Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction

Authors : Volodymyr Govorukha, Marc Kamlah, Volodymyr Loboda, Yuri Lapusta

Published in: Fracture Mechanics of Piezoelectric Solids with Interface Cracks

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The piezoelectric effect, based on an electro-mechanical coupling, is quite common in nature and observed in certain anisotropic crystals such as quartz crystal, tourmaline and Rochelle salt. It is reversible and it can be direct and inverse.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akbarov, S.D., Yahnioglu, N.: Buckling delamination of a sandwich plate-strip with piezoelectric face and elastic core layers. Appl. Math. Model. 37, 8029–8038 (2013)MathSciNetCrossRef Akbarov, S.D., Yahnioglu, N.: Buckling delamination of a sandwich plate-strip with piezoelectric face and elastic core layers. Appl. Math. Model. 37, 8029–8038 (2013)MathSciNetCrossRef
go back to reference Bakirov, V.F., Gol’dshtein, R.V.: The Leonov-Panasyuk-Dugdale model for a crack at the interface of the joint of materials. J. Appl. Math. Mech. 68(1), 153–161 (2004)CrossRef Bakirov, V.F., Gol’dshtein, R.V.: The Leonov-Panasyuk-Dugdale model for a crack at the interface of the joint of materials. J. Appl. Math. Mech. 68(1), 153–161 (2004)CrossRef
go back to reference Bakirov, V.F., Kim, T.W.: Analysis of a crack at the piezoceramic-metal interface and estimates of adhesion fracture energy. Int. J. Eng. Sci. 47, 793–804 (2009)CrossRef Bakirov, V.F., Kim, T.W.: Analysis of a crack at the piezoceramic-metal interface and estimates of adhesion fracture energy. Int. J. Eng. Sci. 47, 793–804 (2009)CrossRef
go back to reference Bardzokas, D.I., Filshtinsky, M.L., Filshtinsky, L.A.: Mathematical Methods in Electro-Magneto-Elasticity. Springer, Berlin (2007)MATH Bardzokas, D.I., Filshtinsky, M.L., Filshtinsky, L.A.: Mathematical Methods in Electro-Magneto-Elasticity. Springer, Berlin (2007)MATH
go back to reference Beom, H.G.: Permeable cracks between two dissimilar piezoelectric materials. Int. J. Solids Struct. 40, 6669–6679 (2003)CrossRefMATH Beom, H.G.: Permeable cracks between two dissimilar piezoelectric materials. Int. J. Solids Struct. 40, 6669–6679 (2003)CrossRefMATH
go back to reference Beom, H.G., Atluri, S.N.: Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int. J. Fract. 75, 163–183 (1996)CrossRef Beom, H.G., Atluri, S.N.: Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int. J. Fract. 75, 163–183 (1996)CrossRef
go back to reference Beom, H.G., Atluri, S.N.: Conducting cracks in dissimilar piezoelectric media. Int. J. Fract. 118, 285–301 (2002)CrossRef Beom, H.G., Atluri, S.N.: Conducting cracks in dissimilar piezoelectric media. Int. J. Fract. 118, 285–301 (2002)CrossRef
go back to reference Cady, W.G.: Piezoelectricity. MacDraw-Hill, New York (1946) Cady, W.G.: Piezoelectricity. MacDraw-Hill, New York (1946)
go back to reference Chen, X., Mai, Y.W.: Fracture Mechanics of Electromagnetic Materials: Nonlinear Field Theory and Applications. Imperial College Press, London (2012)CrossRef Chen, X., Mai, Y.W.: Fracture Mechanics of Electromagnetic Materials: Nonlinear Field Theory and Applications. Imperial College Press, London (2012)CrossRef
go back to reference Chen, Y.H., Lu, T.J.: Cracks and fracture in piezoelectrics. Adv. Appl. Mech. 39, 121–215 (2003)CrossRef Chen, Y.H., Lu, T.J.: Cracks and fracture in piezoelectrics. Adv. Appl. Mech. 39, 121–215 (2003)CrossRef
go back to reference Chen, Y.H., Hasebe, N.: Current understanding on fracture behaviors of ferroelectric/piezoelectric materials. J. Intell. Mater. Syst. Struct. 16, 673–687 (2005)CrossRef Chen, Y.H., Hasebe, N.: Current understanding on fracture behaviors of ferroelectric/piezoelectric materials. J. Intell. Mater. Syst. Struct. 16, 673–687 (2005)CrossRef
go back to reference Curie, J., Curie, P.: Development par compression de l’eletricite polaire dans les cristaux hemiedres a faces inclines. Bull. Soc. Mineral. France 3, 90–93 (1880)MATH Curie, J., Curie, P.: Development par compression de l’eletricite polaire dans les cristaux hemiedres a faces inclines. Bull. Soc. Mineral. France 3, 90–93 (1880)MATH
go back to reference Deeg, W.F.: The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph.D. thesis, Stanford University, Stanford, California (1980) Deeg, W.F.: The analysis of dislocation, crack and inclusion problems in piezoelectric solids. Ph.D. thesis, Stanford University, Stanford, California (1980)
go back to reference Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRef Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRef
go back to reference Duhem, P.: Die dauernden Änderungen und die Thermodynamic. Z. Phys. Chem. 22, 543–589 (1897)CrossRef Duhem, P.: Die dauernden Änderungen und die Thermodynamic. Z. Phys. Chem. 22, 543–589 (1897)CrossRef
go back to reference England, A.H.: A crack between dissimilar media. J. Appl. Mech. 32(2), 400–402 (1965)CrossRef England, A.H.: A crack between dissimilar media. J. Appl. Mech. 32(2), 400–402 (1965)CrossRef
go back to reference Erdogan, F.: Stress distribution in bonded dissimilar materials with cracks. J. Appl. Mech. 32(2), 403–410 (1965)CrossRef Erdogan, F.: Stress distribution in bonded dissimilar materials with cracks. J. Appl. Mech. 32(2), 403–410 (1965)CrossRef
go back to reference Fang, D.N., Liu, J.X.: Fracture Mechanics of Piezoelectric and Ferroelectric Solids. Springer, Berlin (2013)CrossRefMATH Fang, D.N., Liu, J.X.: Fracture Mechanics of Piezoelectric and Ferroelectric Solids. Springer, Berlin (2013)CrossRefMATH
go back to reference Fang, D.N., Soh, A.K., Liu, J.X.: Electromechanical deformation and fracture of piezoelectric/ferroelectric materials. Acta Mech. Sinica 17(3), 193–213 (2001)CrossRef Fang, D.N., Soh, A.K., Liu, J.X.: Electromechanical deformation and fracture of piezoelectric/ferroelectric materials. Acta Mech. Sinica 17(3), 193–213 (2001)CrossRef
go back to reference Gao, C.F., Wang, M.Z.: Collinear permeable cracks between dissimilar piezoelectric materials. Int. J. Solids Struct. 37, 4969–4986 (2000)CrossRefMATH Gao, C.F., Wang, M.Z.: Collinear permeable cracks between dissimilar piezoelectric materials. Int. J. Solids Struct. 37, 4969–4986 (2000)CrossRefMATH
go back to reference Gao, C.F., Haeusler, C., Balke, H.: Periodic permeable interface cracks in piezoelectric materials. Int. J. Solids Struct. 41, 323–335 (2004)CrossRefMATH Gao, C.F., Haeusler, C., Balke, H.: Periodic permeable interface cracks in piezoelectric materials. Int. J. Solids Struct. 41, 323–335 (2004)CrossRefMATH
go back to reference Gao, C.F., Tong, P., Zhang, T.Y.: Interaction of a dipole with an interfacial crack in piezoelectric media. Compos. Sci. Technol. 65, 1354–1362 (2005)CrossRef Gao, C.F., Tong, P., Zhang, T.Y.: Interaction of a dipole with an interfacial crack in piezoelectric media. Compos. Sci. Technol. 65, 1354–1362 (2005)CrossRef
go back to reference Govorukha, V.B., Loboda, V.V.: Contact zone models for an interface crack in a piezoelectric material. Acta Mech. 140, 233–246 (2000)CrossRefMATH Govorukha, V.B., Loboda, V.V.: Contact zone models for an interface crack in a piezoelectric material. Acta Mech. 140, 233–246 (2000)CrossRefMATH
go back to reference Govorukha, V., Kamlah, M.: Asymptotic fields in the finite element analysis of electrically permeable interface cracks in piezoelectric bimaterials. Arch. Appl. Mech. 74, 92–101 (2004)CrossRefMATH Govorukha, V., Kamlah, M.: Asymptotic fields in the finite element analysis of electrically permeable interface cracks in piezoelectric bimaterials. Arch. Appl. Mech. 74, 92–101 (2004)CrossRefMATH
go back to reference Govorukha, V., Kamlah, M.: Investigation of an interface crack with a contact zone in a piezoelectric bimaterial under limited permeable electric boundary conditions. Acta Mech. 178, 85–99 (2005)CrossRefMATH Govorukha, V., Kamlah, M.: Investigation of an interface crack with a contact zone in a piezoelectric bimaterial under limited permeable electric boundary conditions. Acta Mech. 178, 85–99 (2005)CrossRefMATH
go back to reference Govorukha, V., Kamlah, M.: An analytically-numerical approach for the analysis of an interface crack with a contact zone in a piezoelectric bimaterial compound. Arch. Appl. Mech. 78, 575–586 (2008a)CrossRefMATH Govorukha, V., Kamlah, M.: An analytically-numerical approach for the analysis of an interface crack with a contact zone in a piezoelectric bimaterial compound. Arch. Appl. Mech. 78, 575–586 (2008a)CrossRefMATH
go back to reference Govorukha, V.B., Kamlah, M.: Pre-fracture zone modeling for an electrically impermeable interface crack in a piezoelectric bimaterial compound. J. Mech. Mater. Struct. 3, 1447–1463 (2008b)CrossRefMATH Govorukha, V.B., Kamlah, M.: Pre-fracture zone modeling for an electrically impermeable interface crack in a piezoelectric bimaterial compound. J. Mech. Mater. Struct. 3, 1447–1463 (2008b)CrossRefMATH
go back to reference Govorukha, V., Kamlah, M.: On contact zone models for an electrically limited permeable interface crack in a piezoelectric bimaterial. Int. J. Fract. 164, 133–146 (2010)CrossRefMATH Govorukha, V., Kamlah, M.: On contact zone models for an electrically limited permeable interface crack in a piezoelectric bimaterial. Int. J. Fract. 164, 133–146 (2010)CrossRefMATH
go back to reference Govorukha, V.B., Kamlah, M., Munz, D.: On the singular integral equations approach to the interface crack problem for piezoelectric materials. Arch. Mech. 52, 247–273 (2000)MATH Govorukha, V.B., Kamlah, M., Munz, D.: On the singular integral equations approach to the interface crack problem for piezoelectric materials. Arch. Mech. 52, 247–273 (2000)MATH
go back to reference Govorukha, V., Kamlah, M., Munz, D.: The interface crack problem for a piezoelectric semi-infinite strip under concentrated electromechanical loading. Eng. Fract. Mech. 71, 1853–1871 (2004)CrossRef Govorukha, V., Kamlah, M., Munz, D.: The interface crack problem for a piezoelectric semi-infinite strip under concentrated electromechanical loading. Eng. Fract. Mech. 71, 1853–1871 (2004)CrossRef
go back to reference Govorukha, V.B., Loboda, V.V., Kamlah, M.: On the influence of the electric permeability on an interface crack in a piezoelectric bimaterial compound. Int. J. Solids Struct. 43, 1979–1990 (2006)CrossRefMATH Govorukha, V.B., Loboda, V.V., Kamlah, M.: On the influence of the electric permeability on an interface crack in a piezoelectric bimaterial compound. Int. J. Solids Struct. 43, 1979–1990 (2006)CrossRefMATH
go back to reference Govorukha, V.B., Herrmann, K.P., Loboda, V.V.: Electrically permeable crack with contact zones between two piezoelectric materials. Int. Appl. Mech. 44(3), 296–303 (2008)MathSciNetCrossRefMATH Govorukha, V.B., Herrmann, K.P., Loboda, V.V.: Electrically permeable crack with contact zones between two piezoelectric materials. Int. Appl. Mech. 44(3), 296–303 (2008)MathSciNetCrossRefMATH
go back to reference Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: Interface cracks in piezoelectric materials. Smart Mater. Struct. 25, 023001 (2016) Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: Interface cracks in piezoelectric materials. Smart Mater. Struct. 25, 023001 (2016)
go back to reference Gruebner, O., Kamlah, M., Munz, D.: Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng. Fract. Mech. 70, 1399–1413 (2003)CrossRef Gruebner, O., Kamlah, M., Munz, D.: Finite element analysis of cracks in piezoelectric materials taking into account the permittivity of the crack medium. Eng. Fract. Mech. 70, 1399–1413 (2003)CrossRef
go back to reference Haeusler, C., Jelitto, H., Neumeister, P., Balke, H., Schneider, G.A.: Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading. Int. J. Fract. 160, 43–54 (2009)CrossRef Haeusler, C., Jelitto, H., Neumeister, P., Balke, H., Schneider, G.A.: Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading. Int. J. Fract. 160, 43–54 (2009)CrossRef
go back to reference Hao, T.H., Shen, Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fract. Mech. 47, 793–802 (1994)CrossRef Hao, T.H., Shen, Z.Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fract. Mech. 47, 793–802 (1994)CrossRef
go back to reference He, M.Y., Evans, A.G., Hutchinson, J.W.: Interface cracking phenomena in constrained metal layer. Acta Mater. 44, 2963–2971 (1996)CrossRef He, M.Y., Evans, A.G., Hutchinson, J.W.: Interface cracking phenomena in constrained metal layer. Acta Mater. 44, 2963–2971 (1996)CrossRef
go back to reference Herrmann, K.P., Loboda, V.V.: Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models. Arch. Appl. Mech. 70, 127–143 (2000)CrossRefMATH Herrmann, K.P., Loboda, V.V.: Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models. Arch. Appl. Mech. 70, 127–143 (2000)CrossRefMATH
go back to reference Herrmann, K.P., Loboda, V.V., Govorukha, V.B.: On contact zone models for an electrically impermeable interface crack in a piezoelectric biomaterial. Int. J. Fract. 111, 203–227 (2001)CrossRef Herrmann, K.P., Loboda, V.V., Govorukha, V.B.: On contact zone models for an electrically impermeable interface crack in a piezoelectric biomaterial. Int. J. Fract. 111, 203–227 (2001)CrossRef
go back to reference Kaminskii, A.A., Kipnis, L.A., Kolmakova, V.A.: Slit lines at the end of a cut at the interface of different media. Int. Appl. Mech. 31(6), 491–495 (1995)CrossRefMATH Kaminskii, A.A., Kipnis, L.A., Kolmakova, V.A.: Slit lines at the end of a cut at the interface of different media. Int. Appl. Mech. 31(6), 491–495 (1995)CrossRefMATH
go back to reference Kaminskii, A.A., Kipnis, L.A., Kolmakova, V.A.: On the Dugdale model for a crack at the interface of different media. Int. Appl. Mech. 35(1), 58–63 (1999)CrossRef Kaminskii, A.A., Kipnis, L.A., Kolmakova, V.A.: On the Dugdale model for a crack at the interface of different media. Int. Appl. Mech. 35(1), 58–63 (1999)CrossRef
go back to reference Kamins’kyi, A.O., Dudyk, M.V., Kipnis, L.A.: Stresses near crack tips on the boundary of two media in the presence of plastic strips. Mater. Sci. 37(3), 447–455 (2001) Kamins’kyi, A.O., Dudyk, M.V., Kipnis, L.A.: Stresses near crack tips on the boundary of two media in the presence of plastic strips. Mater. Sci. 37(3), 447–455 (2001)
go back to reference Kaminskii, A.A., Kipnis, L.A., Dudik, M.V.: Initial development of the pre-fracture zone near the tip of a crack reaching the interface between dissimilar media. Int. Appl. Mech. 40(2), 176–182 (2004)CrossRef Kaminskii, A.A., Kipnis, L.A., Dudik, M.V.: Initial development of the pre-fracture zone near the tip of a crack reaching the interface between dissimilar media. Int. Appl. Mech. 40(2), 176–182 (2004)CrossRef
go back to reference Kelvin, L.: On the theory of pyro-electricity and piezo-electricity of crystals. Phil. Mag. Ser. 5, 36(222), 453–459 (1893) Kelvin, L.: On the theory of pyro-electricity and piezo-electricity of crystals. Phil. Mag. Ser. 5, 36(222), 453–459 (1893)
go back to reference Kozinov, S., Loboda, V., Lapusta, Y.: Periodic set of limited electrically permeable interface cracks with contact zones. Mech. Res. Commun. 48, 32–41 (2013)CrossRef Kozinov, S., Loboda, V., Lapusta, Y.: Periodic set of limited electrically permeable interface cracks with contact zones. Mech. Res. Commun. 48, 32–41 (2013)CrossRef
go back to reference Kudriavtsev, B.A., Parton, V.Z., Rakitin, V.I.: Fracture mechanics of piezoelectric materials. Rectilinear tunnel crack on the boundary with a conductor. J. Appl. Math. Mech. 39(1), 136–146 (1975)MathSciNetCrossRefMATH Kudriavtsev, B.A., Parton, V.Z., Rakitin, V.I.: Fracture mechanics of piezoelectric materials. Rectilinear tunnel crack on the boundary with a conductor. J. Appl. Math. Mech. 39(1), 136–146 (1975)MathSciNetCrossRefMATH
go back to reference Kuna, M.: Finite element analyses of cracks in piezoelectric structures: a survey. Arch. Appl. Mech. 76, 725–745 (2006)CrossRefMATH Kuna, M.: Finite element analyses of cracks in piezoelectric structures: a survey. Arch. Appl. Mech. 76, 725–745 (2006)CrossRefMATH
go back to reference Kuna, M.: Fracture mechanics of piezoelectric materials—where are we right now? Eng. Fract. Mech. 77, 309–326 (2010)CrossRef Kuna, M.: Fracture mechanics of piezoelectric materials—where are we right now? Eng. Fract. Mech. 77, 309–326 (2010)CrossRef
go back to reference Kuo, C.M., Barnett, D.M.: Stress singularities of interfacial cracks in bonded piezoelectric half-spaces. In: Wu, J.J., Ting, T.C.T., Barnett, D.M. (eds.) Modern Theory of Anisotropic Elasticity and Applications, pp. 33–50. SIAM Proceedings Series, Philadelphia (1991) Kuo, C.M., Barnett, D.M.: Stress singularities of interfacial cracks in bonded piezoelectric half-spaces. In: Wu, J.J., Ting, T.C.T., Barnett, D.M. (eds.) Modern Theory of Anisotropic Elasticity and Applications, pp. 33–50. SIAM Proceedings Series, Philadelphia (1991)
go back to reference Landis, C.M.: Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids Struct. 41, 6291–6315 (2004)CrossRefMATH Landis, C.M.: Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids Struct. 41, 6291–6315 (2004)CrossRefMATH
go back to reference Lapusta, Y., Loboda, V.: Electro-mechanical yielding for a limited permeable crack in an interlayer between piezoelectric materials. Mech. Res. Commun. 36, 183–192 (2009)MathSciNetCrossRefMATH Lapusta, Y., Loboda, V.: Electro-mechanical yielding for a limited permeable crack in an interlayer between piezoelectric materials. Mech. Res. Commun. 36, 183–192 (2009)MathSciNetCrossRefMATH
go back to reference Leonov, M.Y., Panasyuk, V.V.: The development of very shallow cracks in a solid. Prikl. Mekh. 5(4), 391–401 (1959) Leonov, M.Y., Panasyuk, V.V.: The development of very shallow cracks in a solid. Prikl. Mekh. 5(4), 391–401 (1959)
go back to reference Li, Q., Chen, Y.: Analysis of a permeable interface crack in elastic dielectric/piezoelectric bimaterials. Acta Mech. Sinica 23, 681–687 (2007a)CrossRefMATH Li, Q., Chen, Y.: Analysis of a permeable interface crack in elastic dielectric/piezoelectric bimaterials. Acta Mech. Sinica 23, 681–687 (2007a)CrossRefMATH
go back to reference Li, Q., Chen, Y.: Analysis of crack-tip singularities for an interfacial permeable crack in metal/piezoelectric bimaterials. Acta Mech. Solida Sinca. 20, 247–257 (2007b)CrossRef Li, Q., Chen, Y.: Analysis of crack-tip singularities for an interfacial permeable crack in metal/piezoelectric bimaterials. Acta Mech. Solida Sinca. 20, 247–257 (2007b)CrossRef
go back to reference Li, Q., Chen, Y.H.: Solution for a semi-permeable interface crack between two dissimilar piezoelectric materials. J. Appl. Mech. 74, 833–844 (2007c)CrossRef Li, Q., Chen, Y.H.: Solution for a semi-permeable interface crack between two dissimilar piezoelectric materials. J. Appl. Mech. 74, 833–844 (2007c)CrossRef
go back to reference Li, Q., Chen, Y.H.: Solution for a semi-permeable interface crack in elastic dielectric/piezoelectric bimaterials. J. Appl. Mech. 75, 11010 (2008) Li, Q., Chen, Y.H.: Solution for a semi-permeable interface crack in elastic dielectric/piezoelectric bimaterials. J. Appl. Mech. 75, 11010 (2008)
go back to reference Li, Q., Chen, Y.H.: The Coulombic traction on the surfaces of an interface crack in dielectric/piezoelectric or metal/piezoelectric bimaterials. Acta Mech. 202, 111–126 (2009)CrossRefMATH Li, Q., Chen, Y.H.: The Coulombic traction on the surfaces of an interface crack in dielectric/piezoelectric or metal/piezoelectric bimaterials. Acta Mech. 202, 111–126 (2009)CrossRefMATH
go back to reference Lippmann, G.: Principe de conservation de l’electricite. Ann. Chim. Phys. 24, 145–178 (1881) Lippmann, G.: Principe de conservation de l’electricite. Ann. Chim. Phys. 24, 145–178 (1881)
go back to reference Liu, M., Hsia, K.J.: Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading. J. Mech. Phys. Solids 51, 921–944 (2003)CrossRefMATH Liu, M., Hsia, K.J.: Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading. J. Mech. Phys. Solids 51, 921–944 (2003)CrossRefMATH
go back to reference Loboda, V.V., Sheveleva, A.E.: Determining pre-fracture zones at a crack tip between two elastic orthotropic bodies. Int. Appl. Mech. 39(5), 566–572 (2003)CrossRefMATH Loboda, V.V., Sheveleva, A.E.: Determining pre-fracture zones at a crack tip between two elastic orthotropic bodies. Int. Appl. Mech. 39(5), 566–572 (2003)CrossRefMATH
go back to reference Loboda, V., Lapusta, Y., Sheveleva, A.: Analysis of pre-fracture zones for an electrically permeable crack in an interlayer between piezoelectric materials. Int. J. Fract. 142, 307–313 (2006)CrossRefMATH Loboda, V., Lapusta, Y., Sheveleva, A.: Analysis of pre-fracture zones for an electrically permeable crack in an interlayer between piezoelectric materials. Int. J. Fract. 142, 307–313 (2006)CrossRefMATH
go back to reference Loboda, V., Lapusta, Y., Sheveleva, A.: Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric bimaterial. Int. J. Solids Struct. 44, 5538–5553 (2007)CrossRefMATH Loboda, V., Lapusta, Y., Sheveleva, A.: Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric bimaterial. Int. J. Solids Struct. 44, 5538–5553 (2007)CrossRefMATH
go back to reference Loboda, V., Lapusta, Y., Govorukha, V.: Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. Int. J. Eng. Sci. 46, 260–272 (2008)CrossRefMATH Loboda, V., Lapusta, Y., Govorukha, V.: Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. Int. J. Eng. Sci. 46, 260–272 (2008)CrossRefMATH
go back to reference Loboda, V., Lapusta, Y., Sheveleva, A.: Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int. J. Solids Struct. 47, 1795–1806 (2010)CrossRefMATH Loboda, V., Lapusta, Y., Sheveleva, A.: Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int. J. Solids Struct. 47, 1795–1806 (2010)CrossRefMATH
go back to reference Loboda, V., Sheveleva, A., Lapusta, Y.: An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial. Int. J. Solids Struct. 51, 63–73 (2014)CrossRef Loboda, V., Sheveleva, A., Lapusta, Y.: An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial. Int. J. Solids Struct. 51, 63–73 (2014)CrossRef
go back to reference Ma, L.F., Chen, Y.H.: Weight functions for interface cracks in dissimilar anisotropic piezoelectric materials. Int. J. Fract. 110, 263–279 (2001)CrossRef Ma, L.F., Chen, Y.H.: Weight functions for interface cracks in dissimilar anisotropic piezoelectric materials. Int. J. Fract. 110, 263–279 (2001)CrossRef
go back to reference Mason, W.P.: Piezoelectric crystals and their application to ultrasonics. Van Nostrand, New York (1950) Mason, W.P.: Piezoelectric crystals and their application to ultrasonics. Van Nostrand, New York (1950)
go back to reference Mossakovskii, V.I., Rybka, M.T.: Generalization of the Grippith-Sneddon criterion for the case of a nonhomogeneous body. J. Appl. Math. Mech. 28(6), 1277–1286 (1964)CrossRefMATH Mossakovskii, V.I., Rybka, M.T.: Generalization of the Grippith-Sneddon criterion for the case of a nonhomogeneous body. J. Appl. Math. Mech. 28(6), 1277–1286 (1964)CrossRefMATH
go back to reference Ou, Z.C.: Singularity parameters ε and κ for interface cracks in transversely isotropic piezoelectric bimaterials. Int. J. Fract. 119, L41–L46 (2003)CrossRef Ou, Z.C.: Singularity parameters ε and κ for interface cracks in transversely isotropic piezoelectric bimaterials. Int. J. Fract. 119, L41–L46 (2003)CrossRef
go back to reference Ou, Z.C., Wu, X.: On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int. J. Solids Struct. 40, 7499–7511 (2003)CrossRefMATH Ou, Z.C., Wu, X.: On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int. J. Solids Struct. 40, 7499–7511 (2003)CrossRefMATH
go back to reference Ou, Z.C., Chen, Y.H.: Near-tip stress fields and intensity factors for an interface crack in metal/piezoelectric bimaterials. Int. J. Eng. Sci. 42, 1407–1438 (2004a)CrossRef Ou, Z.C., Chen, Y.H.: Near-tip stress fields and intensity factors for an interface crack in metal/piezoelectric bimaterials. Int. J. Eng. Sci. 42, 1407–1438 (2004a)CrossRef
go back to reference Ou, Z.C., Chen, Y.H.: Interface crack problem in elastic dielectric/piezoelectric bimaterials. Int. J. Fract. 130, 427–454 (2004b)CrossRef Ou, Z.C., Chen, Y.H.: Interface crack problem in elastic dielectric/piezoelectric bimaterials. Int. J. Fract. 130, 427–454 (2004b)CrossRef
go back to reference Ou, Z.C., Chen, Y.H.: Interface crack-tip generalized stress field and stress intensity factors in transversely isotropic piezoelectric bimaterials. Mech. Res. Commun. 31, 421–428 (2004c)CrossRefMATH Ou, Z.C., Chen, Y.H.: Interface crack-tip generalized stress field and stress intensity factors in transversely isotropic piezoelectric bimaterials. Mech. Res. Commun. 31, 421–428 (2004c)CrossRefMATH
go back to reference Pak, Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79–100 (1992)CrossRef Pak, Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79–100 (1992)CrossRef
go back to reference Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)CrossRefMATH Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)CrossRefMATH
go back to reference Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity. Gordon and Breach, New York (1988) Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity. Gordon and Breach, New York (1988)
go back to reference Pockels, F.: Über den Einfluss des Elektrostatischen Feldes auf das optische Verhalten piezoelektrischer Krystalle. Göttingen (1894) Pockels, F.: Über den Einfluss des Elektrostatischen Feldes auf das optische Verhalten piezoelektrischer Krystalle. Göttingen (1894)
go back to reference Qin, Q.H.: Fracture Mechanics of Piezoelectric Materials. WIT Press, Southampton, Boston (2001) Qin, Q.H.: Fracture Mechanics of Piezoelectric Materials. WIT Press, Southampton, Boston (2001)
go back to reference Rice, J.R.: Elastic fracture mechanics concept for interfacial cracks. J. Appl. Mech. 55(1), 98–103 (1988)CrossRef Rice, J.R.: Elastic fracture mechanics concept for interfacial cracks. J. Appl. Mech. 55(1), 98–103 (1988)CrossRef
go back to reference Rice, J.R., Sih, G.C.: Plane problem of cracks in dissimilar media. J. Appl. Mech. 32(2), 418–423 (1965)CrossRef Rice, J.R., Sih, G.C.: Plane problem of cracks in dissimilar media. J. Appl. Mech. 32(2), 418–423 (1965)CrossRef
go back to reference Ru, C.Q.: A hybrid complex-variable solution for piezoelectric/isotropic elastic interfacial cracks. Int. J. Fract. 152, 169–178 (2008)CrossRefMATH Ru, C.Q.: A hybrid complex-variable solution for piezoelectric/isotropic elastic interfacial cracks. Int. J. Fract. 152, 169–178 (2008)CrossRefMATH
go back to reference Shen, S., Kuang, Z.B., Hu, S.: Interface crack problems of a laminated piezoelectric plate. Eur. J. Mech. A/Solids 18, 219–238 (1999)CrossRefMATH Shen, S., Kuang, Z.B., Hu, S.: Interface crack problems of a laminated piezoelectric plate. Eur. J. Mech. A/Solids 18, 219–238 (1999)CrossRefMATH
go back to reference Shen, S., Nishioka, T., Kuang, Z.B., Liu, Z.: Nonlinear electromechanical interfacial fracture for piezoelectric materials. Mech. Mater. 32, 57–64 (2000)CrossRef Shen, S., Nishioka, T., Kuang, Z.B., Liu, Z.: Nonlinear electromechanical interfacial fracture for piezoelectric materials. Mech. Mater. 32, 57–64 (2000)CrossRef
go back to reference Sheveleva, A.E.: Modeling of the near-tip zones of a crack between two anisotropic materials. Mater. Sci. 36(2), 187–197 (2000)CrossRef Sheveleva, A.E.: Modeling of the near-tip zones of a crack between two anisotropic materials. Mater. Sci. 36(2), 187–197 (2000)CrossRef
go back to reference Sladek, J., Sladek, V., Wuensche, M., Zhang, Ch.: Analysis of an interface crack between two dissimilar piezoelectric solids. Eng. Fract. Mech. 89, 114–127 (2012)CrossRef Sladek, J., Sladek, V., Wuensche, M., Zhang, Ch.: Analysis of an interface crack between two dissimilar piezoelectric solids. Eng. Fract. Mech. 89, 114–127 (2012)CrossRef
go back to reference Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R.: Fracture Mechanics for Piezoelectric Ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)MathSciNetCrossRefMATH Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R.: Fracture Mechanics for Piezoelectric Ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)MathSciNetCrossRefMATH
go back to reference Tian, W.Y., Chen, Y.H.: Interaction between an interface crack and subinterface microcracks in metal/piezoelectric bimaterials. Int. J. Solids Struct. 37, 7743–7757 (2000)CrossRefMATH Tian, W.Y., Chen, Y.H.: Interaction between an interface crack and subinterface microcracks in metal/piezoelectric bimaterials. Int. J. Solids Struct. 37, 7743–7757 (2000)CrossRefMATH
go back to reference Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)CrossRef Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)CrossRef
go back to reference Voigt, W.: Lehrbuch der Kristallphysik. Leipzig (1910) Voigt, W.: Lehrbuch der Kristallphysik. Leipzig (1910)
go back to reference Voloshko, O., Lapusta, Y., Loboda, V.: Analytical and numerical study of cohesive zones for a crack in an adhesive layer between identical isotropic materials. Eng. Fract. Mech. 77, 2577–2592 (2010)CrossRef Voloshko, O., Lapusta, Y., Loboda, V.: Analytical and numerical study of cohesive zones for a crack in an adhesive layer between identical isotropic materials. Eng. Fract. Mech. 77, 2577–2592 (2010)CrossRef
go back to reference Voloshko, O.I., Lapusta, Y., Loboda, V.V.: Construction of an approximating function in the pre-fracture zone for a crack in an adhesive interlayer between two isotropic materials. J. Math. Sci. 183(2), 131–149 (2012)CrossRefMATH Voloshko, O.I., Lapusta, Y., Loboda, V.V.: Construction of an approximating function in the pre-fracture zone for a crack in an adhesive interlayer between two isotropic materials. J. Math. Sci. 183(2), 131–149 (2012)CrossRefMATH
go back to reference Wang, T.C., Han, X.L.: Fracture mechanics of piezoelectric materials. Int. J. Fract. 98, 15–35 (1999)CrossRef Wang, T.C., Han, X.L.: Fracture mechanics of piezoelectric materials. Int. J. Fract. 98, 15–35 (1999)CrossRef
go back to reference Williams, M.L.: The stresses around a fault or cracks in dissimilar media. Bull. Seism. Soc. Am. 49(2), 199–204 (1959)MathSciNet Williams, M.L.: The stresses around a fault or cracks in dissimilar media. Bull. Seism. Soc. Am. 49(2), 199–204 (1959)MathSciNet
go back to reference Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mech. 41, 339–379 (2004)CrossRef Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mech. 41, 339–379 (2004)CrossRef
go back to reference Zhang, T.Y., Fu, R., Zhao, M.H., Tong, P.: Overview of fracture of piezoelectric ceramics. Key Eng. Mater. 183–187, 695–706 (2000)CrossRef Zhang, T.Y., Fu, R., Zhao, M.H., Tong, P.: Overview of fracture of piezoelectric ceramics. Key Eng. Mater. 183–187, 695–706 (2000)CrossRef
go back to reference Zhang, T.Y., Zhao, M.H., Tong, P.: Fracture of piezoelectric ceramics. Adv. Appl. Mech. 38, 147–289 (2002)CrossRef Zhang, T.Y., Zhao, M.H., Tong, P.: Fracture of piezoelectric ceramics. Adv. Appl. Mech. 38, 147–289 (2002)CrossRef
go back to reference Zhou, Z., Wang, B.: Investigation of behavior of mode-I interface crack in piezoelectric materials by using Schmidt method. Appl. Math. Mech. Engl. Ed. 27, 871–882 (2006)CrossRefMATH Zhou, Z., Wang, B.: Investigation of behavior of mode-I interface crack in piezoelectric materials by using Schmidt method. Appl. Math. Mech. Engl. Ed. 27, 871–882 (2006)CrossRefMATH
Metadata
Title
Introduction
Authors
Volodymyr Govorukha
Marc Kamlah
Volodymyr Loboda
Yuri Lapusta
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53553-1_1

Premium Partners