Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Introduction and Literature Review

Authors : Ibrahim Moukhtar, Adel Z. El Dein, Adel A. Elbaset, Yasunori Mitani

Published in: Solar Energy

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the world’s supply of fossil fuels shrinks, there is a great need for clean and affordable renewable energy sources (RES) in order to meet growing energy demands. Furthermore, the conventional plants based on fossil fuel have serious environmental and financial problems, and therefore, the dependency of the distribution networks on the RES such as solar power systems for generating electrical power is significantly promoted. In the past few decades, solar energy systems have been received great attention as an important type of RES. Nowadays, solar energy sources constitute appropriate commercial options for small and large power plants. The two mainstream categories of solar energy systems utilized for this purpose are concentrated solar power (CSP) and photovoltaic (PV). This chapter presents a brief introduction about the role, important need, and advantages of renewable energies for today and the future, especially solar energy such as PV and CSP systems. In addition, it introduces a survey for all types of CSP technologies. As well as, it presents a literature review for the LCOE and cost reduction of CSP and PV systems, CSP modeling, and the application of ANN technologies in various SF systems. Further, it presents the problem definition, objectives, and outlines of this thesis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Owusu PA, Sarkodie SA (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3(1):1167990 Owusu PA, Sarkodie SA (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3(1):1167990
2.
go back to reference Shaikh MR, Waghmare SB, Labade SS, Fuke PV, Tekale A (2017) A review paper on electricity generation from solar energy. Int J Res Appl Sci Eng Technol 5(IX):1884–1889 Shaikh MR, Waghmare SB, Labade SS, Fuke PV, Tekale A (2017) A review paper on electricity generation from solar energy. Int J Res Appl Sci Eng Technol 5(IX):1884–1889
3.
go back to reference Moukhtar I, Elbaset AA, El Dein AZ, Qudaih Y, Mitani Y (2018) Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate. AIP Conf Proc 1968(1):030037CrossRef Moukhtar I, Elbaset AA, El Dein AZ, Qudaih Y, Mitani Y (2018) Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate. AIP Conf Proc 1968(1):030037CrossRef
4.
go back to reference J. Schotte, “Balancing and Storage of Intermittent Renewables: an Economic Study”, Master's thesis, University of GENT, 2012. J. Schotte, “Balancing and Storage of Intermittent Renewables: an Economic Study”, Master's thesis, University of GENT, 2012.
5.
go back to reference Bejerano JB, Baute ET (2016) Impacts of intermittent renewable generation on electricity system costs. Energy Policy 94:411–420CrossRef Bejerano JB, Baute ET (2016) Impacts of intermittent renewable generation on electricity system costs. Energy Policy 94:411–420CrossRef
6.
go back to reference Maioli T (2016) Dynamic analysis and control of a once through steam generator for a concentrated solar power plant. Master's thesis, Polytechnic University of Milan Maioli T (2016) Dynamic analysis and control of a once through steam generator for a concentrated solar power plant. Master's thesis, Polytechnic University of Milan
7.
go back to reference Casati E, Galli A, Colonna P (2013) Thermal energy storage for solar-powered organic Rankine cycle engines. Sol Energy 96:205–219CrossRef Casati E, Galli A, Colonna P (2013) Thermal energy storage for solar-powered organic Rankine cycle engines. Sol Energy 96:205–219CrossRef
9.
go back to reference Denholm P, Mehos M (2011) Enabling greater penetration of solar power via the use of CSP with thermal energy storage. Technical Report NREL/TP-6A20–52978 Denholm P, Mehos M (2011) Enabling greater penetration of solar power via the use of CSP with thermal energy storage. Technical Report NREL/TP-6A20–52978
11.
go back to reference Kalogirou SA (2013) Solar energy engineering: processes and systems. Second Edition, Academic Press Kalogirou SA (2013) Solar energy engineering: processes and systems. Second Edition, Academic Press
12.
go back to reference Goswami DY (2015) Principals of Solar Engineering, 3rd edn. CRC Press, Taylor & Francis GroupCrossRef Goswami DY (2015) Principals of Solar Engineering, 3rd edn. CRC Press, Taylor & Francis GroupCrossRef
14.
go back to reference Rashad M, El-Samahy A, Daowd M, Amin AM (2015) A comparative study on photovoltaic and concentrated solar thermal power plants. Recent Adv Environ Earth Sci Econ, 167–173 Rashad M, El-Samahy A, Daowd M, Amin AM (2015) A comparative study on photovoltaic and concentrated solar thermal power plants. Recent Adv Environ Earth Sci Econ, 167–173
16.
go back to reference Geyer M, Quaschning V (2000) Solar thermal power: The seamless solar link to the conventional power world. Renewable Energy World 3(4):184–191 Geyer M, Quaschning V (2000) Solar thermal power: The seamless solar link to the conventional power world. Renewable Energy World 3(4):184–191
17.
go back to reference Wolff G, Gallego B, Tisdale R, Hopwood D (2008) CSP concentrates the mind. Renew Energy Focus 9(1):42–47CrossRef Wolff G, Gallego B, Tisdale R, Hopwood D (2008) CSP concentrates the mind. Renew Energy Focus 9(1):42–47CrossRef
18.
go back to reference Cardozo FR (2012) Concentrating solar power technologies using molten salts for storage and production of energy. Master Thesis, Faculty of Engineering, University of Porto (FEUP) Cardozo FR (2012) Concentrating solar power technologies using molten salts for storage and production of energy. Master Thesis, Faculty of Engineering, University of Porto (FEUP)
19.
go back to reference Dincer I, Midilli A, Kucuk H (2014) Progress in sustainable energy technologies: generating renewable energy. First Edition, Springer Dincer I, Midilli A, Kucuk H (2014) Progress in sustainable energy technologies: generating renewable energy. First Edition, Springer
20.
go back to reference Pacheco JE, Wolf T, Muley N (2013) Incorporating supercritical steam turbines into advanced molten-salt power tower plants: Feasibility and performance. SANDIA Report No. 2013–1960 Pacheco JE, Wolf T, Muley N (2013) Incorporating supercritical steam turbines into advanced molten-salt power tower plants: Feasibility and performance. SANDIA Report No. 2013–1960
21.
go back to reference Bhandari B, Lee KT, Lee GY et al (2015) Optimization of hybrid renewable energy power systems: A review. Int J Precis Eng Manufact Green Technol 2(1):99–112CrossRef Bhandari B, Lee KT, Lee GY et al (2015) Optimization of hybrid renewable energy power systems: A review. Int J Precis Eng Manufact Green Technol 2(1):99–112CrossRef
22.
go back to reference Chen H, Cong TN, Yang W et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312CrossRef Chen H, Cong TN, Yang W et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312CrossRef
23.
go back to reference García IL, Álvarez JL, Blanco DJ (2011) Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data. Sol Energy 85(10):2443–2460CrossRef García IL, Álvarez JL, Blanco DJ (2011) Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data. Sol Energy 85(10):2443–2460CrossRef
26.
go back to reference Behar O, Khellaf A, MohammedI K (2013) A review of studies on central receiver solar thermal power plants. Renew Sustain Energy Rev 23:12–39CrossRef Behar O, Khellaf A, MohammedI K (2013) A review of studies on central receiver solar thermal power plants. Renew Sustain Energy Rev 23:12–39CrossRef
27.
go back to reference Mendelsohn M, Lowder T, Canavan B (2012) Utility-scale concentrating solar power and photovoltaics projects: a technology and market overview. Technical Report NREL/TP-6A20–51137 Mendelsohn M, Lowder T, Canavan B (2012) Utility-scale concentrating solar power and photovoltaics projects: a technology and market overview. Technical Report NREL/TP-6A20–51137
29.
go back to reference Sabiha M, Saidur R, Hassani S et al (2015) Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manage 105:1377–1388CrossRef Sabiha M, Saidur R, Hassani S et al (2015) Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manage 105:1377–1388CrossRef
30.
go back to reference Dincer I (2011) Thermal energy storage: systems and applications. 2 edn, John Wiley & Sons, Ltd Dincer I (2011) Thermal energy storage: systems and applications. 2 edn, John Wiley & Sons, Ltd
31.
go back to reference Herrmann U, Kearney DW (2002) Survey of thermal energy storage for parabolic trough power plants. J SolEnergy Eng 124(2):145–152 Herrmann U, Kearney DW (2002) Survey of thermal energy storage for parabolic trough power plants. J SolEnergy Eng 124(2):145–152
32.
go back to reference Gil A et al (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modelization. Renew Sustain Energy Rev 14(1):31–55CrossRef Gil A et al (2010) State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modelization. Renew Sustain Energy Rev 14(1):31–55CrossRef
33.
go back to reference Seta AL et al (2015) Design of organic Rankine cycle power systems accounting for expander performance. Third International Seminar on ORC Power Systems, Belgium, pp 1–12 Seta AL et al (2015) Design of organic Rankine cycle power systems accounting for expander performance. Third International Seminar on ORC Power Systems, Belgium, pp 1–12
34.
go back to reference Saleh B, Koglbauer G, Wendland M, Fischer J (2007) Working fluids for low-temperature organic Rankine cycles. Energy 32(7):1210–1221CrossRef Saleh B, Koglbauer G, Wendland M, Fischer J (2007) Working fluids for low-temperature organic Rankine cycles. Energy 32(7):1210–1221CrossRef
35.
go back to reference Macchi E, Astolfi M (2016) Organic rankine cycle (ORC) power systems: technologies and applications. Woodhead Publishing, Elsevier Ltd Macchi E, Astolfi M (2016) Organic rankine cycle (ORC) power systems: technologies and applications. Woodhead Publishing, Elsevier Ltd
36.
go back to reference Murphy C et al (2019) The potential role of concentrating solar power within the context of DOE's 2030 solar cost targets. National Renewable Energy Lab, Golden, Technical Report NREL/TP-6A20–71912 Murphy C et al (2019) The potential role of concentrating solar power within the context of DOE's 2030 solar cost targets. National Renewable Energy Lab, Golden, Technical Report NREL/TP-6A20–71912
37.
go back to reference Taylor M, Ralon P, Ilas A (2016) The power to change: solar and wind cost reduction potential to 2025. Int Renew Energy Agency Taylor M, Ralon P, Ilas A (2016) The power to change: solar and wind cost reduction potential to 2025. Int Renew Energy Agency
38.
go back to reference EL-Shimy M (2017) Economics of cariable renewable sources for electric power production. LAP LAMBERT Academic Publishing EL-Shimy M (2017) Economics of cariable renewable sources for electric power production. LAP LAMBERT Academic Publishing
39.
go back to reference Goodrich A, James T, Woodhouse M (2012) Residential, commercial, and utility-scale photovoltaic (PV) system prices in the United States: current drivers and cost-reduction opportunities. National Renewable Energy Lab.(NREL), Golden, CO (United States) Goodrich A, James T, Woodhouse M (2012) Residential, commercial, and utility-scale photovoltaic (PV) system prices in the United States: current drivers and cost-reduction opportunities. National Renewable Energy Lab.(NREL), Golden, CO (United States)
40.
go back to reference Cook JJ, Ardani K, Margolis R, Fu R (2018) Cost-reduction roadmap for residential Solar photovoltaics (PV), 2017–2030. National Renewable Energy Lab., Technical Report NREL/TP-6A20–70748 Cook JJ, Ardani K, Margolis R, Fu R (2018) Cost-reduction roadmap for residential Solar photovoltaics (PV), 2017–2030. National Renewable Energy Lab., Technical Report NREL/TP-6A20–70748
42.
go back to reference Kutscher C et al (2010) Linefocus solar power plant cost reduction plan. National Renewable Energy Lab, Milestone Report NREL/TP-5500–48175 Kutscher C et al (2010) Linefocus solar power plant cost reduction plan. National Renewable Energy Lab, Milestone Report NREL/TP-5500–48175
43.
go back to reference Billinton R, Li W (1994) Reliability assessment of electric power systems using monte carlo methods. Springer Billinton R, Li W (1994) Reliability assessment of electric power systems using monte carlo methods. Springer
44.
go back to reference Murray DJ (2012) Small-scale solar central receiver system design and analysis. Master Thesis, San Luis Obispo University Murray DJ (2012) Small-scale solar central receiver system design and analysis. Master Thesis, San Luis Obispo University
45.
go back to reference Patnode AM (2006) Simulation and performance evaluation of parabolic trough solar power plants. Master Thesis, University of Wisconsin-Madison Patnode AM (2006) Simulation and performance evaluation of parabolic trough solar power plants. Master Thesis, University of Wisconsin-Madison
46.
go back to reference Price H (2003) A parabolic trough solar power plant simulation model. International Solar Energy Conference, Hawaii Island, Hawaii, pp 665–673 Price H (2003) A parabolic trough solar power plant simulation model. International Solar Energy Conference, Hawaii Island, Hawaii, pp 665–673
47.
go back to reference Yamani N, Khellaf A, Mohammedi K, Behar O (2017) Assessment of solar thermal tower technology under Algerian climate. Energy 126:444–460CrossRef Yamani N, Khellaf A, Mohammedi K, Behar O (2017) Assessment of solar thermal tower technology under Algerian climate. Energy 126:444–460CrossRef
48.
go back to reference Gertig C, Delgado A, Hidalgo C, Ron R (2014) SoFiA–a novel simulation tool for central receiver systems. Energy Procedia 49:1361–1370CrossRef Gertig C, Delgado A, Hidalgo C, Ron R (2014) SoFiA–a novel simulation tool for central receiver systems. Energy Procedia 49:1361–1370CrossRef
49.
go back to reference Ali BH, Gilani S, Al-Kayiem HH (2016) Mathematical modeling of a developed central receiver based on evacuated solar tubes. MATEC Web of Conf 38:02005CrossRef Ali BH, Gilani S, Al-Kayiem HH (2016) Mathematical modeling of a developed central receiver based on evacuated solar tubes. MATEC Web of Conf 38:02005CrossRef
50.
go back to reference Zhang J et al (2014) Dynamic simulation of a 1MWe concentrated solar power tower plant system with Dymola®. Energy Procedia 49:1592–1602CrossRef Zhang J et al (2014) Dynamic simulation of a 1MWe concentrated solar power tower plant system with Dymola®. Energy Procedia 49:1592–1602CrossRef
51.
go back to reference Yao Z, Wang Z, Lu Z, Wei X (2009) Modeling and simu lation of the pioneer 1 MW solar thermal central receiver system in China. Renewable Energy 34(11):2437–2446CrossRef Yao Z, Wang Z, Lu Z, Wei X (2009) Modeling and simu lation of the pioneer 1 MW solar thermal central receiver system in China. Renewable Energy 34(11):2437–2446CrossRef
52.
go back to reference Padilla RV (2011) Simplified methodology for designing parabolic trough solar power plants. PhD Thesis, University of South Florida Padilla RV (2011) Simplified methodology for designing parabolic trough solar power plants. PhD Thesis, University of South Florida
53.
go back to reference Aung KT (2011) Simulation tool for renewable energy projects. Technical paper AC2011–1664, American Society for Engineering Education Aung KT (2011) Simulation tool for renewable energy projects. Technical paper AC2011–1664, American Society for Engineering Education
54.
go back to reference Wagner M, Blair N, Dobos A (2010) A detailed physical trough model for NREL’s Solar Advisor Model. Proceedings of the SolarPACES International Symposium, SolarPACES, France, NREL/CP-5500–49368 Wagner M, Blair N, Dobos A (2010) A detailed physical trough model for NREL’s Solar Advisor Model. Proceedings of the SolarPACES International Symposium, SolarPACES, France, NREL/CP-5500–49368
55.
go back to reference Ghritlahre HK, Prasad RK (2018a) Application of ANN technique to predict the performance of solar collector systems-A review. Renew Sustain Energy Rev 84:75–88CrossRef Ghritlahre HK, Prasad RK (2018a) Application of ANN technique to predict the performance of solar collector systems-A review. Renew Sustain Energy Rev 84:75–88CrossRef
56.
go back to reference Ghritlahre HK, Prasad RK (2017) Prediction of thermal performance of unidirectional flow porous bed solar air heater with optimal training function using artificial neural network. Energy Procedia 109:369–376CrossRef Ghritlahre HK, Prasad RK (2017) Prediction of thermal performance of unidirectional flow porous bed solar air heater with optimal training function using artificial neural network. Energy Procedia 109:369–376CrossRef
57.
go back to reference Boukelia T, Arslan O, Mecibah M (2017) Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach. Renew Energy 105:324–333CrossRef Boukelia T, Arslan O, Mecibah M (2017) Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach. Renew Energy 105:324–333CrossRef
58.
go back to reference Boukelia T, Arslan O, Mecibah M (2016) ANN-based op imization of a parabolic trough solar thermal power plant. Appl Therm Eng 107:1210–1218CrossRef Boukelia T, Arslan O, Mecibah M (2016) ANN-based op imization of a parabolic trough solar thermal power plant. Appl Therm Eng 107:1210–1218CrossRef
59.
go back to reference Ghritlahre HK, Prasad RK (2018a) Exergetic performance prediction of a roughened solar air heater using artificial neural network. J Mech Eng 64(3) Ghritlahre HK, Prasad RK (2018a) Exergetic performance prediction of a roughened solar air heater using artificial neural network. J Mech Eng 64(3)
60.
go back to reference Ghritlahre HK, Prasad RK (2018b) Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique. Thermal Sci Eng Progress 6:226–235CrossRef Ghritlahre HK, Prasad RK (2018b) Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique. Thermal Sci Eng Progress 6:226–235CrossRef
61.
go back to reference Ghritlahre HK, Prasad RK (2018c) Investigation on heat transfer characteristics of roughened solar air heater using ANN technique. Int J Heat Technol 36(1):102–110CrossRef Ghritlahre HK, Prasad RK (2018c) Investigation on heat transfer characteristics of roughened solar air heater using ANN technique. Int J Heat Technol 36(1):102–110CrossRef
62.
go back to reference Ghritlahre HK, Prasad RK (2018d) Development of Optimal ANN Model to Estimate the Thermal Performance of Roughened Solar Air Heater Using Two different Learning Algorithms. Springer, Annals of Data Science, pp 1–15 Ghritlahre HK, Prasad RK (2018d) Development of Optimal ANN Model to Estimate the Thermal Performance of Roughened Solar Air Heater Using Two different Learning Algorithms. Springer, Annals of Data Science, pp 1–15
63.
go back to reference Sözen A, Menlik T, Ünvar S (2008) Determination of efficiency of flat-plate solar collectors using neural network approach. Expert Syst Appl 35(4):1533–1539CrossRef Sözen A, Menlik T, Ünvar S (2008) Determination of efficiency of flat-plate solar collectors using neural network approach. Expert Syst Appl 35(4):1533–1539CrossRef
64.
go back to reference Arslan O, Yetik O (2009) ANN based optimization of supercritical ORC-Binary geothermal power plant: Simav case study. Applied Thermal Engineering, Vol. 31, No. 17–18, pp. 3922–3928, 2011. A. Mellit, S. A. Kalogirou, L. Hontoria, and S. Shaari, “Artificial intelligence techniques for sizing photovoltaic systems: A review”, Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, pp. 406–419 Arslan O, Yetik O (2009) ANN based optimization of supercritical ORC-Binary geothermal power plant: Simav case study. Applied Thermal Engineering, Vol. 31, No. 17–18, pp. 3922–3928, 2011. A. Mellit, S. A. Kalogirou, L. Hontoria, and S. Shaari, “Artificial intelligence techniques for sizing photovoltaic systems: A review”, Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, pp. 406–419
65.
go back to reference Kalogirou SA (2000) Applications of artificial neural-networks for energy systems. Appl Energy 67:17–35CrossRef Kalogirou SA (2000) Applications of artificial neural-networks for energy systems. Appl Energy 67:17–35CrossRef
66.
go back to reference Kalogirou SA, Neocleous CC, Schizas CN (1998) Artificial neural networks for modelling the starting-up of a solar steam-generator. Appl Energy 60(2):89–100 Kalogirou SA, Neocleous CC, Schizas CN (1998) Artificial neural networks for modelling the starting-up of a solar steam-generator. Appl Energy 60(2):89–100
67.
go back to reference Gafurov T, Usaola J, Prodanovic M (2014) Modelling of concentrating solar power plant for power system reliability studies. IET Renew Power Gener 9(2):120–130CrossRef Gafurov T, Usaola J, Prodanovic M (2014) Modelling of concentrating solar power plant for power system reliability studies. IET Renew Power Gener 9(2):120–130CrossRef
68.
go back to reference Shen C, He YL, Liu YW, Tao WQ (2008) Modelling and simulation of solar radiation data processing with Simulink. Simul Model Pract Theory 16(7):721–735CrossRef Shen C, He YL, Liu YW, Tao WQ (2008) Modelling and simulation of solar radiation data processing with Simulink. Simul Model Pract Theory 16(7):721–735CrossRef
Metadata
Title
Introduction and Literature Review
Authors
Ibrahim Moukhtar
Adel Z. El Dein
Adel A. Elbaset
Yasunori Mitani
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-61307-5_1