Skip to main content
Top
Published in:
Cover of the book

2023 | OriginalPaper | Chapter

1. Introduction in IR Detectors

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

IR photodetectors play an important role in our life. They are widely used in areas such as military and space technology, night vision, astronomy, medicine, climatology, optical communications, etc. This chapter in the first part gives an overview of these devices, which are divided into two main groups – thermal detectors and photon detectors. The chapter lists the parameters that characterize these devices and gives their comparison, including their advantages and disadvantages. The materials used for the manufacture of IR detectors and the role of the atmosphere in the operation of IR detectors are also considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baker IM (2017) II-VI narrow bandgap semiconductors: optoelectronics. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer, pp 867–896 Baker IM (2017) II-VI narrow bandgap semiconductors: optoelectronics. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer, pp 867–896
2.
go back to reference Bao A, Lei C, Mao H, Li R, Guan Y (2019) Study on a high performance MEMS infrared thermopile detector. Micromachines 10:877CrossRef Bao A, Lei C, Mao H, Li R, Guan Y (2019) Study on a high performance MEMS infrared thermopile detector. Micromachines 10:877CrossRef
3.
go back to reference Chen S-J, Chen B (2020) Research on a CMOS-MEMS infrared sensor with reduced graphene oxide. Sensors 20:4007ADSCrossRef Chen S-J, Chen B (2020) Research on a CMOS-MEMS infrared sensor with reduced graphene oxide. Sensors 20:4007ADSCrossRef
4.
5.
go back to reference Ghimire H, Jayaweera PVV, Somvanshi D, Lao Y, Unil Perera AG (2020) Recent progress on extended wavelength and split-off band heterostructure infrared detectors. Micromachines 11:547CrossRef Ghimire H, Jayaweera PVV, Somvanshi D, Lao Y, Unil Perera AG (2020) Recent progress on extended wavelength and split-off band heterostructure infrared detectors. Micromachines 11:547CrossRef
6.
go back to reference Graf A, Arndt M, Sauer M, Gerlach G (2007) Review of micromachined thermopiles for infrared detection. Meas Sci Technol 18(7):R59–R75ADSCrossRef Graf A, Arndt M, Sauer M, Gerlach G (2007) Review of micromachined thermopiles for infrared detection. Meas Sci Technol 18(7):R59–R75ADSCrossRef
7.
go back to reference Harman TC, Melngailis J (1974) Narrow gap semiconductors. In: Wolfe R (ed) Applied solid state science. Academic, New York Harman TC, Melngailis J (1974) Narrow gap semiconductors. In: Wolfe R (ed) Applied solid state science. Academic, New York
8.
go back to reference Hodapp KW, Hall DNB (2006) Introduction to detectors: possible status in 2010–2020. In: Whitelock P, Dennefeld M, Leibundgut B (eds) Proceedings IAU symposium, No. 232. International Astronomical Union, pp 40–51 Hodapp KW, Hall DNB (2006) Introduction to detectors: possible status in 2010–2020. In: Whitelock P, Dennefeld M, Leibundgut B (eds) Proceedings IAU symposium, No. 232. International Astronomical Union, pp 40–51
9.
go back to reference Joshi AM, Ban VS, Mason S, Lange MJ, Kosonocky WF (1992) 512 and 1024 element linear InGaAs detector arrays for near-infrared (1–3 μm) environmental sensing. Proc SPIE 1735:287–295ADSCrossRef Joshi AM, Ban VS, Mason S, Lange MJ, Kosonocky WF (1992) 512 and 1024 element linear InGaAs detector arrays for near-infrared (1–3 μm) environmental sensing. Proc SPIE 1735:287–295ADSCrossRef
10.
go back to reference Karim A, Andersson JY (2013) Infrared detectors: advances, challenges and new technologies. IOP Conf Ser: Mater Sci Eng 51:012001CrossRef Karim A, Andersson JY (2013) Infrared detectors: advances, challenges and new technologies. IOP Conf Ser: Mater Sci Eng 51:012001CrossRef
11.
go back to reference Kimata M (2001) Metal silicide Schottky infrared detector arrays. In: Capper P, Elliott CT (eds) Infrared detectors and emitters: materials and devices. Kluwer Academic Publishers, Boston, pp 77–98CrossRef Kimata M (2001) Metal silicide Schottky infrared detector arrays. In: Capper P, Elliott CT (eds) Infrared detectors and emitters: materials and devices. Kluwer Academic Publishers, Boston, pp 77–98CrossRef
12.
go back to reference Kulchitsky NA, Naumov AV, Startsev VV (2020) Infrared focal plane array detectors: “post pandemic” development trends. Part 1. Photonics Russia 14(3):234–244. (In Russian) Kulchitsky NA, Naumov AV, Startsev VV (2020) Infrared focal plane array detectors: “post pandemic” development trends. Part 1. Photonics Russia 14(3):234–244. (In Russian)
13.
go back to reference Kuznetsov SA, Paulish AG, Navarro-Cía M, Arzhannikov AV (2018) Selective pyroelectric detection of millimetre waves using ultra-thin metasurface absorbers. Sci Rep 6:21079ADSCrossRef Kuznetsov SA, Paulish AG, Navarro-Cía M, Arzhannikov AV (2018) Selective pyroelectric detection of millimetre waves using ultra-thin metasurface absorbers. Sci Rep 6:21079ADSCrossRef
14.
go back to reference Lin TL, Park JS, George T, Jones EW, Fathauer RW, Maserjian J (1993) Long-wavelength PtSi infrared detectors fabricated by incorporating a p+ doping spike grown by molecular beam epitaxy. Appl Phys Lett 62(25):3318–3320ADSCrossRef Lin TL, Park JS, George T, Jones EW, Fathauer RW, Maserjian J (1993) Long-wavelength PtSi infrared detectors fabricated by incorporating a p+ doping spike grown by molecular beam epitaxy. Appl Phys Lett 62(25):3318–3320ADSCrossRef
15.
go back to reference McCreight CR, McKelvey ME, Goebel JH, Anderson GM, Lee JH (1986) Detector arrays for low-background space infrared astronomy. Laser Focus/Electro-Optics 22:128–133 McCreight CR, McKelvey ME, Goebel JH, Anderson GM, Lee JH (1986) Detector arrays for low-background space infrared astronomy. Laser Focus/Electro-Optics 22:128–133
16.
go back to reference Norton PR (2006) Third-generation sensors for night vision. Opto-Electron Rev 14:283–296CrossRef Norton PR (2006) Third-generation sensors for night vision. Opto-Electron Rev 14:283–296CrossRef
17.
go back to reference Piotrowski J, Rogalski A (2007) High-operating-temperature infrared photodetectors. SPIE, BellinghamCrossRef Piotrowski J, Rogalski A (2007) High-operating-temperature infrared photodetectors. SPIE, BellinghamCrossRef
18.
go back to reference Piotrowski J (2004) Uncooled operation of IR photodetectors. Opto-Electron Rev 12(1):111–122 Piotrowski J (2004) Uncooled operation of IR photodetectors. Opto-Electron Rev 12(1):111–122
19.
go back to reference Reine MB (2001) HgCdTe photodiodes for IR detection: a review. Proc SPIE 4288:266–277ADSCrossRef Reine MB (2001) HgCdTe photodiodes for IR detection: a review. Proc SPIE 4288:266–277ADSCrossRef
20.
go back to reference Rieke GH (2007) Infrared detector arrays for astronomy. Annu Rev Astron Astrophys 45:77–115ADSCrossRef Rieke GH (2007) Infrared detector arrays for astronomy. Annu Rev Astron Astrophys 45:77–115ADSCrossRef
21.
go back to reference Rogalski A, Kopytko M, Martyniuk P (2020) 2D material infrared and terahertz detectors: status and outlook. Opto-Electron Rev 28:107–154 Rogalski A, Kopytko M, Martyniuk P (2020) 2D material infrared and terahertz detectors: status and outlook. Opto-Electron Rev 28:107–154
22.
23.
go back to reference Rogalski A (2003) Infrared detectors: status and trends. Prog Quant Electron 27:59–210ADSCrossRef Rogalski A (2003) Infrared detectors: status and trends. Prog Quant Electron 27:59–210ADSCrossRef
24.
go back to reference Rogalski A, Adamiec K, Rutkowski J (2000) Narrow-gap semiconductor photodiodes. SPIE-The International Society for Optical Engineering, BellinghamCrossRef Rogalski A, Adamiec K, Rutkowski J (2000) Narrow-gap semiconductor photodiodes. SPIE-The International Society for Optical Engineering, BellinghamCrossRef
25.
go back to reference Rogalski A (2000) Infrared detectors at the beginning of the next millennium. Sens Mater 12(5):233–288 Rogalski A (2000) Infrared detectors at the beginning of the next millennium. Sens Mater 12(5):233–288
26.
go back to reference Rogalski A (1991) Hg1-xMnxTe as a new infrared detector material. Infrared Phys 31:117–166ADSCrossRef Rogalski A (1991) Hg1-xMnxTe as a new infrared detector material. Infrared Phys 31:117–166ADSCrossRef
27.
go back to reference Rogalski A (1989) Hg1-xZnxTe as a potential infrared detector material. Prog Quant Electron 13:299–253ADSCrossRef Rogalski A (1989) Hg1-xZnxTe as a potential infrared detector material. Prog Quant Electron 13:299–253ADSCrossRef
28.
go back to reference Sclar N (1984) Properties of doped silicon and germanium infrared detectors. Prog Quant Electron 9:149–257ADSCrossRef Sclar N (1984) Properties of doped silicon and germanium infrared detectors. Prog Quant Electron 9:149–257ADSCrossRef
29.
go back to reference Smuk S, Kochanov Y, Petroshenko MP, Solomitskii D (2014) IRnova long-wavelength infrared sensors based on quantum wells. Komponenti Tehnologia 1:20–25. (In Russian) Smuk S, Kochanov Y, Petroshenko MP, Solomitskii D (2014) IRnova long-wavelength infrared sensors based on quantum wells. Komponenti Tehnologia 1:20–25. (In Russian)
30.
go back to reference Sobrino JA, Del Frate F, Drusch M, Jiménez-Muñoz JC, Manunta P, Regan A (2016) Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Trans Geosci Remote Sens 54:2963–2972ADSCrossRef Sobrino JA, Del Frate F, Drusch M, Jiménez-Muñoz JC, Manunta P, Regan A (2016) Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Trans Geosci Remote Sens 54:2963–2972ADSCrossRef
31.
go back to reference Starr B, Mears L, Fulk C, Getty J, Beuville E, Boe R et al (2016) RVS large format arrays for astronomy. Proc SPIE 9915:99152XCrossRef Starr B, Mears L, Fulk C, Getty J, Beuville E, Boe R et al (2016) RVS large format arrays for astronomy. Proc SPIE 9915:99152XCrossRef
32.
go back to reference Tan CL, Mohseni H (2018) Emerging technologies for high performance infrared detectors. Nano 7(1):169–197 Tan CL, Mohseni H (2018) Emerging technologies for high performance infrared detectors. Nano 7(1):169–197
33.
go back to reference Vincent JD, Hodges SE, Vampola J, Stegall M, Pierce G (2016) Fundamentals of infrared and visible detector operation and testing, 2nd edn. Wiley, Hoboken Vincent JD, Hodges SE, Vampola J, Stegall M, Pierce G (2016) Fundamentals of infrared and visible detector operation and testing, 2nd edn. Wiley, Hoboken
34.
go back to reference Xu D, Wang Y, Xiong B, Li T (2017) MEMS-based thermoelectric infrared sensors: a review. Front Mech Eng 12(4):557–566CrossRef Xu D, Wang Y, Xiong B, Li T (2017) MEMS-based thermoelectric infrared sensors: a review. Front Mech Eng 12(4):557–566CrossRef
Metadata
Title
Introduction in IR Detectors
Author
Ghenadii Korotcenkov
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20510-1_1

Premium Partners