Skip to main content
Top
Published in: Computational Mechanics 6/2023

13-03-2023 | Original Paper

Introduction of pseudo-stress for local residual and algebraic derivation of consistent tangent in elastoplasticity

Authors: Takeki Yamamoto, Takahiro Yamada, Kazumi Matsui

Published in: Computational Mechanics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, an introduction of pseudo-stress for local residual and an algebraic derivation of consistent tangent are presented. The authors define a coupled problem of the equilibrium equation for the overall structure and the constrained equations for stress state at every material point, and the pseudo-stress and the derived consistent tangent can be implemented easily to finite element analysis. In the proposed block Newton method, the internal variables are also updated algebraically without any local iterative calculations. In addition, the authors demonstrate the performance of the proposed approach for both \(J_{2}\) plasticity and \(J_{2}\) plasticity under plane stress state.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yamamoto T, Yamada T, Matsui K (2021) Simultaneously iterative procedure based on block newton method for elastoplastic problems. Int J Numer Methods Eng 122(9):2145–2178MathSciNetCrossRef Yamamoto T, Yamada T, Matsui K (2021) Simultaneously iterative procedure based on block newton method for elastoplastic problems. Int J Numer Methods Eng 122(9):2145–2178MathSciNetCrossRef
2.
go back to reference Kulkarni DV, Tortorelli DA (2005) A domain decomposition based two-level newton scheme for nonlinear problems. In: Barth TJ, Griebel M, Keyes DE et al (eds) Domain decomposition methods in science and engineering. Springer, Berlin, pp 615–622CrossRefMATH Kulkarni DV, Tortorelli DA (2005) A domain decomposition based two-level newton scheme for nonlinear problems. In: Barth TJ, Griebel M, Keyes DE et al (eds) Domain decomposition methods in science and engineering. Springer, Berlin, pp 615–622CrossRefMATH
3.
go back to reference Michaleris P, Tortorelli D, Vidal C (1994) Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499CrossRefMATH Michaleris P, Tortorelli D, Vidal C (1994) Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499CrossRefMATH
4.
go back to reference Michaleris P, Tortorelli D, Vidal C (1995) Analysis and optimization of weakly coupled thermoelastoplastic systems with applications to weldment design. Int J Numer Methods Eng 38(8):1259–1285CrossRefMATH Michaleris P, Tortorelli D, Vidal C (1995) Analysis and optimization of weakly coupled thermoelastoplastic systems with applications to weldment design. Int J Numer Methods Eng 38(8):1259–1285CrossRefMATH
5.
go back to reference Wisniewski K, Kowalczyk P, Turska E (2003) On the computation of design derivatives for Huber–Mises plasticity with non-linear hardening. Int J Numer Methods Eng 57(2):271–300 Wisniewski K, Kowalczyk P, Turska E (2003) On the computation of design derivatives for Huber–Mises plasticity with non-linear hardening. Int J Numer Methods Eng 57(2):271–300
6.
go back to reference Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidiscip Optim 54:783–793MathSciNetCrossRef Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidiscip Optim 54:783–793MathSciNetCrossRef
7.
go back to reference Okada J, Washio T, Hisada T (2010) Study of efficient homogenization algorithms for nonlinear problems: approximation of a homogenized tangent stiffness to reduce computational cost. Comput Mech 46(2):247–258MathSciNetCrossRefMATH Okada J, Washio T, Hisada T (2010) Study of efficient homogenization algorithms for nonlinear problems: approximation of a homogenized tangent stiffness to reduce computational cost. Comput Mech 46(2):247–258MathSciNetCrossRefMATH
9.
go back to reference Fritzen F, Hassani MR (2018) Space-time model order reduction for nonlinear viscoelastic systems subjected to long-term loading. Meccanica 53:1333–1355MathSciNetCrossRef Fritzen F, Hassani MR (2018) Space-time model order reduction for nonlinear viscoelastic systems subjected to long-term loading. Meccanica 53:1333–1355MathSciNetCrossRef
10.
go back to reference Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81(8):805–812CrossRef Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81(8):805–812CrossRef
11.
go back to reference Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195(17):2028–2049MathSciNetCrossRefMATH Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195(17):2028–2049MathSciNetCrossRefMATH
12.
go back to reference Ellsiepen P, Hartmann S (2001) Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations. Int J Numer Methods Eng 51(6):679–707CrossRefMATH Ellsiepen P, Hartmann S (2001) Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations. Int J Numer Methods Eng 51(6):679–707CrossRefMATH
13.
go back to reference Kulkarni DV, Tortorelli DA, Wallin M (2007) A Newton–Schur alternative to the consistent tangent approach in computational plasticity. Comput Methods Appl Mech Eng 196(7):1169–1177CrossRefMATH Kulkarni DV, Tortorelli DA, Wallin M (2007) A Newton–Schur alternative to the consistent tangent approach in computational plasticity. Comput Methods Appl Mech Eng 196(7):1169–1177CrossRefMATH
14.
go back to reference Simo J, Taylor R (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48(1):101–118CrossRefMATH Simo J, Taylor R (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48(1):101–118CrossRefMATH
15.
go back to reference Hartmann S, Quint KJ, Arnold M (2008) On plastic incompressibility within time-adaptive finite elements combined with projection techniques. Comput Methods Appl Mech Eng 198(2):178–193 Hartmann S, Quint KJ, Arnold M (2008) On plastic incompressibility within time-adaptive finite elements combined with projection techniques. Comput Methods Appl Mech Eng 198(2):178–193
16.
go back to reference Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326MathSciNetCrossRefMATH Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326MathSciNetCrossRefMATH
17.
go back to reference Owen D, Hinton E (1980) Finite elements in plasticity: theory and practice. Pineridge Press, SwanseaMATH Owen D, Hinton E (1980) Finite elements in plasticity: theory and practice. Pineridge Press, SwanseaMATH
18.
go back to reference Hartmann S (2005) A remark on the application of the Newton–Raphson method in non-linear finite element analysis. Comput Mech 36(2):100–116MathSciNetCrossRefMATH Hartmann S (2005) A remark on the application of the Newton–Raphson method in non-linear finite element analysis. Comput Mech 36(2):100–116MathSciNetCrossRefMATH
19.
go back to reference Rempler HU, Wieners C, Ehlers W (2011) Efficiency comparison of an augmented finite element formulation with standard return mapping algorithms for elastic-inelastic materials. Comput Mech 48(5):551–562MathSciNetCrossRefMATH Rempler HU, Wieners C, Ehlers W (2011) Efficiency comparison of an augmented finite element formulation with standard return mapping algorithms for elastic-inelastic materials. Comput Mech 48(5):551–562MathSciNetCrossRefMATH
20.
go back to reference Braudel H, Abouaf M, Chenot J (1986) An implicit and incremental formulation for the solution of elastoplastic problems by the finite element method. Comput Struct 22(5):801–814CrossRefMATH Braudel H, Abouaf M, Chenot J (1986) An implicit and incremental formulation for the solution of elastoplastic problems by the finite element method. Comput Struct 22(5):801–814CrossRefMATH
21.
go back to reference Braudel H, Abouaf M, Chenot J (1986) An implicit incrementally objective formulation for the solution of elastoplastic problems at finite strain by the F.E.M. Comput Struct 24(6):825–843CrossRefMATH Braudel H, Abouaf M, Chenot J (1986) An implicit incrementally objective formulation for the solution of elastoplastic problems at finite strain by the F.E.M. Comput Struct 24(6):825–843CrossRefMATH
22.
go back to reference de Souza Neto E, Peric D, Owen D (2008) Computational methods for plasticity: theory and applications. Wiley, New York de Souza Neto E, Peric D, Owen D (2008) Computational methods for plasticity: theory and applications. Wiley, New York
23.
go back to reference Simo J (1998) Numerical analysis and simulation of plasticity. Numerical methods for solids (part 3) numerical methods for fluids (part 1), handbook of numerical analysis, vol 6. Elsevier, B.V., pp 183–499CrossRef Simo J (1998) Numerical analysis and simulation of plasticity. Numerical methods for solids (part 3) numerical methods for fluids (part 1), handbook of numerical analysis, vol 6. Elsevier, B.V., pp 183–499CrossRef
24.
go back to reference Simo J, Hughes T (1998) Computational inelasticity. Springer, New YorkMATH Simo J, Hughes T (1998) Computational inelasticity. Springer, New YorkMATH
25.
go back to reference Voce E (1955) A practical strain hardening function. Metallurgia 51:219–226 Voce E (1955) A practical strain hardening function. Metallurgia 51:219–226
26.
go back to reference Cook RD, Malkus DS, Plesha ME et al (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York Cook RD, Malkus DS, Plesha ME et al (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York
27.
go back to reference Simo J (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comput Methods Appl Mech Eng 66(2):199–219CrossRefMATH Simo J (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comput Methods Appl Mech Eng 66(2):199–219CrossRefMATH
28.
go back to reference Simo J (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: computational aspects. Comput Methods Appl Mech Eng 68(1):1–31 Simo J (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: computational aspects. Comput Methods Appl Mech Eng 68(1):1–31
Metadata
Title
Introduction of pseudo-stress for local residual and algebraic derivation of consistent tangent in elastoplasticity
Authors
Takeki Yamamoto
Takahiro Yamada
Kazumi Matsui
Publication date
13-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 6/2023
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02268-0

Other articles of this Issue 6/2023

Computational Mechanics 6/2023 Go to the issue