Skip to main content
Top
Published in: Computational Mechanics 6/2023

16-03-2023 | Original Paper

Virtual clustering analysis for long fiber reinforced composites

Authors: Yang Yang, Tongrui Liu, M. H. Aliabadi, Shaoqiang Tang

Published in: Computational Mechanics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Virtual clustering analysis (VCA) is an effective data-driven numerical homogenization method. In its original version (Tang et al. in Comput Mech 62(6):1443–1460, 2018), a homogeneous reference material is selected, and the governing system of heterogeneous material is reformulated into a Lippmann–Schwinger equation. For effective treatment of representative volume element (RVE) where long fibers penetrate the matrix, we propose to introduce an inhomogeneous reference material in this work. Since analytical expressions are not available in general, the interaction tensor and reference strain field are computed numerically. We validate the consistency with the original version of VCA in the first example, and demonstrate the effectiveness of the proposed strategy by several numerical examples. While better resolving the boundary traction, the proposed virtual clustering analysis for long fiber reinforced composites (VCA-L) algorithm correctly predicts homogenized properties in numerical tests.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Matouš K, Geers MG, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220MathSciNetCrossRef Matouš K, Geers MG, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220MathSciNetCrossRef
2.
go back to reference Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SIC/TI composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330MATHCrossRef Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SIC/TI composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330MATHCrossRef
3.
go back to reference Kouznetsova V, Geers MG, Brekelmans WM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260MATHCrossRef Kouznetsova V, Geers MG, Brekelmans WM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260MATHCrossRef
4.
go back to reference Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244MATHCrossRef Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244MATHCrossRef
5.
go back to reference Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190(1):249–274MATHCrossRef Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190(1):249–274MATHCrossRef
6.
go back to reference Park HS, Karpov EG, Klein PA, Liu WK (2005) Three-dimensional bridging scale analysis of dynamic fracture. J Comput Phys 207(2):588–609MATHCrossRef Park HS, Karpov EG, Klein PA, Liu WK (2005) Three-dimensional bridging scale analysis of dynamic fracture. J Comput Phys 207(2):588–609MATHCrossRef
7.
go back to reference Tang S, Hou TY, Liu WK (2006) A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations. J Comput Phys 213(1):57–85MathSciNetMATHCrossRef Tang S, Hou TY, Liu WK (2006) A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations. J Comput Phys 213(1):57–85MathSciNetMATHCrossRef
8.
go back to reference Tang S (2008) A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids. J Comput Phys 227(8):4038–4062MATHCrossRef Tang S (2008) A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids. J Comput Phys 227(8):4038–4062MATHCrossRef
9.
go back to reference Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241(1226):376–396MathSciNetMATH Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241(1226):376–396MathSciNetMATH
10.
go back to reference Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140MathSciNetMATHCrossRef Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140MathSciNetMATHCrossRef
12.
go back to reference Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13(4):223–227CrossRef Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13(4):223–227CrossRef
13.
go back to reference Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef
14.
go back to reference Liu Z, Moore JA, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2015) A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput Mech 55(5):963–981MathSciNetMATHCrossRef Liu Z, Moore JA, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2015) A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput Mech 55(5):963–981MathSciNetMATHCrossRef
15.
go back to reference Li L, Wen P, Aliabadi M (2011) Meshfree modeling and homogenization of 3D orthogonal woven composites. Compos Sci Technol 71(15):1777–1788CrossRef Li L, Wen P, Aliabadi M (2011) Meshfree modeling and homogenization of 3D orthogonal woven composites. Compos Sci Technol 71(15):1777–1788CrossRef
16.
go back to reference Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetMATHCrossRef Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetMATHCrossRef
17.
go back to reference Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575MathSciNetCrossRef Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575MathSciNetCrossRef
19.
go back to reference Roussette S, Michel J-C, Suquet P (2009) Nonuniform transformation field analysis of elastic–viscoplastic composites. Compos Sci Technol 69(1):22–27CrossRef Roussette S, Michel J-C, Suquet P (2009) Nonuniform transformation field analysis of elastic–viscoplastic composites. Compos Sci Technol 69(1):22–27CrossRef
20.
go back to reference Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNetMATHCrossRef Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNetMATHCrossRef
21.
go back to reference Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547–577MathSciNetMATHCrossRef Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547–577MathSciNetMATHCrossRef
22.
go back to reference Yu C, Kafka OL, Liu WK (2019) Self-consistent clustering analysis for multiscale modeling at finite strains. Comput Methods Appl Mech Eng 349:339–359MathSciNetMATHCrossRef Yu C, Kafka OL, Liu WK (2019) Self-consistent clustering analysis for multiscale modeling at finite strains. Comput Methods Appl Mech Eng 349:339–359MathSciNetMATHCrossRef
23.
go back to reference Liu Z, Kafka OL, Yu C, Liu WK (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Advances in computational plasticity. Springer, Berlin, pp 221–242 Liu Z, Kafka OL, Yu C, Liu WK (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Advances in computational plasticity. Springer, Berlin, pp 221–242
24.
go back to reference Shakoor M, Kafka OL, Yu C, Liu WK (2019) Data science for finite strain mechanical science of ductile materials. Comput Mech 64(1):33–45MathSciNetMATHCrossRef Shakoor M, Kafka OL, Yu C, Liu WK (2019) Data science for finite strain mechanical science of ductile materials. Comput Mech 64(1):33–45MathSciNetMATHCrossRef
25.
go back to reference Kafka OL, Yu C, Shakoor M, Liu Z, Wagner GJ, Liu WK (2018) Data-driven mechanistic modeling of influence of microstructure on high-cycle fatigue life of nickel titanium. JOM 70(7):1154–1158CrossRef Kafka OL, Yu C, Shakoor M, Liu Z, Wagner GJ, Liu WK (2018) Data-driven mechanistic modeling of influence of microstructure on high-cycle fatigue life of nickel titanium. JOM 70(7):1154–1158CrossRef
26.
go back to reference Li H, Kafka OL, Gao J, Yu C, Nie Y, Zhang L, Tajdari M, Tang S, Guo X, Li G et al (2019) Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Comput Mech 64(2):281–305MathSciNetMATHCrossRef Li H, Kafka OL, Gao J, Yu C, Nie Y, Zhang L, Tajdari M, Tang S, Guo X, Li G et al (2019) Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Comput Mech 64(2):281–305MathSciNetMATHCrossRef
27.
go back to reference Tang S, Zhang L, Liu WK (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 62(6):1443–1460MathSciNetMATHCrossRef Tang S, Zhang L, Liu WK (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 62(6):1443–1460MathSciNetMATHCrossRef
28.
go back to reference Zhang L, Tang S, Yu C, Zhu X, Liu WK (2019) Fast calculation of interaction tensors in clustering-based homogenization. Comput Mech 64(2):351–364MathSciNetMATHCrossRef Zhang L, Tang S, Yu C, Zhu X, Liu WK (2019) Fast calculation of interaction tensors in clustering-based homogenization. Comput Mech 64(2):351–364MathSciNetMATHCrossRef
29.
go back to reference Zhu X, Zhang L, Tang S (2021) Adaptive selection of reference stiffness in virtual clustering analysis. Comput Methods Appl Mech Eng 376:113621MathSciNetMATHCrossRef Zhu X, Zhang L, Tang S (2021) Adaptive selection of reference stiffness in virtual clustering analysis. Comput Methods Appl Mech Eng 376:113621MathSciNetMATHCrossRef
30.
go back to reference Yang Y, Zhang L, Tang S (2022) A comparative study of cluster-based methods at finite strain. Acta Mech Sin 38(4):1–12MathSciNetCrossRef Yang Y, Zhang L, Tang S (2022) A comparative study of cluster-based methods at finite strain. Acta Mech Sin 38(4):1–12MathSciNetCrossRef
31.
go back to reference Cheng G, Li X, Nie Y, Li H (2019) FEM-cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput Methods Appl Mech Eng 348:157–184MathSciNetMATHCrossRef Cheng G, Li X, Nie Y, Li H (2019) FEM-cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput Methods Appl Mech Eng 348:157–184MathSciNetMATHCrossRef
32.
go back to reference Nie Y, Cheng G, Li X, Xu L, Li K (2019) Principle of cluster minimum complementary energy of FEM-cluster-based reduced order method: fast updating the interaction matrix and predicting effective nonlinear properties of heterogeneous material. Comput Mech 64(2):323–349MathSciNetMATHCrossRef Nie Y, Cheng G, Li X, Xu L, Li K (2019) Principle of cluster minimum complementary energy of FEM-cluster-based reduced order method: fast updating the interaction matrix and predicting effective nonlinear properties of heterogeneous material. Comput Mech 64(2):323–349MathSciNetMATHCrossRef
33.
go back to reference Nie Y, Li Z, Cheng G (2021) Efficient prediction of the effective nonlinear properties of porous material by FEM-cluster based analysis (FCA). Comput Methods Appl Mech Eng 383:113921MathSciNetMATHCrossRef Nie Y, Li Z, Cheng G (2021) Efficient prediction of the effective nonlinear properties of porous material by FEM-cluster based analysis (FCA). Comput Methods Appl Mech Eng 383:113921MathSciNetMATHCrossRef
34.
go back to reference Wulfinghoff S, Cavaliere F, Reese S (2018) Model order reduction of nonlinear homogenization problems using a Hashin–Shtrikman type finite element method. Comput Methods Appl Mech Eng 330:149–179MathSciNetMATHCrossRef Wulfinghoff S, Cavaliere F, Reese S (2018) Model order reduction of nonlinear homogenization problems using a Hashin–Shtrikman type finite element method. Comput Methods Appl Mech Eng 330:149–179MathSciNetMATHCrossRef
35.
go back to reference Ri J-H, Hong H-S, Ri S-G (2021) Cluster based nonuniform transformation field analysis: an efficient homogenization for inelastic heterogeneous materials. Int J Numer Methods Eng 122(17):4458–4485MathSciNetCrossRef Ri J-H, Hong H-S, Ri S-G (2021) Cluster based nonuniform transformation field analysis: an efficient homogenization for inelastic heterogeneous materials. Int J Numer Methods Eng 122(17):4458–4485MathSciNetCrossRef
36.
go back to reference Ferreira BP, Pires FA, Bessa M (2022) Adaptivity for clustering-based reduced-order modeling of localized history-dependent phenomena. Comput Methods Appl Mech Eng 393:114726MathSciNetMATHCrossRef Ferreira BP, Pires FA, Bessa M (2022) Adaptivity for clustering-based reduced-order modeling of localized history-dependent phenomena. Comput Methods Appl Mech Eng 393:114726MathSciNetMATHCrossRef
37.
go back to reference Tang H, Chen Z, Xu H, Liu Z, Sun Q, Zhou G, Yan W, Han W, Su X (2020) Computational micromechanics model based failure criteria for chopped carbon fiber sheet molding compound composites. Compos Sci Technol 200:108400CrossRef Tang H, Chen Z, Xu H, Liu Z, Sun Q, Zhou G, Yan W, Han W, Su X (2020) Computational micromechanics model based failure criteria for chopped carbon fiber sheet molding compound composites. Compos Sci Technol 200:108400CrossRef
38.
go back to reference Chen Z, Tang H, Shao Y, Sun Q, Zhou G, Li Y, Xu H, Zeng D, Su X (2019) Failure of chopped carbon fiber sheet molding compound (SMC) composites under uniaxial tensile loading: Computational prediction and experimental analysis. Compos A Appl Sci Manuf 118:117–130CrossRef Chen Z, Tang H, Shao Y, Sun Q, Zhou G, Li Y, Xu H, Zeng D, Su X (2019) Failure of chopped carbon fiber sheet molding compound (SMC) composites under uniaxial tensile loading: Computational prediction and experimental analysis. Compos A Appl Sci Manuf 118:117–130CrossRef
39.
go back to reference Tang H, Zhou G, Chen Z, Huang L, Avery K, Li Y, Liu H, Guo H, Kang H, Zeng D et al (2019) Fatigue behavior analysis and multi-scale modelling of chopped carbon fiber chip-reinforced composites under tension-tension loading condition. Compos Struct 215:85–97 Tang H, Zhou G, Chen Z, Huang L, Avery K, Li Y, Liu H, Guo H, Kang H, Zeng D et al (2019) Fatigue behavior analysis and multi-scale modelling of chopped carbon fiber chip-reinforced composites under tension-tension loading condition. Compos Struct 215:85–97
40.
go back to reference Chen Z, Huang T, Shao Y, Li Y, Xu H, Avery K, Zeng D, Chen W, Su X (2018) Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction. Compos Struct 188:25–38CrossRef Chen Z, Huang T, Shao Y, Li Y, Xu H, Avery K, Zeng D, Chen W, Su X (2018) Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction. Compos Struct 188:25–38CrossRef
41.
go back to reference Sherburn M (2007) Geometric and mechanical modelling of textiles. Ph.D. thesis, University of Nottingham United Kingdom Sherburn M (2007) Geometric and mechanical modelling of textiles. Ph.D. thesis, University of Nottingham United Kingdom
42.
go back to reference Aliabadi MF (2015) Woven composites, vol 6. World Scientific, Singapore Aliabadi MF (2015) Woven composites, vol 6. World Scientific, Singapore
43.
go back to reference Gao J, Mojumder S, Zhang W, Li H, Suarez D, He C, Cao J, Liu WK (2022) Concurrent n-scale modeling for non-orthogonal woven composite. Comput Mech 70(4):853–866MATHCrossRef Gao J, Mojumder S, Zhang W, Li H, Suarez D, He C, Cao J, Liu WK (2022) Concurrent n-scale modeling for non-orthogonal woven composite. Comput Mech 70(4):853–866MATHCrossRef
44.
go back to reference He C, Ge J, Lian Y, Geng L, Chen Y, Fang D (2022) A concurrent three-scale scheme FE-SCA2 for the nonlinear mechanical behavior of braided composites. Comput Methods Appl Mech Eng 393:114827MATHCrossRef He C, Ge J, Lian Y, Geng L, Chen Y, Fang D (2022) A concurrent three-scale scheme FE-SCA2 for the nonlinear mechanical behavior of braided composites. Comput Methods Appl Mech Eng 393:114827MATHCrossRef
45.
go back to reference Han X, Gao J, Fleming M, Xu C, Xie W, Meng S, Liu WK (2020) Efficient multiscale modeling for woven composites based on self-consistent clustering analysis. Comput Methods Appl Mech Eng 364:112929MathSciNetMATHCrossRef Han X, Gao J, Fleming M, Xu C, Xie W, Meng S, Liu WK (2020) Efficient multiscale modeling for woven composites based on self-consistent clustering analysis. Comput Methods Appl Mech Eng 364:112929MathSciNetMATHCrossRef
Metadata
Title
Virtual clustering analysis for long fiber reinforced composites
Authors
Yang Yang
Tongrui Liu
M. H. Aliabadi
Shaoqiang Tang
Publication date
16-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 6/2023
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02290-2

Other articles of this Issue 6/2023

Computational Mechanics 6/2023 Go to the issue