Skip to main content
Top
Published in: Computational Mechanics 6/2023

25-03-2023 | Original Paper

Bi-fidelity modeling of uncertain and partially unknown systems using DeepONets

Authors: Subhayan De, Matthew Reynolds, Malik Hassanaly, Ryan N. King, Alireza Doostan

Published in: Computational Mechanics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent advances in modeling large-scale, complex physical systems have shifted research focuses towards data-driven techniques. However, generating datasets by simulating complex systems can require significant computational resources. Similarly, acquiring experimental datasets can prove difficult. For these systems, often computationally inexpensive, but in general inaccurate models, known as the low-fidelity models, are available. In this paper, we propose a bi-fidelity modeling approach for complex physical systems, where we model the discrepancy between the true system’s response and a low-fidelity response in the presence of a small training dataset from the true system’s response using a deep operator network, a neural network architecture suitable for approximating nonlinear operators. We apply the approach to systems that have parametric uncertainty and are partially unknown. Three numerical examples are used to show the efficacy of the proposed approach to model uncertain and partially unknown physical systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Basu JK, Bhattacharyya D, Kim TH (2010) Use of artificial neural network in pattern recognition. Int J Softw Eng Appl 4(2):23–34 Basu JK, Bhattacharyya D, Kim TH (2010) Use of artificial neural network in pattern recognition. Int J Softw Eng Appl 4(2):23–34
2.
go back to reference Blakseth SS, Rasheed A, Kvamsdal T et al (2021) Deep neural network enabled corrective source term approach to hybrid analysis and modeling. arXiv preprint arXiv:2105.11521 Blakseth SS, Rasheed A, Kvamsdal T et al (2021) Deep neural network enabled corrective source term approach to hybrid analysis and modeling. arXiv preprint arXiv:​2105.​11521
3.
go back to reference Boersma S, Doekemeijer B, Vali M et al (2018) A control-oriented dynamic wind farm model: WFSim. Wind Energy Sci 3(1):75–95CrossRef Boersma S, Doekemeijer B, Vali M et al (2018) A control-oriented dynamic wind farm model: WFSim. Wind Energy Sci 3(1):75–95CrossRef
4.
go back to reference Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. Springer, p 177–186 Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. Springer, p 177–186
5.
go back to reference Bottou L (2012) Stochastic gradient descent tricks. In: Neural networks: tricks of the trade. Springer, p 421–436 Bottou L (2012) Stochastic gradient descent tricks. In: Neural networks: tricks of the trade. Springer, p 421–436
6.
go back to reference Cai S, Mao Z, Wang Z et al (2021a) Physics-informed neural networks (PINNs) for fluid mechanics: a review. arXiv preprint arXiv:2105.09506 Cai S, Mao Z, Wang Z et al (2021a) Physics-informed neural networks (PINNs) for fluid mechanics: a review. arXiv preprint arXiv:​2105.​09506
7.
go back to reference Cai S, Wang Z, Lu L et al (2021) DeepM &Mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J Comput Phys 436(110):296MathSciNetMATH Cai S, Wang Z, Lu L et al (2021) DeepM &Mnet: inferring the electroconvection multiphysics fields based on operator approximation by neural networks. J Comput Phys 436(110):296MathSciNetMATH
8.
go back to reference Chen T, Chen H (1995) Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans Neural Netw 6(4):911–917CrossRef Chen T, Chen H (1995) Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans Neural Netw 6(4):911–917CrossRef
9.
go back to reference Chi G, Hu S, Yang Y et al (2012) Response surface methodology with prediction uncertainty: a multi-objective optimisation approach. Chem Eng Res Des 90(9):1235–1244CrossRef Chi G, Hu S, Yang Y et al (2012) Response surface methodology with prediction uncertainty: a multi-objective optimisation approach. Chem Eng Res Des 90(9):1235–1244CrossRef
10.
go back to reference Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:​1511.​07289
11.
go back to reference De S (2021) Uncertainty quantification of locally nonlinear dynamical systems using neural networks. J Comput Civ Eng 35(4):04021009CrossRef De S (2021) Uncertainty quantification of locally nonlinear dynamical systems using neural networks. J Comput Civ Eng 35(4):04021009CrossRef
12.
go back to reference De S, Doostan A (2022) Neural network training using \(\ell _1\)-regularization and bi-fidelity data. J Comput Phys 458:111010 De S, Doostan A (2022) Neural network training using \(\ell _1\)-regularization and bi-fidelity data. J Comput Phys 458:111010
13.
go back to reference De S, Britton J, Reynolds M et al (2020) On transfer learning of neural networks using bi-fidelity data for uncertainty propagation. Int J Uncertain Quantif 10(6):543–573MathSciNetCrossRefMATH De S, Britton J, Reynolds M et al (2020) On transfer learning of neural networks using bi-fidelity data for uncertainty propagation. Int J Uncertain Quantif 10(6):543–573MathSciNetCrossRefMATH
14.
go back to reference De S, Hampton J, Maute K et al (2020) Topology optimization under uncertainty using a stochastic gradient-based approach. Struct Multidiscip Optim 62(5):2255–2278MathSciNetCrossRef De S, Hampton J, Maute K et al (2020) Topology optimization under uncertainty using a stochastic gradient-based approach. Struct Multidiscip Optim 62(5):2255–2278MathSciNetCrossRef
15.
go back to reference De S, Maute K, Doostan A (2020) Bi-fidelity stochastic gradient descent for structural optimization under uncertainty. Comput Mech 66(4):745–771MathSciNetCrossRefMATH De S, Maute K, Doostan A (2020) Bi-fidelity stochastic gradient descent for structural optimization under uncertainty. Comput Mech 66(4):745–771MathSciNetCrossRefMATH
16.
go back to reference Deng B, Shin Y, Lu L et al (2021) Convergence rate of DeepONets for learning operators arising from advection-diffusion equations. arXiv preprint arXiv:2102.10621 Deng B, Shin Y, Lu L et al (2021) Convergence rate of DeepONets for learning operators arising from advection-diffusion equations. arXiv preprint arXiv:​2102.​10621
17.
19.
go back to reference Fleming P, Annoni J, Shah JJ et al (2017) Field test of wake steering at an offshore wind farm. Wind Energy Sci 2(1):229–239CrossRef Fleming P, Annoni J, Shah JJ et al (2017) Field test of wake steering at an offshore wind farm. Wind Energy Sci 2(1):229–239CrossRef
20.
go back to reference Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc Math Phys Eng Sci 463(2088):3251–3269MathSciNetMATH Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc Math Phys Eng Sci 463(2088):3251–3269MathSciNetMATH
21.
go back to reference Geneva N, Zabaras N (2020) Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J Comput Phys 403(109):056MathSciNetMATH Geneva N, Zabaras N (2020) Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J Comput Phys 403(109):056MathSciNetMATH
22.
go back to reference Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Corporation, North ChelmsfordMATH Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Corporation, North ChelmsfordMATH
23.
go back to reference Giunta A, McFarland J, Swiler L et al (2006) The promise and peril of uncertainty quantification using response surface approximations. Struct Infrastruct Eng 2(3–4):175–189CrossRef Giunta A, McFarland J, Swiler L et al (2006) The promise and peril of uncertainty quantification using response surface approximations. Struct Infrastruct Eng 2(3–4):175–189CrossRef
24.
go back to reference Goswami S, Yin M, Yu Y et al (2021) A physics-informed variational DeepOnet for predicting the crack path in brittle materials. arXiv preprint arXiv:2108.06905 Goswami S, Yin M, Yu Y et al (2021) A physics-informed variational DeepOnet for predicting the crack path in brittle materials. arXiv preprint arXiv:​2108.​06905
25.
go back to reference Isukapalli S, Roy A, Georgopoulos P (1998) Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal 18(3):351–363CrossRef Isukapalli S, Roy A, Georgopoulos P (1998) Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal 18(3):351–363CrossRef
26.
go back to reference Jonkman J, Butterfield S, Musial W et al (2009) Definition of a 5-mw reference wind turbine for offshore system development. Tech. rep National Renewable Energy Lab (NREL), GoldenCrossRef Jonkman J, Butterfield S, Musial W et al (2009) Definition of a 5-mw reference wind turbine for offshore system development. Tech. rep National Renewable Energy Lab (NREL), GoldenCrossRef
27.
go back to reference Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440CrossRef Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440CrossRef
28.
30.
go back to reference King R, Glaws A, Geraci G et al (2020) A probabilistic approach to estimating wind farm annual energy production with Bayesian quadrature. In: AIAA Scitech 2020 Forum, p 1951 King R, Glaws A, Geraci G et al (2020) A probabilistic approach to estimating wind farm annual energy production with Bayesian quadrature. In: AIAA Scitech 2020 Forum, p 1951
32.
go back to reference Kovachki N, Lanthaler S, Mishra S (2021a) On universal approximation and error bounds for Fourier Neural operators. arXiv preprint arXiv:2107.07562 Kovachki N, Lanthaler S, Mishra S (2021a) On universal approximation and error bounds for Fourier Neural operators. arXiv preprint arXiv:​2107.​07562
33.
34.
go back to reference Lanthaler S, Mishra S, Karniadakis GE (2022) Error estimates for DeepONets: a deep learning framework in infinite dimensions. Trans Math Appl 6(1):tnac001MathSciNetMATH Lanthaler S, Mishra S, Karniadakis GE (2022) Error estimates for DeepONets: a deep learning framework in infinite dimensions. Trans Math Appl 6(1):tnac001MathSciNetMATH
35.
go back to reference Li Z, Kovachki N, Azizzadenesheli K et al (2020a) Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895 Li Z, Kovachki N, Azizzadenesheli K et al (2020a) Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:​2010.​08895
36.
go back to reference Li Z, Kovachki N, Azizzadenesheli K et al (2020b) Multipole graph neural operator for parametric partial differential equations. arXiv preprint arXiv:2006.09535 Li Z, Kovachki N, Azizzadenesheli K et al (2020b) Multipole graph neural operator for parametric partial differential equations. arXiv preprint arXiv:​2006.​09535
37.
go back to reference Li Z, Kovachki N, Azizzadenesheli K et al (2020c) Neural operator: graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485 Li Z, Kovachki N, Azizzadenesheli K et al (2020c) Neural operator: graph kernel network for partial differential equations. arXiv preprint arXiv:​2003.​03485
38.
go back to reference Li Z, Kovachki N, Azizzadenesheli K et al (2021a) Markov neural operators for learning chaotic systems. arXiv preprint arXiv:2106.06898 Li Z, Kovachki N, Azizzadenesheli K et al (2021a) Markov neural operators for learning chaotic systems. arXiv preprint arXiv:​2106.​06898
39.
go back to reference Li Z, Zheng H, Kovachki N et al (2021b) Physics-informed neural operator for learning partial differential equations. arXiv preprint arXiv:2111.03794 Li Z, Zheng H, Kovachki N et al (2021b) Physics-informed neural operator for learning partial differential equations. arXiv preprint arXiv:​2111.​03794
40.
go back to reference Liu WK, Gan Z, Fleming M (2021) Mechanistic data science for STEM education and applications. Springer, ChamCrossRef Liu WK, Gan Z, Fleming M (2021) Mechanistic data science for STEM education and applications. Springer, ChamCrossRef
41.
go back to reference Logg A, Mardal KA, Wells G (2012) Automated solution of differential equations by the finite element method: the FEniCS book, vol 84. Springer Science & Business Media, BerlinCrossRefMATH Logg A, Mardal KA, Wells G (2012) Automated solution of differential equations by the finite element method: the FEniCS book, vol 84. Springer Science & Business Media, BerlinCrossRefMATH
42.
go back to reference Lu L, Jin P, Karniadakis GE (2019) DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193 Lu L, Jin P, Karniadakis GE (2019) DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:​1910.​03193
43.
go back to reference Lu L, He H, Kasimbeg P et al (2021a) One-shot learning for solution operators of partial differential equations. arXiv preprint arXiv:2104.05512 Lu L, He H, Kasimbeg P et al (2021a) One-shot learning for solution operators of partial differential equations. arXiv preprint arXiv:​2104.​05512
44.
go back to reference Lu L, Jin P, Pang G et al (2021) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218-229CrossRef Lu L, Jin P, Pang G et al (2021) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 3(3):218-229CrossRef
45.
go back to reference Lu L, Meng X, Cai S et al (2021c) A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. arXiv preprint arXiv:2111.05512 Lu L, Meng X, Cai S et al (2021c) A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. arXiv preprint arXiv:​2111.​05512
46.
go back to reference Marcati C, Schwab C (2021) Exponential convergence of deep operator networks for elliptic partial differential equations. arXiv preprint arXiv:2112.08125 Marcati C, Schwab C (2021) Exponential convergence of deep operator networks for elliptic partial differential equations. arXiv preprint arXiv:​2112.​08125
47.
go back to reference Parish EJ, Duraisamy K (2016) A paradigm for data-driven predictive modeling using field inversion and machine learning. J Comput Phys 305:758–774MathSciNetCrossRefMATH Parish EJ, Duraisamy K (2016) A paradigm for data-driven predictive modeling using field inversion and machine learning. J Comput Phys 305:758–774MathSciNetCrossRefMATH
49.
50.
go back to reference Quick J, King J, King RN et al (2020) Wake steering optimization under uncertainty. Wind Energy Sci 5(1):413–426CrossRef Quick J, King J, King RN et al (2020) Wake steering optimization under uncertainty. Wind Energy Sci 5(1):413–426CrossRef
51.
go back to reference Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH
52.
go back to reference Ranade R, Gitushi K, Echekki T (2021) Generalized joint probability density function formulation inturbulent combustion using DeepONet. arXiv preprint arXiv:2104.01996 Ranade R, Gitushi K, Echekki T (2021) Generalized joint probability density function formulation inturbulent combustion using DeepONet. arXiv preprint arXiv:​2104.​01996
53.
go back to reference Sharma Priyadarshini M, Venturi S, Panesi M (2021) Application of DeepOnet to model inelastic scattering probabilities in air mixtures. In: AIAA AVIATION 2021 FORUM, p 3144 Sharma Priyadarshini M, Venturi S, Panesi M (2021) Application of DeepOnet to model inelastic scattering probabilities in air mixtures. In: AIAA AVIATION 2021 FORUM, p 3144
54.
go back to reference Singh AP, Medida S, Duraisamy K (2017) Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J 55(7):2215–2227CrossRef Singh AP, Medida S, Duraisamy K (2017) Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J 55(7):2215–2227CrossRef
55.
go back to reference Tripathy RK, Bilionis I (2018) Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification. J Comput Phys 375:565–588MathSciNetCrossRefMATH Tripathy RK, Bilionis I (2018) Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification. J Comput Phys 375:565–588MathSciNetCrossRefMATH
56.
go back to reference Viana FA, Subramaniyan AK (2021) A survey of Bayesian calibration and physics-informed neural networks in scientific modeling. Arch Comput Methods Eng pp 1–30 Viana FA, Subramaniyan AK (2021) A survey of Bayesian calibration and physics-informed neural networks in scientific modeling. Arch Comput Methods Eng pp 1–30
58.
go back to reference Wang S, Perdikaris P (2021) Long-time integration of parametric evolution equations with physics-informed DeepOnets. arXiv preprint arXiv:2106.05384 Wang S, Perdikaris P (2021) Long-time integration of parametric evolution equations with physics-informed DeepOnets. arXiv preprint arXiv:​2106.​05384
59.
go back to reference Wang S, Wang H, Perdikaris P (2021) Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets. arXiv preprint arXiv:2103.10974 Wang S, Wang H, Perdikaris P (2021) Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets. arXiv preprint arXiv:​2103.​10974
60.
go back to reference Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning. MIT press Cambridge, CambridgeMATH Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning. MIT press Cambridge, CambridgeMATH
61.
go back to reference Winovich N, Ramani K, Lin G (2019) ConvPDE-UQ: convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains. J Comput Phys 394:263–279MathSciNetCrossRefMATH Winovich N, Ramani K, Lin G (2019) ConvPDE-UQ: convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains. J Comput Phys 394:263–279MathSciNetCrossRefMATH
62.
go back to reference Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644MathSciNetCrossRefMATH Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644MathSciNetCrossRefMATH
63.
go back to reference Yang L, Zhang D, Karniadakis GE (2020) Physics-informed generative adversarial networks for stochastic differential equations. SIAM J Sci Comput 42(1):A292–A317MathSciNetCrossRefMATH Yang L, Zhang D, Karniadakis GE (2020) Physics-informed generative adversarial networks for stochastic differential equations. SIAM J Sci Comput 42(1):A292–A317MathSciNetCrossRefMATH
64.
go back to reference Yang L, Meng X, Karniadakis GE (2021) B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J Comput Phys 425(109):913MathSciNetMATH Yang L, Meng X, Karniadakis GE (2021) B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J Comput Phys 425(109):913MathSciNetMATH
65.
go back to reference Yang Y, Perdikaris P (2019) Adversarial uncertainty quantification in physics-informed neural networks. J Comput Phys 394:136–152MathSciNetCrossRefMATH Yang Y, Perdikaris P (2019) Adversarial uncertainty quantification in physics-informed neural networks. J Comput Phys 394:136–152MathSciNetCrossRefMATH
66.
go back to reference Yarotsky D (2017) Error bounds for approximations with deep ReLU networks. Neural Netw 94:103-114CrossRefMATH Yarotsky D (2017) Error bounds for approximations with deep ReLU networks. Neural Netw 94:103-114CrossRefMATH
67.
go back to reference Zhang D, Lu L, Guo L et al (2019) Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J Comput Phys 397(108):850MathSciNetMATH Zhang D, Lu L, Guo L et al (2019) Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems. J Comput Phys 397(108):850MathSciNetMATH
68.
go back to reference Zhu Y, Zabaras N, Koutsourelakis PS et al (2019) Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J Comput Phys 394:56-81MathSciNetCrossRefMATH Zhu Y, Zabaras N, Koutsourelakis PS et al (2019) Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J Comput Phys 394:56-81MathSciNetCrossRefMATH
Metadata
Title
Bi-fidelity modeling of uncertain and partially unknown systems using DeepONets
Authors
Subhayan De
Matthew Reynolds
Malik Hassanaly
Ryan N. King
Alireza Doostan
Publication date
25-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 6/2023
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02272-4

Other articles of this Issue 6/2023

Computational Mechanics 6/2023 Go to the issue