Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction

Author : Rajkishore Nayak

Published in: Polypropylene Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses the scope of the study; research concepts and hypotheses; aims and objectives; and contribution of the research. In this study, nanofibres were fabricated by two melt processes: melt electrospinning and meltblowing. The nanofibres fabricated by these processes were characterised by various techniques to understand the fibre morphology, thermal, crystalline and mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Radwan R (2007) Electron induced modifications in the optical properties of polypropylene. J Phys D Appl Phys 40:374CrossRef Radwan R (2007) Electron induced modifications in the optical properties of polypropylene. J Phys D Appl Phys 40:374CrossRef
2.
go back to reference Ziabicki A (1976) Fundamentals of fibre formation: the science of fibre spinning and drawing. Wiley, New York Ziabicki A (1976) Fundamentals of fibre formation: the science of fibre spinning and drawing. Wiley, New York
3.
go back to reference Deitzel J, Kleinmeyer J, Harris D, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272CrossRef Deitzel J, Kleinmeyer J, Harris D, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272CrossRef
4.
go back to reference Ziabicki A (1976) Fundamentals of fiber formation: the science of fiber spinning and drawing. Wiley, New York Ziabicki A (1976) Fundamentals of fiber formation: the science of fiber spinning and drawing. Wiley, New York
5.
go back to reference Dutton KC (2008) Overview and analysis of the meltblown process and parameters. J Text Appar Technol Manag 6(1):1–24 Dutton KC (2008) Overview and analysis of the meltblown process and parameters. J Text Appar Technol Manag 6(1):1–24
6.
go back to reference Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific Pub Co Inc, Singapore Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific Pub Co Inc, Singapore
7.
go back to reference Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRef
8.
go back to reference Bhattarai S, Bhattarai N, Yi H, Hwang P, Cha D, Kim H (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25(13):2595–2602CrossRef Bhattarai S, Bhattarai N, Yi H, Hwang P, Cha D, Kim H (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25(13):2595–2602CrossRef
9.
go back to reference Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886CrossRef Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886CrossRef
10.
go back to reference Bergshoef M, Vancso G (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4, 6 fiber reinforcement. Adv mater 11(16):1362–1365CrossRef Bergshoef M, Vancso G (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4, 6 fiber reinforcement. Adv mater 11(16):1362–1365CrossRef
11.
go back to reference Zhou F, Gong R (2008) Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym Int 57(6):837–845CrossRef Zhou F, Gong R (2008) Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym Int 57(6):837–845CrossRef
12.
go back to reference Patanaik A, Anandjiwala R, Rengasamy R, Ghosh A, Pal H (2007) Nanotechnology in fibrous materials–a new perspective. Text Prog 39(2):67–120CrossRef Patanaik A, Anandjiwala R, Rengasamy R, Ghosh A, Pal H (2007) Nanotechnology in fibrous materials–a new perspective. Text Prog 39(2):67–120CrossRef
13.
go back to reference Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRef Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRef
14.
go back to reference Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2012) Recent advances in nanofibre fabrication techniques. Text Res J 82(2):129–147 Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2012) Recent advances in nanofibre fabrication techniques. Text Res J 82(2):129–147
15.
go back to reference Nayak R, Padhye R, Arnold L, Islam S (2011) Production of novel surfaces by electrospinning. Acta Univ Cibiniensis 58:128–138 Nayak R, Padhye R, Arnold L, Islam S (2011) Production of novel surfaces by electrospinning. Acta Univ Cibiniensis 58:128–138
16.
go back to reference Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, Nichols L, O’Shea M (2012) Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning. Adv Mater Res 472:1294–1299 Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, Nichols L, O’Shea M (2012) Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning. Adv Mater Res 472:1294–1299
17.
go back to reference Cho D, Zhmayev E, Joo YL (2011) Structural studies of electrospun nylon 6 fibers from solution and melt. Polymer Cho D, Zhmayev E, Joo YL (2011) Structural studies of electrospun nylon 6 fibers from solution and melt. Polymer
18.
go back to reference Ogata N, Shimada N, Yamaguchi S, Nakane K, Ogihara T (2007) Melt electrospinning of poly (ethylene terephthalate) and polyalirate. J Appl Polym Sci 105(3):1127–1132CrossRef Ogata N, Shimada N, Yamaguchi S, Nakane K, Ogihara T (2007) Melt electrospinning of poly (ethylene terephthalate) and polyalirate. J Appl Polym Sci 105(3):1127–1132CrossRef
19.
go back to reference Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6(1):44–56 Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6(1):44–56
20.
go back to reference Dalton P, Klinkhammer K, Salber J, Klee D, Möller M (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7(3):686–690CrossRef Dalton P, Klinkhammer K, Salber J, Klee D, Möller M (2006) Direct in vitro electrospinning with polymer melts. Biomacromolecules 7(3):686–690CrossRef
21.
go back to reference Ogata N, Yamaguchi S, Shimada N, Lu G, Iwata T, Nakane K, Ogihara T (2007) Poly (lactide) nanofibers produced by a melt electrospinning system with a laser melting device. J Appl Polym Sci 104(3):1640–1645CrossRef Ogata N, Yamaguchi S, Shimada N, Lu G, Iwata T, Nakane K, Ogihara T (2007) Poly (lactide) nanofibers produced by a melt electrospinning system with a laser melting device. J Appl Polym Sci 104(3):1640–1645CrossRef
22.
go back to reference Li F, Zhao Y, Wang S, Han D, Jiang L, Song Y (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274CrossRef Li F, Zhao Y, Wang S, Han D, Jiang L, Song Y (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274CrossRef
23.
go back to reference Zhmayev E, Zhou H, Joo YL (2008) Modeling of non-isothermal polymer jets in melt electrospinning. J Non-Newton Fluid Mech 153(2–3):95–108CrossRef Zhmayev E, Zhou H, Joo YL (2008) Modeling of non-isothermal polymer jets in melt electrospinning. J Non-Newton Fluid Mech 153(2–3):95–108CrossRef
24.
go back to reference Góra A, Sahay R, Thavasi V, Ramakrishna S (2011) Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polym Rev 51(3):265–287CrossRef Góra A, Sahay R, Thavasi V, Ramakrishna S (2011) Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polym Rev 51(3):265–287CrossRef
25.
go back to reference Zhou H, Green T, Joo Y (2006) The thermal effects on electrospinning of polylactic acid melts. Polymer 47(21):7497–7505CrossRef Zhou H, Green T, Joo Y (2006) The thermal effects on electrospinning of polylactic acid melts. Polymer 47(21):7497–7505CrossRef
26.
go back to reference Ellison C, Phatak A, Giles D, Macosko C, Bates F (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316CrossRef Ellison C, Phatak A, Giles D, Macosko C, Bates F (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316CrossRef
27.
go back to reference Pinchuk LS (2002) Melt blowing: equipment, technology, and polymer fibrous materials. Verlag, Berlin Pinchuk LS (2002) Melt blowing: equipment, technology, and polymer fibrous materials. Verlag, Berlin
28.
go back to reference Wang X, Ke Q (2006) Experimental investigation of adhesive meltblown web production using accessory air. Polym Eng Sci 46(1):1–7CrossRef Wang X, Ke Q (2006) Experimental investigation of adhesive meltblown web production using accessory air. Polym Eng Sci 46(1):1–7CrossRef
29.
go back to reference Yu J, Fridrikh S, Rutledge G (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47(13):4789–4797CrossRef Yu J, Fridrikh S, Rutledge G (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47(13):4789–4797CrossRef
30.
go back to reference Funada T, Joseph D (2003) Viscoelastic potential flow analysis of capillary instability. J Non-Newton Fluid Mech 111(2–3):87–105CrossRef Funada T, Joseph D (2003) Viscoelastic potential flow analysis of capillary instability. J Non-Newton Fluid Mech 111(2–3):87–105CrossRef
31.
go back to reference McKee M, Park T, Unal S, Yilgor I, Long T (2005) Electrospinning of linear and highly branched segmented poly (urethane urea) s. Polymer 46(7):2011–2015CrossRef McKee M, Park T, Unal S, Yilgor I, Long T (2005) Electrospinning of linear and highly branched segmented poly (urethane urea) s. Polymer 46(7):2011–2015CrossRef
33.
go back to reference Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316CrossRef Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316CrossRef
34.
go back to reference Ellison CJ, Phatak A, Macosko CW, Bates FS (2007) Nanofiber production via melt blowing. Proceedings of 2007 AIChE Annual Meeting. Nov 7, 2007. Germany. Salt lake city, Utah Ellison CJ, Phatak A, Macosko CW, Bates FS (2007) Nanofiber production via melt blowing. Proceedings of 2007 AIChE Annual Meeting. Nov 7, 2007. Germany. Salt lake city, Utah
35.
go back to reference Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, O’Shea M, Nichols L (2013) Fabrication and characterisation of polypropylene nanofibres by meltblowing process using different fluids. J Mater Sci 48(1):273–281 Nayak R, Kyratzis IL, Truong YB, Padhye R, Arnold L, Peeters G, O’Shea M, Nichols L (2013) Fabrication and characterisation of polypropylene nanofibres by meltblowing process using different fluids. J Mater Sci 48(1):273–281
36.
go back to reference Aymes-Chodur C, Betz N, Lengendre B, Yagoubi Y (2006) Polym degrad stab 91:649CrossRef Aymes-Chodur C, Betz N, Lengendre B, Yagoubi Y (2006) Polym degrad stab 91:649CrossRef
37.
go back to reference Abdel-Hamid H (2005) Effect of electron beam irradiation on polypropylene films–dielectric and FT-IR studies. Solid-state Electron 49(7):1163–1167CrossRef Abdel-Hamid H (2005) Effect of electron beam irradiation on polypropylene films–dielectric and FT-IR studies. Solid-state Electron 49(7):1163–1167CrossRef
38.
go back to reference Mishra R, Tripathy S, Sinha D, Dwivedi K, Ghosh S, Khathing D, Müller M, Fink D, Chung W (2000) Optical and electrical properties of some electron and proton irradiated polymers. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 168(1):59–64CrossRef Mishra R, Tripathy S, Sinha D, Dwivedi K, Ghosh S, Khathing D, Müller M, Fink D, Chung W (2000) Optical and electrical properties of some electron and proton irradiated polymers. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 168(1):59–64CrossRef
39.
go back to reference Lee S, Kay Obendorf S (2006) Developing protective textile materials as barriers to liquid penetration using melt electrospinning. J Appl Polym Sci 102(4):3430–3437CrossRef Lee S, Kay Obendorf S (2006) Developing protective textile materials as barriers to liquid penetration using melt electrospinning. J Appl Polym Sci 102(4):3430–3437CrossRef
40.
go back to reference Wang W, Tang L, Qu B (2003) Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite. Eur Polym J 39(11):2129–2134CrossRef Wang W, Tang L, Qu B (2003) Mechanical properties and morphological structures of short glass fiber reinforced PP/EPDM composite. Eur Polym J 39(11):2129–2134CrossRef
41.
go back to reference Gahan R, Zguris GC (2000) A review of the melt blown process. IEEE 145–149 Gahan R, Zguris GC (2000) A review of the melt blown process. IEEE 145–149
42.
go back to reference McCulloch JG (1999) The history of the development of meltblowing technology. Int Nonwovens J 8:139–149 McCulloch JG (1999) The history of the development of meltblowing technology. Int Nonwovens J 8:139–149
43.
go back to reference Nayak R (2012) Fabrication and characterisation of polypropylene nanofibres by melt electrospinning and meltblowing. PhD Thesis, RMIT University, Melbourne Nayak R (2012) Fabrication and characterisation of polypropylene nanofibres by melt electrospinning and meltblowing. PhD Thesis, RMIT University, Melbourne
44.
go back to reference Mascia L, Xanthos M (1992) An overview of additives and modifiers for polymer blends: Facts, deductions, and uncertainties. Adv Polym Technol 11(4):237–248CrossRef Mascia L, Xanthos M (1992) An overview of additives and modifiers for polymer blends: Facts, deductions, and uncertainties. Adv Polym Technol 11(4):237–248CrossRef
45.
go back to reference Yao L, Haas T, Guiseppi-Elie A, Bowlin G, Simpson D, Wnek G (2003) Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers. Chem Mater 15(9):1860–1864CrossRef Yao L, Haas T, Guiseppi-Elie A, Bowlin G, Simpson D, Wnek G (2003) Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers. Chem Mater 15(9):1860–1864CrossRef
46.
go back to reference Lin T, Wang H, Wang X (2004) The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15:1375CrossRef Lin T, Wang H, Wang X (2004) The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15:1375CrossRef
47.
go back to reference Taipalus R, Harmia T, Zhang M, Friedrich K (2001) The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling. Compos Sci Technol 61(6):801–814CrossRef Taipalus R, Harmia T, Zhang M, Friedrich K (2001) The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling. Compos Sci Technol 61(6):801–814CrossRef
48.
go back to reference Watanabe K, Kim BS, Kim IS (2011) Development of Polypropylene Nanofiber Production System. Polym Rev 51(3):288–308CrossRef Watanabe K, Kim BS, Kim IS (2011) Development of Polypropylene Nanofiber Production System. Polym Rev 51(3):288–308CrossRef
49.
go back to reference Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2013) Effect of viscosity and electrical conductivity on the morphology and fibre diameter in melt electrospinning of polypropylene. Text Res J 83(6):606–617 Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L (2013) Effect of viscosity and electrical conductivity on the morphology and fibre diameter in melt electrospinning of polypropylene. Text Res J 83(6):606–617
50.
go back to reference Kim B, Koncar V, Devaux E, Dufour C, Viallier P (2004) Electrical and morphological properties of PP and PET conductive polymer fibers. Synth Met 146(2):167–174CrossRef Kim B, Koncar V, Devaux E, Dufour C, Viallier P (2004) Electrical and morphological properties of PP and PET conductive polymer fibers. Synth Met 146(2):167–174CrossRef
Metadata
Title
Introduction
Author
Rajkishore Nayak
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-61458-8_1

Premium Partners