris
go back to reference Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Amsterdam, 358 pCrossRef Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Amsterdam, 358 pCrossRef
go back to reference Telford WM et al (1978) Applied geophysics. Ed. Cambridge University, London, pp 647–649 Telford WM et al (1978) Applied geophysics. Ed. Cambridge University, London, pp 647–649
go back to reference Terekhin EI (1962) Theoretical bases of electrical probing with an apparatus immersed in water. Applied geophysics USSR. Ed. Pergamon Press, Oxford, pp 169–195 Terekhin EI (1962) Theoretical bases of electrical probing with an apparatus immersed in water. Applied geophysics USSR. Ed. Pergamon Press, Oxford, pp 169–195
go back to reference Thomson W (1884) Reprint of papers on electrostatics and magnetism. Ed. Macmillan, London, p 144 Thomson W (1884) Reprint of papers on electrostatics and magnetism. Ed. Macmillan, London, p 144
go back to reference Tikhonov AN (1943) On the stability of inverse problems. Doklady 39(5): 195–198 (in Russian) Tikhonov AN (1943) On the stability of inverse problems. Doklady 39(5): 195–198 (in Russian)
go back to reference Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. V H Winston and Sons, Washington Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. V H Winston and Sons, Washington
go back to reference Tompkins M (2005) Electromagnetic surveying for hydrocarbon reservoir. US patent no. 7,191,063 Tompkins M (2005) Electromagnetic surveying for hydrocarbon reservoir. US patent no. 7,191,063
go back to reference Troyan V, Kiselev Y (2009) Statistical methods of geophysical data. World Scientific Publishing, London Troyan V, Kiselev Y (2009) Statistical methods of geophysical data. World Scientific Publishing, London
go back to reference Twomey S (1977) An introduction to the mathematics of inversion in remote sensing and indirect measurements. Elsevier, Amsterdam Twomey S (1977) An introduction to the mathematics of inversion in remote sensing and indirect measurements. Elsevier, Amsterdam
go back to reference Unsworth MJ, Travis BJ, Chave AD (1993) Electromagnetic induction by a finite electric dipole source over a 2-D earth. Geophysics 58:198–214CrossRef Unsworth MJ, Travis BJ, Chave AD (1993) Electromagnetic induction by a finite electric dipole source over a 2-D earth. Geophysics 58:198–214CrossRef
go back to reference Utzmann R (1954) Prospection électrique et tellurique: études sur modèles réduits. Bulletin de l’AFTP no. 107. 60 p Utzmann R (1954) Prospection électrique et tellurique: études sur modèles réduits. Bulletin de l’AFTP no. 107. 60 p
go back to reference Vannamaker et al (1984) Electromagnetic modeling of three dimensional bodies in layers media earths using integral equations. Geophysics 49: 60–74 Vannamaker et al (1984) Electromagnetic modeling of three dimensional bodies in layers media earths using integral equations. Geophysics 49: 60–74
go back to reference Verma Rajni K (1986) Offshore seismic exploration: data acquisition, processing, interpretation. Gulf Publishing, Houston, 591 p Verma Rajni K (1986) Offshore seismic exploration: data acquisition, processing, interpretation. Gulf Publishing, Houston, 591 p
go back to reference Wait JR (1971) Electromagnetic probing in geophysics. Ed. The Golem Press, Boulder, pp 291–293 Wait JR (1971) Electromagnetic probing in geophysics. Ed. The Golem Press, Boulder, pp 291–293
go back to reference Ward SH et al (1967) Mining geophysics, vol 2. Theory. Ed. Society of Exploration Geophysicists Mining Geophysics, Tulsa Ward SH et al (1967) Mining geophysics, vol 2. Theory. Ed. Society of Exploration Geophysicists Mining Geophysics, Tulsa
go back to reference Weaver JT (1967) The quasi-static field of an electric dipole embedded in a two-layer conducting half-space. Can J Phys 45:1981–2002CrossRef Weaver JT (1967) The quasi-static field of an electric dipole embedded in a two-layer conducting half-space. Can J Phys 45:1981–2002CrossRef
go back to reference Weaver JT (1994) Mathematical methods for geo-electromagnetic induction. Research Studies Press, Somerset Weaver JT (1994) Mathematical methods for geo-electromagnetic induction. Research Studies Press, Somerset
go back to reference Wenner F (1916) A method of measuring earth resistivity. US Dept. Com. Cur. of Stand. Sc. paper no. 258 Wenner F (1916) A method of measuring earth resistivity. US Dept. Com. Cur. of Stand. Sc. paper no. 258
go back to reference Werthmüller D, Ziolkowski A, Wright D (2014) Predicting controlled-source electromagnetic responses from seismic velocities. Interpretation 2(3):SH115–SH131CrossRef Werthmüller D, Ziolkowski A, Wright D (2014) Predicting controlled-source electromagnetic responses from seismic velocities. Interpretation 2(3):SH115–SH131CrossRef
go back to reference Weyl H (1919) Ausbreitung elektromagnetischer Wellen über einen ebenen Leiter. Annalen des Physik 60:481–500CrossRef Weyl H (1919) Ausbreitung elektromagnetischer Wellen über einen ebenen Leiter. Annalen des Physik 60:481–500CrossRef
go back to reference Wiik et al (2010) TIV contrast source inversion of nCSEM data. Norwegian University of Science and Technology, pp 6–9 Wiik et al (2010) TIV contrast source inversion of nCSEM data. Norwegian University of Science and Technology, pp 6–9
go back to reference Wijewardena K (2007) Introduction to Fourier transforms in physics. Cambridge University, Cambridge Wijewardena K (2007) Introduction to Fourier transforms in physics. Cambridge University, Cambridge
go back to reference Wilson W (1933) Theoretical physics. Electromagnetism and optics. Maxwell, Lorentz, vol 2. Ed. Methuen, London, 315 p Wilson W (1933) Theoretical physics. Electromagnetism and optics. Maxwell, Lorentz, vol 2. Ed. Methuen, London, 315 p
go back to reference Wu X, Sandberg S, Roper T (2008) Three-dimensional marine magneto-telluric resolution for sub-salt imaging and case study in the Gulf of Mexico. SEG 2008 Expanded Abstracts, Las Vegas Wu X, Sandberg S, Roper T (2008) Three-dimensional marine magneto-telluric resolution for sub-salt imaging and case study in the Gulf of Mexico. SEG 2008 Expanded Abstracts, Las Vegas
go back to reference Zaborovski A (1936) Problème de sphère dans la théorie de la prospection électrique. Bulletin géophysique pétrolière 2, 8 p Zaborovski A (1936) Problème de sphère dans la théorie de la prospection électrique. Bulletin géophysique pétrolière 2, 8 p
go back to reference Zach JJ et al (2008a) 3D inversion of marine CSEM data using a fast finite-difference time-domain forward code and approximate Hessian-based optimisation, Las Vegas Zach JJ et al (2008a) 3D inversion of marine CSEM data using a fast finite-difference time-domain forward code and approximate Hessian-based optimisation, Las Vegas
go back to reference Zach JJ, Roth F, Yuan H (2008b) Pre-processing of marine CSEM data and model preparation for frequency-domain 3D inversion. PIERS In: Proceedings, Cambridge, USA, 2–6 July, pp 144–148 Zach JJ, Roth F, Yuan H (2008b) Pre-processing of marine CSEM data and model preparation for frequency-domain 3D inversion. PIERS In: Proceedings, Cambridge, USA, 2–6 July, pp 144–148
go back to reference Zach JJ, Bjørke AK, Støren T, Maaø F (2008c) 3D inversion of marine CSEM data using a fast finite-difference time-domain forward code and approximate Hessian-based optimization. SEG 2008 Expanded Abstracts, Las Vegas, NV, USA Zach JJ, Bjørke AK, Støren T, Maaø F (2008c) 3D inversion of marine CSEM data using a fast finite-difference time-domain forward code and approximate Hessian-based optimization. SEG 2008 Expanded Abstracts, Las Vegas, NV, USA
go back to reference Zach JJ, Roth F, Yuan H (2008d) Data pre-processing and starting model preparation for 3D inversion of marine CSEM surveys. EAGE 2008 Expanded Abstracts, Rome, Italy Zach JJ, Roth F, Yuan H (2008d) Data pre-processing and starting model preparation for 3D inversion of marine CSEM surveys. EAGE 2008 Expanded Abstracts, Rome, Italy
go back to reference Zach JJ et al (2009) Salt mapping using 3D marine CSEM surveys. CSPG CSEG CWLS convention. Frontiers + innovation, Calgary, Canada, pp 428–431 Zach JJ et al (2009) Salt mapping using 3D marine CSEM surveys. CSPG CSEG CWLS convention. Frontiers + innovation, Calgary, Canada, pp 428–431
go back to reference Zeng ZF et al (2007) The electromagnetic responses of under seabed layer and inversion method study. PIERS Online 3(2):197–201CrossRef Zeng ZF et al (2007) The electromagnetic responses of under seabed layer and inversion method study. PIERS Online 3(2):197–201CrossRef
go back to reference Zhangshuan H et al (2006) Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data. Geophysics 71(6):77–88 Zhangshuan H et al (2006) Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data. Geophysics 71(6):77–88
go back to reference Zhdanov MS (2001) Method of broad band electromagnetic holographic imaging. US patent no. 6253.100, June 26 Zhdanov MS (2001) Method of broad band electromagnetic holographic imaging. US patent no. 6253.100, June 26
go back to reference Zhdanov MS (2002a) Geophysical inverse theory and regularization problems. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam Zhdanov MS (2002a) Geophysical inverse theory and regularization problems. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam
go back to reference Zhdanov MS (2002b) Three dimensional electromagnetics. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam Zhdanov MS (2002b) Three dimensional electromagnetics. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam
go back to reference Zhdanov MS (2002c) Geophysical inverse theory and regularization problems. Volume 36. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam Zhdanov MS (2002c) Geophysical inverse theory and regularization problems. Volume 36. Methods in geochemistry and geophysics. Ed. Elsevier, Amsterdam
go back to reference Zhdanov MS (2009) Geophysical electromagnetic theory and methods. Methods in geochemistry and geophysics, vol 43. Ed. Elsevier, Amsterdam, 848 p Zhdanov MS (2009) Geophysical electromagnetic theory and methods. Methods in geochemistry and geophysics, vol 43. Ed. Elsevier, Amsterdam, 848 p
go back to reference Zhdanov MS (2015) Inverse theory and applications in geophysics. Ed. Elsevier, Amsterdam, pp 1–15 Zhdanov MS (2015) Inverse theory and applications in geophysics. Ed. Elsevier, Amsterdam, pp 1–15
go back to reference Zhdanov MS, Keller GV (1994) The geoelectrical methods in geophysical exploration. Elsevier, Amsterdam Zhdanov MS, Keller GV (1994) The geoelectrical methods in geophysical exploration. Elsevier, Amsterdam
go back to reference Zhdanov MS, Portniaguine O (1997) Time-domain electromagnetic migration in the solution of inverse problems. Geophys J Int 131:293–309CrossRef Zhdanov MS, Portniaguine O (1997) Time-domain electromagnetic migration in the solution of inverse problems. Geophys J Int 131:293–309CrossRef
go back to reference Zhdanov MS, Traynin P, Booker JR (1996) Underground imaging by frequency-domain electromagnetic migration. Geophysics 61(3):666–682CrossRef Zhdanov MS, Traynin P, Booker JR (1996) Underground imaging by frequency-domain electromagnetic migration. Geophysics 61(3):666–682CrossRef
go back to reference Zhdanov MS et al (2010) Exploring multiple 3D inversion scenarios for enhanced interpretation of marine CSEM data: an iterative migration analysis of the Shtokman gas field. First Break 28:95–101CrossRef Zhdanov MS et al (2010) Exploring multiple 3D inversion scenarios for enhanced interpretation of marine CSEM data: an iterative migration analysis of the Shtokman gas field. First Break 28:95–101CrossRef
Metadata
Title
Interpretations and Modeling
Author
Stéphane Sainson
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45355-2_5