Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This Chapter contains general introduction to electrochemistry at ITIES, including interfacial structure and thermodynamics of electron and ion transfer, as well as description of the concept of the Fermi level equilibration. Next, synthetic procedures, the structure of citrate-stabilized gold nanoparticles and implementation of “free electron gas” model to describe optical properties of metal NPs are considered. The Chapter ends with an extensive review on self-assembly of nano- and microparticles at liquid-liquid interfaces, including theoretical questions and potential applications of nanoparticle interfacial films.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Gavach, C.: Cinetique de l’Electroadsorption et de La Polarisation À l’Interface Entre Certaines Solutions Ioniques Non Miscibles. Experientia 18, 321–331 (1971) Gavach, C.: Cinetique de l’Electroadsorption et de La Polarisation À l’Interface Entre Certaines Solutions Ioniques Non Miscibles. Experientia 18, 321–331 (1971)
2.
go back to reference Gavach, C., Henry, F.: Chronopotentiometric investigation of the diffusion overvoltage at the interface between two non-miscible solutions. J. Electroanal. Chem. Interfacial Electrochem. 54, 361–370 (1974)CrossRef Gavach, C., Henry, F.: Chronopotentiometric investigation of the diffusion overvoltage at the interface between two non-miscible solutions. J. Electroanal. Chem. Interfacial Electrochem. 54, 361–370 (1974)CrossRef
3.
go back to reference Gavach, C., Seta, P., Henry, F.: A study of the ionic transfer across an aqueous solution liquid membrane interface by chronopotentiometric and impedance measurements. Bioelectrochemistry Bioenerg. 1, 329–342 (1974)CrossRef Gavach, C., Seta, P., Henry, F.: A study of the ionic transfer across an aqueous solution liquid membrane interface by chronopotentiometric and impedance measurements. Bioelectrochemistry Bioenerg. 1, 329–342 (1974)CrossRef
4.
go back to reference Gavach, C., Savajols, A.: Potentiels biioniques de membranes liquides fortement dissociees. Electrochim. Acta 19, 575–581 (1974)CrossRef Gavach, C., Savajols, A.: Potentiels biioniques de membranes liquides fortement dissociees. Electrochim. Acta 19, 575–581 (1974)CrossRef
5.
go back to reference Samec, Z., Mareček, V., Koryta, J., Khalil, W.: Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 83, 393–397 (1977)CrossRef Samec, Z., Mareček, V., Koryta, J., Khalil, W.: Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 83, 393–397 (1977)CrossRef
6.
go back to reference Koryta, J.: Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions. Electrochim. Acta 24, 293–300 (1979)CrossRef Koryta, J.: Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions. Electrochim. Acta 24, 293–300 (1979)CrossRef
7.
go back to reference Koryta, J., Br̆ezina, M., Hofmanová, A., Homolka, D., Hung, L.Q., Khalil, W., Mareček, V., Samec, Z., Sen, S.K., Vanýsek, P., et al.: 311–a new model of membrane transport: electrolysis at the interface of two immiscible electrolyte solutions. Bioelectrochemistry Bioenerg. 7, 61–68 (1980)CrossRef Koryta, J., Br̆ezina, M., Hofmanová, A., Homolka, D., Hung, L.Q., Khalil, W., Mareček, V., Samec, Z., Sen, S.K., Vanýsek, P., et al.: 311–a new model of membrane transport: electrolysis at the interface of two immiscible electrolyte solutions. Bioelectrochemistry Bioenerg. 7, 61–68 (1980)CrossRef
8.
go back to reference Samec, Z., Mareček, V., Weber, J.: Charge transfer between two immiscible electrolyte solutions. J. Electroanal. Chem. Interfacial Electrochem. 103, 11–18 (1979)CrossRef Samec, Z., Mareček, V., Weber, J.: Charge transfer between two immiscible electrolyte solutions. J. Electroanal. Chem. Interfacial Electrochem. 103, 11–18 (1979)CrossRef
9.
go back to reference Samec, Z., Mareček, V., Weber, J.: Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system. J. Electroanal. Chem. Interfacial Electrochem. 96, 245–247 (1979)CrossRef Samec, Z., Mareček, V., Weber, J.: Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system. J. Electroanal. Chem. Interfacial Electrochem. 96, 245–247 (1979)CrossRef
10.
go back to reference Samec, Z., Eugster, N., Fermin, D.J., Girault, H.H.: A generalised model for dynamic photocurrent responses at dye-sensitised liquid|liquid interfaces. J. Electroanal. Chem. 577, 323–337 (2005)CrossRef Samec, Z., Eugster, N., Fermin, D.J., Girault, H.H.: A generalised model for dynamic photocurrent responses at dye-sensitised liquid|liquid interfaces. J. Electroanal. Chem. 577, 323–337 (2005)CrossRef
11.
go back to reference Peljo, P.; Girault, H.H.: Electrochemistry at liquid/liquid interfaces. In: Encyclopedia of Analytical Chemistry. Wiley, Chichester, pp. 1–28 (2012) Peljo, P.; Girault, H.H.: Electrochemistry at liquid/liquid interfaces. In: Encyclopedia of Analytical Chemistry. Wiley, Chichester, pp. 1–28 (2012)
12.
go back to reference Samec, Z.: Dynamic electrochemistry at the interface between two immiscible electrolytes. Electrochim. Acta 84, 21–28 (2012)CrossRef Samec, Z.: Dynamic electrochemistry at the interface between two immiscible electrolytes. Electrochim. Acta 84, 21–28 (2012)CrossRef
13.
go back to reference Girault, H.H., Schiffrin, D.J.: Thermodynamic surface excess of water and ionic solvation at the interface between immiscible liquids. J. Electroanal. Chem. Interfacial Electrochem. 150, 43–49 (1983)CrossRef Girault, H.H., Schiffrin, D.J.: Thermodynamic surface excess of water and ionic solvation at the interface between immiscible liquids. J. Electroanal. Chem. Interfacial Electrochem. 150, 43–49 (1983)CrossRef
14.
go back to reference Ibañez, D., Plana, D., Heras, A., Fermín, D.J., Colina, A.: Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved raman spectroelectrochemistry. Electrochem. Commun. 54, 14–17 (2015)CrossRef Ibañez, D., Plana, D., Heras, A., Fermín, D.J., Colina, A.: Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved raman spectroelectrochemistry. Electrochem. Commun. 54, 14–17 (2015)CrossRef
15.
go back to reference Hatay, I., Su, B., Li, F., Méndez, M.A., Khoury, T., Gros, C.P., Barbe, J.-M., Ersoz, M., Samec, Z., Girault, H.H.: Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine. J. Am. Chem. Soc. 131, 13453–13459 (2009)CrossRef Hatay, I., Su, B., Li, F., Méndez, M.A., Khoury, T., Gros, C.P., Barbe, J.-M., Ersoz, M., Samec, Z., Girault, H.H.: Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine. J. Am. Chem. Soc. 131, 13453–13459 (2009)CrossRef
16.
go back to reference Su, B., Hatay, I., Li, F., Partovi-Nia, R., Méndez, M.A., Samec, Z., Ersoz, M., Girault, H.H.: Oxygen reduction by Decamethylferrocene at liquid/liquid interfaces catalyzed by Dodecylaniline. J. Electroanal. Chem. 639, 102–108 (2010)CrossRef Su, B., Hatay, I., Li, F., Partovi-Nia, R., Méndez, M.A., Samec, Z., Ersoz, M., Girault, H.H.: Oxygen reduction by Decamethylferrocene at liquid/liquid interfaces catalyzed by Dodecylaniline. J. Electroanal. Chem. 639, 102–108 (2010)CrossRef
17.
go back to reference Hatay, I., Su, B., Li, F., Partovi-Nia, R., Vrubel, H., Hu, X., Ersoz, M., Girault, H.H.: Hydrogen evolution at liquid-liquid interfaces. Angew. Chemie 48, 5139–5142 (2009)CrossRef Hatay, I., Su, B., Li, F., Partovi-Nia, R., Vrubel, H., Hu, X., Ersoz, M., Girault, H.H.: Hydrogen evolution at liquid-liquid interfaces. Angew. Chemie 48, 5139–5142 (2009)CrossRef
18.
go back to reference Nieminen, J.J., Hatay, I., Ge, P.-Y.P., Méndez, M.A., Murtomäki, L., Girault, H.H.: Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface. Chem. Commun. 47, 5548–5550 (2011)CrossRef Nieminen, J.J., Hatay, I., Ge, P.-Y.P., Méndez, M.A., Murtomäki, L., Girault, H.H.: Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface. Chem. Commun. 47, 5548–5550 (2011)CrossRef
19.
go back to reference Toth, P.S., Rodgers, A.N.J., Rabiu, A.K., Ibañez, D., Yang, J.X., Colina, A., Dryfe, R.A.W.: Interfacial doping of carbon nanotubes at the polarisable organic/water interface: a liquid/liquid pseudo-capacitor. J. Mater. Chem. A 4, 7365–7371 (2016)CrossRef Toth, P.S., Rodgers, A.N.J., Rabiu, A.K., Ibañez, D., Yang, J.X., Colina, A., Dryfe, R.A.W.: Interfacial doping of carbon nanotubes at the polarisable organic/water interface: a liquid/liquid pseudo-capacitor. J. Mater. Chem. A 4, 7365–7371 (2016)CrossRef
20.
go back to reference Sanchez Vallejo, L.J., Ovejero, J.M., Fernández, R.A., Dassie, S.A.: Simple ion transfer at liquid|liquid interfaces. Int. J. Electrochem. 2012, 1–34 (2012)CrossRef Sanchez Vallejo, L.J., Ovejero, J.M., Fernández, R.A., Dassie, S.A.: Simple ion transfer at liquid|liquid interfaces. Int. J. Electrochem. 2012, 1–34 (2012)CrossRef
21.
go back to reference Zhou, M., Gan, S., Zhong, L., Dong, X., Niu, L.: Which mechanism operates in the electron-transfer process at liquid/liquid interfaces? Phys. Chem. Chem. Phys. 13, 2774–2779 (2011)CrossRef Zhou, M., Gan, S., Zhong, L., Dong, X., Niu, L.: Which mechanism operates in the electron-transfer process at liquid/liquid interfaces? Phys. Chem. Chem. Phys. 13, 2774–2779 (2011)CrossRef
22.
go back to reference Deng, H., Jane Stockmann, T., Peljo, P., Opallo, M., Girault, H.H.: Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations. J. Electroanal. Chem. 731, 28–35 (2014)CrossRef Deng, H., Jane Stockmann, T., Peljo, P., Opallo, M., Girault, H.H.: Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations. J. Electroanal. Chem. 731, 28–35 (2014)CrossRef
23.
go back to reference Verwey, E.J.W., Niessen, K.F.: XL. The electrical double layer at the interface of two liquids. London, Edinburgh, Dublin Philos. Mag. J. Sci. 28, 435–446 (1939)CrossRef Verwey, E.J.W., Niessen, K.F.: XL. The electrical double layer at the interface of two liquids. London, Edinburgh, Dublin Philos. Mag. J. Sci. 28, 435–446 (1939)CrossRef
24.
go back to reference Gavach, C., Seta, P., Epenoux, B.D.: The double layer and ion adsorption at the interface between two non miscible solutions. J. Electroanal. Chem. 83, 225–235 (1977)CrossRef Gavach, C., Seta, P., Epenoux, B.D.: The double layer and ion adsorption at the interface between two non miscible solutions. J. Electroanal. Chem. 83, 225–235 (1977)CrossRef
25.
go back to reference Benjamin, I.: Theoretical study of the water/1,2-dichloroethane interface: structure, dynamics, and conformational equilibria at the liquid–liquid interface. J. Chem. Phys. 97, 1432 (1992)CrossRef Benjamin, I.: Theoretical study of the water/1,2-dichloroethane interface: structure, dynamics, and conformational equilibria at the liquid–liquid interface. J. Chem. Phys. 97, 1432 (1992)CrossRef
26.
go back to reference Strutwolf, J., Barker, A.L., Gonsalves, M., Caruana, D.J., Unwin, P.R., Williams, D.E., Webster, J.R.: Probing liquid∣liquid interfaces using neutron reflection measurements and scanning electrochemical microscopy. J. Electroanal. Chem. 483, 163–173 (2000)CrossRef Strutwolf, J., Barker, A.L., Gonsalves, M., Caruana, D.J., Unwin, P.R., Williams, D.E., Webster, J.R.: Probing liquid∣liquid interfaces using neutron reflection measurements and scanning electrochemical microscopy. J. Electroanal. Chem. 483, 163–173 (2000)CrossRef
27.
go back to reference Hou, B., Laanait, N., Yu, H., Bu, W., Yoon, J., Lin, B., Meron, M., Luo, G., Vanysek, P., Schlossman, M.L.: Ion distributions at the water/1,2-Dichloroethane interface: potential of mean force approach to analyzing X-Ray reflectivity and interfacial tension measurements. J. Phys. Chem. B 117, 5365–5378 (2013)CrossRef Hou, B., Laanait, N., Yu, H., Bu, W., Yoon, J., Lin, B., Meron, M., Luo, G., Vanysek, P., Schlossman, M.L.: Ion distributions at the water/1,2-Dichloroethane interface: potential of mean force approach to analyzing X-Ray reflectivity and interfacial tension measurements. J. Phys. Chem. B 117, 5365–5378 (2013)CrossRef
28.
go back to reference Nagatani, H., Samec, Z., Brevet, P.-F., Fermin, D.J., Girault, H.H.: Adsorption and aggregation of Meso -Tetrakis(4-Carboxyphenyl)porphyrinato Zinc(II) at the Polarized Water|1,2-Dichloroethane interface. J. Phys. Chem. B 107, 786–790 (2003)CrossRef Nagatani, H., Samec, Z., Brevet, P.-F., Fermin, D.J., Girault, H.H.: Adsorption and aggregation of Meso -Tetrakis(4-Carboxyphenyl)porphyrinato Zinc(II) at the Polarized Water|1,2-Dichloroethane interface. J. Phys. Chem. B 107, 786–790 (2003)CrossRef
29.
go back to reference Su, B., Abid, J.-P., Fermin, D.J., Girault, H.H., Hoffmannová, H., Krtil, P., Samec, Z.: Reversible voltage-induced assembly of Au nanoparticles at liquid/liquid interfaces. J. Am. Chem. Soc. 126, 915–919 (2004)CrossRef Su, B., Abid, J.-P., Fermin, D.J., Girault, H.H., Hoffmannová, H., Krtil, P., Samec, Z.: Reversible voltage-induced assembly of Au nanoparticles at liquid/liquid interfaces. J. Am. Chem. Soc. 126, 915–919 (2004)CrossRef
30.
go back to reference Yu, H., Yzeiri, I., Hou, B., Chen, C.-H., Bu, W., Vanysek, P., Chen, Y., Lin, B., Král, P., Schlossman, M.L.: Electric field effect on phospholipid monolayers at an aqueous-organic liquid–liquid interface. J. Phys. Chem. B 119, 9319–9334 (2015)CrossRef Yu, H., Yzeiri, I., Hou, B., Chen, C.-H., Bu, W., Vanysek, P., Chen, Y., Lin, B., Král, P., Schlossman, M.L.: Electric field effect on phospholipid monolayers at an aqueous-organic liquid–liquid interface. J. Phys. Chem. B 119, 9319–9334 (2015)CrossRef
31.
go back to reference Bard, A.J., Faulkner, L.R.: Electrochemical methods: fundamentals and applications. In: Harris, D., Swain, E., Robey, C., Aillo, E. (eds.). Wiley, New York (2001) Bard, A.J., Faulkner, L.R.: Electrochemical methods: fundamentals and applications. In: Harris, D., Swain, E., Robey, C., Aillo, E. (eds.). Wiley, New York (2001)
32.
go back to reference Wilke, S., Zerihun, T.: Standard Gibbs energies of ion transfer across the Water∣2-Nitrophenyl Octyl Ether interface. J. Electroanal. Chem. 515, 611–614 (2001)CrossRef Wilke, S., Zerihun, T.: Standard Gibbs energies of ion transfer across the Water∣2-Nitrophenyl Octyl Ether interface. J. Electroanal. Chem. 515, 611–614 (2001)CrossRef
33.
go back to reference Olaya, A.A.J., Ge, P.-Y., Girault, H.H.: Ion transfer across the Water|trifluorotoluene interface. Electrochem. Commun. 19, 101–104 (2012)CrossRef Olaya, A.A.J., Ge, P.-Y., Girault, H.H.: Ion transfer across the Water|trifluorotoluene interface. Electrochem. Commun. 19, 101–104 (2012)CrossRef
34.
go back to reference Aminur Rahman, M., Doe, H.: Ion transfer of Tetraalkylammonium Cations at an interface between Frozen Aqueous solution and 1,2-Dichloroethane. J. Electroanal. Chem. 424, 159–164 (1997)CrossRef Aminur Rahman, M., Doe, H.: Ion transfer of Tetraalkylammonium Cations at an interface between Frozen Aqueous solution and 1,2-Dichloroethane. J. Electroanal. Chem. 424, 159–164 (1997)CrossRef
35.
go back to reference Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Interfacial Redox Catalysis on Gold Nanofilms at soft interfaces. ACS Nano 9, 6565–6575 (2015)CrossRef Smirnov, E., Peljo, P., Scanlon, M.D., Girault, H.H.: Interfacial Redox Catalysis on Gold Nanofilms at soft interfaces. ACS Nano 9, 6565–6575 (2015)CrossRef
36.
go back to reference Peljo, P.: Proton transfer controlled reactions at liquid-liquid interfaces (2013) Peljo, P.: Proton transfer controlled reactions at liquid-liquid interfaces (2013)
37.
go back to reference Walden, P.: Organic solutions and ionisation means. internal friction and its connection with conductivity. Verwandtschaftslehre Zeitschrift Fur Phys. Chemie-Stochiometrie Und 55, 207–249 (1906) Walden, P.: Organic solutions and ionisation means. internal friction and its connection with conductivity. Verwandtschaftslehre Zeitschrift Fur Phys. Chemie-Stochiometrie Und 55, 207–249 (1906)
38.
go back to reference Yaws, C.L.: Handbook of Thermodynamic and Physical Properties of Chemical Compounds. Knovel (2003) Yaws, C.L.: Handbook of Thermodynamic and Physical Properties of Chemical Compounds. Knovel (2003)
40.
go back to reference Scanlon, M.D.M., Peljo, P., Mendez, M.A., Smirnov, E.A., Girault, H.H., Méndez, M.A., Smirnov, E.A., Girault, H.H.: Charging and discharging at the nanoscale: fermi level equilibration of metallic nanoparticles. Chem. Sci. 6, 2705–2720 (2015)CrossRef Scanlon, M.D.M., Peljo, P., Mendez, M.A., Smirnov, E.A., Girault, H.H., Méndez, M.A., Smirnov, E.A., Girault, H.H.: Charging and discharging at the nanoscale: fermi level equilibration of metallic nanoparticles. Chem. Sci. 6, 2705–2720 (2015)CrossRef
41.
go back to reference Su, B., Girault, H.H.: Redox properties of self-assembled gold nanoclusters. J. Phys. Chem. B 109, 23925–23929 (2005)CrossRef Su, B., Girault, H.H.: Redox properties of self-assembled gold nanoclusters. J. Phys. Chem. B 109, 23925–23929 (2005)CrossRef
42.
go back to reference Su, B., Girault, H.H.: Absolute standard redox potential of monolayer-protected gold nanoclusters. J. Phys. Chem. B 109, 11427–11431 (2005)CrossRef Su, B., Girault, H.H.: Absolute standard redox potential of monolayer-protected gold nanoclusters. J. Phys. Chem. B 109, 11427–11431 (2005)CrossRef
43.
go back to reference Halas, S.: Ionization potential of large metallic clusters: explanation for the electrostatic paradox. Chem. Phys. Lett. 370, 300–301 (2003)CrossRef Halas, S.: Ionization potential of large metallic clusters: explanation for the electrostatic paradox. Chem. Phys. Lett. 370, 300–301 (2003)CrossRef
44.
go back to reference Svanqvist, M., Hansen, K.: Non-Jellium scaling of metal cluster ionization energies and electron affinities. Eur. Phys. J. D 56, 199–203 (2010)CrossRef Svanqvist, M., Hansen, K.: Non-Jellium scaling of metal cluster ionization energies and electron affinities. Eur. Phys. J. D 56, 199–203 (2010)CrossRef
45.
go back to reference Brown, C.M., Tilford, S.G., Ginter, M.L.: Absorption spectrum of Au I between 1300 and 1900 A. J. Opt. Soc. Am. 68, 243–246 (1978)CrossRef Brown, C.M., Tilford, S.G., Ginter, M.L.: Absorption spectrum of Au I between 1300 and 1900 A. J. Opt. Soc. Am. 68, 243–246 (1978)CrossRef
46.
go back to reference Girault, H.H.: Analytical and Physical Electrochemistry. EPFL Press, Lausanne (2004)CrossRef Girault, H.H.: Analytical and Physical Electrochemistry. EPFL Press, Lausanne (2004)CrossRef
47.
go back to reference Su, B., Zhang, M., Shao, Y., Girault, H.H.: Solvent effect on redox properties of Hexanethiolate Monolayer-Protected gold nanoclusters. J. Phys. Chem. B 110, 21460–21466 (2006)CrossRef Su, B., Zhang, M., Shao, Y., Girault, H.H.: Solvent effect on redox properties of Hexanethiolate Monolayer-Protected gold nanoclusters. J. Phys. Chem. B 110, 21460–21466 (2006)CrossRef
48.
go back to reference Novo, C., Funston, A.M., Gooding, A.K., Mulvaney, P.: Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131, 14664–14666 (2009)CrossRef Novo, C., Funston, A.M., Gooding, A.K., Mulvaney, P.: Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131, 14664–14666 (2009)CrossRef
49.
go back to reference Plieth, W.J.: Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced raman scattering. J. Phys. Chem. 86, 3166–3170 (1982)CrossRef Plieth, W.J.: Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced raman scattering. J. Phys. Chem. 86, 3166–3170 (1982)CrossRef
50.
go back to reference Henglein, A.: Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989)CrossRef Henglein, A.: Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989)CrossRef
51.
go back to reference Henglein, A.: Physichochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457–5471 (1993)CrossRef Henglein, A.: Physichochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457–5471 (1993)CrossRef
52.
go back to reference Lipkowski, J., Schmickler, W., Kolb, D., Parsons, R.: Comments on the thermodynamics of solid electrodes. J. Electroanal. Chem. 452, 193–197 (1998)CrossRef Lipkowski, J., Schmickler, W., Kolb, D., Parsons, R.: Comments on the thermodynamics of solid electrodes. J. Electroanal. Chem. 452, 193–197 (1998)CrossRef
53.
go back to reference Lee, D.K., Park, S.Il, Lee, J.K., Hwang, N.M.: A theoretical model for digestive ripening. Acta Mater. 55, 5281–5288 (2007)CrossRef Lee, D.K., Park, S.Il, Lee, J.K., Hwang, N.M.: A theoretical model for digestive ripening. Acta Mater. 55, 5281–5288 (2007)CrossRef
54.
go back to reference Ivanova, O.S., Zamborini, F.P.: Size – dependent electrochemical oxidation of silver nanoparticles. J. Am. Chem. Soc. 132, 70–72 (2010)CrossRef Ivanova, O.S., Zamborini, F.P.: Size – dependent electrochemical oxidation of silver nanoparticles. J. Am. Chem. Soc. 132, 70–72 (2010)CrossRef
55.
go back to reference Ivanova, O.S., Zamborini, F.P.: Electrochemical size discrimination of gold nanoparticles attached to Glass/indium-Tin-Oxide electrodes by oxidation in bromide-containing electrolyte. Anal. Chem. 82, 5844–5850 (2010)CrossRef Ivanova, O.S., Zamborini, F.P.: Electrochemical size discrimination of gold nanoparticles attached to Glass/indium-Tin-Oxide electrodes by oxidation in bromide-containing electrolyte. Anal. Chem. 82, 5844–5850 (2010)CrossRef
56.
go back to reference Masitas, R.A., Zamborini, F.P.: Oxidation of highly unstable 4 Nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential. J. Am. Chem. Soc. 134, 5014–5017 (2012)CrossRef Masitas, R.A., Zamborini, F.P.: Oxidation of highly unstable 4 Nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential. J. Am. Chem. Soc. 134, 5014–5017 (2012)CrossRef
57.
go back to reference Pietron, J.J., Hicks, J.F., Murray, R.W.: Using electrons stored on quantized capacitors in electron transfer reactions. J. Am. Chem. Soc. 121, 5565–5570 (1999)CrossRef Pietron, J.J., Hicks, J.F., Murray, R.W.: Using electrons stored on quantized capacitors in electron transfer reactions. J. Am. Chem. Soc. 121, 5565–5570 (1999)CrossRef
58.
go back to reference Ung, T., Giersig, M., Dunstan, D., Mulvaney, P.: Spectroelectrochemistry of colloidal silver. Langmuir 13, 1773–1782 (1997)CrossRef Ung, T., Giersig, M., Dunstan, D., Mulvaney, P.: Spectroelectrochemistry of colloidal silver. Langmuir 13, 1773–1782 (1997)CrossRef
59.
go back to reference Stuart, E.J.E., Zhou, Y., Rees, N.V., Compton, R.G.: Particle-impact nanoelectrochemistry: a fickian model for nanoparticle transport. RSC Adv. 2, 12702 (2012)CrossRef Stuart, E.J.E., Zhou, Y., Rees, N.V., Compton, R.G.: Particle-impact nanoelectrochemistry: a fickian model for nanoparticle transport. RSC Adv. 2, 12702 (2012)CrossRef
60.
go back to reference Zhou, Y.-G., Rees, N.V., Pillay, J., Tshikhudo, R., Vilakazi, S., Compton, R.G.: Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 48, 224 (2012)CrossRef Zhou, Y.-G., Rees, N.V., Pillay, J., Tshikhudo, R., Vilakazi, S., Compton, R.G.: Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 48, 224 (2012)CrossRef
61.
go back to reference Haddou, B., Rees, N.V., Compton, R.G.: Nanoparticle–electrode impacts: the oxidation of copper nanoparticles has slow kinetics. Phys. Chem. Chem. Phys. 14, 13612 (2012)CrossRef Haddou, B., Rees, N.V., Compton, R.G.: Nanoparticle–electrode impacts: the oxidation of copper nanoparticles has slow kinetics. Phys. Chem. Chem. Phys. 14, 13612 (2012)CrossRef
62.
go back to reference German, S.R., Hurd, T.S., White, H.S., Mega, T.L.: Sizing individual Au nanoparticles in solution with sub-nanometer resolution. ACS Nano 150623081920006 (2015) German, S.R., Hurd, T.S., White, H.S., Mega, T.L.: Sizing individual Au nanoparticles in solution with sub-nanometer resolution. ACS Nano 150623081920006 (2015)
63.
go back to reference Edwards, M.A., German, S.R., Dick, J.E., Bard, A.J., White, H.S.: High-speed multipass coulter counter with ultrahigh resolution. ACS Nano (2015) Edwards, M.A., German, S.R., Dick, J.E., Bard, A.J., White, H.S.: High-speed multipass coulter counter with ultrahigh resolution. ACS Nano (2015)
64.
go back to reference Xiao, X., Bard, A.J.: Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 129, 9610–9612 (2007)CrossRef Xiao, X., Bard, A.J.: Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 129, 9610–9612 (2007)CrossRef
65.
go back to reference Xiao, Y., Fan, F.R.F., Zhou, J., Bard, A.J.: Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 130, 16669–16677 (2008)CrossRef Xiao, Y., Fan, F.R.F., Zhou, J., Bard, A.J.: Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 130, 16669–16677 (2008)CrossRef
66.
go back to reference Kwon, S.J., Fan, F.-R.F., Bard, A.J.: Observing Iridium Oxide (IrO X) single nanoparticle collisions at ultramicroelectrodes. J. Am. Chem. Soc. 132, 13165–13167 (2010)CrossRef Kwon, S.J., Fan, F.-R.F., Bard, A.J.: Observing Iridium Oxide (IrO X) single nanoparticle collisions at ultramicroelectrodes. J. Am. Chem. Soc. 132, 13165–13167 (2010)CrossRef
67.
go back to reference Chen, C., Ravenhill, E.R., Momotenko, D., Kim, Y.-R., Lai, S.C.S., Unwin, P.R.: Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir 151008185635003 (2015) Chen, C., Ravenhill, E.R., Momotenko, D., Kim, Y.-R., Lai, S.C.S., Unwin, P.R.: Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir 151008185635003 (2015)
68.
go back to reference Lim, C.S., Tan, S.M., Sofer, Z., Pumera, M.: Impact electrochemistry of layered transition metal Dichalcogenides. ACS Nano 9, 8474–8483 (2015)CrossRef Lim, C.S., Tan, S.M., Sofer, Z., Pumera, M.: Impact electrochemistry of layered transition metal Dichalcogenides. ACS Nano 9, 8474–8483 (2015)CrossRef
69.
go back to reference Kissling, G.P., Miles, D.O., Fermín, D.J.: Electrochemical charge transfer mediated by metal nanoparticles and quantum dots. Phys. Chem. Chem. Phys. 13, 21175 (2011)CrossRef Kissling, G.P., Miles, D.O., Fermín, D.J.: Electrochemical charge transfer mediated by metal nanoparticles and quantum dots. Phys. Chem. Chem. Phys. 13, 21175 (2011)CrossRef
70.
go back to reference Kim, J., Kim, B.K., Cho, S.K., Bard, A.J.: Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions. J. Am. Chem. Soc. 136, 8173–8176 (2014)CrossRef Kim, J., Kim, B.K., Cho, S.K., Bard, A.J.: Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions. J. Am. Chem. Soc. 136, 8173–8176 (2014)CrossRef
71.
go back to reference Hill, C.M., Kim, J., Bard, A.J.: Electrochemistry at a metal nanoparticle on a tunneling film: a steady-state model of current densities at a tunneling ultramicroelectrode. J. Am. Chem. Soc. 137, 11321–11326 (2015)CrossRef Hill, C.M., Kim, J., Bard, A.J.: Electrochemistry at a metal nanoparticle on a tunneling film: a steady-state model of current densities at a tunneling ultramicroelectrode. J. Am. Chem. Soc. 137, 11321–11326 (2015)CrossRef
72.
go back to reference Spiro, M.: Heterogeneous catalysis in solution. Part 17.—kinetics of oxidation–reduction reaction catalysed by electron transfer through the solid: an electrochemical treatment. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75, 1507 (1979)CrossRef Spiro, M.: Heterogeneous catalysis in solution. Part 17.—kinetics of oxidation–reduction reaction catalysed by electron transfer through the solid: an electrochemical treatment. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75, 1507 (1979)CrossRef
73.
go back to reference Miller, D.S., Bard, A.J., Mclendon, G., Fergusont, J.: Catalytic Water reduction at colloidal metal “Microelectrodes”. 2. Theory and experiment. J. Am. Chem. Soc. 103, 5336–5341 (1981)CrossRef Miller, D.S., Bard, A.J., Mclendon, G., Fergusont, J.: Catalytic Water reduction at colloidal metal “Microelectrodes”. 2. Theory and experiment. J. Am. Chem. Soc. 103, 5336–5341 (1981)CrossRef
74.
go back to reference Turkevich, J., Stevenson, P.C., Hillie, J.: A Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 75–82 (1951)CrossRef Turkevich, J., Stevenson, P.C., Hillie, J.: A Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 75–82 (1951)CrossRef
75.
go back to reference Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973)CrossRef Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973)CrossRef
76.
go back to reference Ji, X., Song, X., Li, J., Bai, Y., Yang, W., Peng, X.: Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129, 13939–13948 (2007)CrossRef Ji, X., Song, X., Li, J., Bai, Y., Yang, W., Peng, X.: Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129, 13939–13948 (2007)CrossRef
77.
go back to reference Kumar, S., Gandhi, K.S., Kumar, R.: Modeling of formation of gold nanoparticles by citrate method †. Ind. Eng. Chem. Res. 46, 3128–3136 (2007)CrossRef Kumar, S., Gandhi, K.S., Kumar, R.: Modeling of formation of gold nanoparticles by citrate method †. Ind. Eng. Chem. Res. 46, 3128–3136 (2007)CrossRef
78.
go back to reference Wuithschick, M., Birnbaum, A., Witte, S., Sztucki, M., Vainio, U., Pinna, N., Rademann, K., Emmerling, F., Kraehnert, R., Polte, J.: Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9, 7052–7071 (2015)CrossRef Wuithschick, M., Birnbaum, A., Witte, S., Sztucki, M., Vainio, U., Pinna, N., Rademann, K., Emmerling, F., Kraehnert, R., Polte, J.: Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9, 7052–7071 (2015)CrossRef
79.
go back to reference Park, Y.-K., Park, S.: Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater. 20, 2388–2393 (2008)CrossRef Park, Y.-K., Park, S.: Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater. 20, 2388–2393 (2008)CrossRef
80.
go back to reference Fievet, F., Lagier, J.P., Figlarz, M.: Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull. 14, 29–34 (1989)CrossRef Fievet, F., Lagier, J.P., Figlarz, M.: Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull. 14, 29–34 (1989)CrossRef
81.
go back to reference Li, C., Cai, W., Cao, B., Sun, F., Li, Y., Kan, C., Zhang, L.: Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv. Funct. Mater. 16, 83–90 (2006)CrossRef Li, C., Cai, W., Cao, B., Sun, F., Li, Y., Kan, C., Zhang, L.: Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv. Funct. Mater. 16, 83–90 (2006)CrossRef
82.
go back to reference Li, C., Shuford, K.L., Chen, M., Lee, E.J., Cho, S.O.: A facile polyol route to uniform gold Octahedra with Tailorable size and their optical properties. ACS Nano 2, 1760–1769 (2008)CrossRef Li, C., Shuford, K.L., Chen, M., Lee, E.J., Cho, S.O.: A facile polyol route to uniform gold Octahedra with Tailorable size and their optical properties. ACS Nano 2, 1760–1769 (2008)CrossRef
83.
go back to reference Goldmann, C., Lazzari, R., Paquez, X., Boissière, C., Ribot, F., Sanchez, C., Chanéac, C., Portehault, D.: Charge transfer at hybrid interfaces: Plasmonics of Aromatic Thiol-Capped gold nanoparticles. ACS Nano 9, 7572–7582 (2015)CrossRef Goldmann, C., Lazzari, R., Paquez, X., Boissière, C., Ribot, F., Sanchez, C., Chanéac, C., Portehault, D.: Charge transfer at hybrid interfaces: Plasmonics of Aromatic Thiol-Capped gold nanoparticles. ACS Nano 9, 7572–7582 (2015)CrossRef
84.
go back to reference Duan, H., Wang, D., Kurth, D.G., Mohwald, H.: Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chemie Int. Ed. 116, 5757–5760 (2004)CrossRef Duan, H., Wang, D., Kurth, D.G., Mohwald, H.: Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chemie Int. Ed. 116, 5757–5760 (2004)CrossRef
85.
go back to reference Song, J., Pu, L., Zhou, J., Duan, B., Duan, H.: Biodegradable Theranostic Plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7, 9947–9960 (2013)CrossRef Song, J., Pu, L., Zhou, J., Duan, B., Duan, H.: Biodegradable Theranostic Plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7, 9947–9960 (2013)CrossRef
86.
go back to reference Cheng, L., Liu, A., Peng, S., Duan, H.: Responsive plasmonic assemblies of amphiphilic nanocrystals at oil-water interfaces. ACS Nano 4, 6098–6104 (2010)CrossRef Cheng, L., Liu, A., Peng, S., Duan, H.: Responsive plasmonic assemblies of amphiphilic nanocrystals at oil-water interfaces. ACS Nano 4, 6098–6104 (2010)CrossRef
87.
go back to reference Chow, M., Zukoski, C.: Gold sol formation mechanisms: role of colloidal stability. J. Colloid Interface Sci. 165, 97–109 (1994)CrossRef Chow, M., Zukoski, C.: Gold sol formation mechanisms: role of colloidal stability. J. Colloid Interface Sci. 165, 97–109 (1994)CrossRef
88.
go back to reference Rodríguez-González, B., Mulvaney, P., Liz-Marzán, L.M.: An electrochemical model for gold colloid formation via citrate reduction. Zeitschrift für Phys. Chemie 221, 415–426 (2007)CrossRef Rodríguez-González, B., Mulvaney, P., Liz-Marzán, L.M.: An electrochemical model for gold colloid formation via citrate reduction. Zeitschrift für Phys. Chemie 221, 415–426 (2007)CrossRef
89.
go back to reference Engelbrekt, C., Jensen, P.S., Sørensen, K.H., Ulstrup, J., Zhang, J.: Complexity of gold nanoparticle formation disclosed by dynamics study. J. Phys. Chem. C 117, 11818–11828 (2013)CrossRef Engelbrekt, C., Jensen, P.S., Sørensen, K.H., Ulstrup, J., Zhang, J.: Complexity of gold nanoparticle formation disclosed by dynamics study. J. Phys. Chem. C 117, 11818–11828 (2013)CrossRef
90.
go back to reference Grasseschi, D., Ando, R.A., Toma, H.E., Zamarion, V.M.: Unraveling the nature of Turkevich gold nanoparticles: the unexpected role of the Dicarboxyketone species. RSC Adv. 5, 5716–5724 (2015)CrossRef Grasseschi, D., Ando, R.A., Toma, H.E., Zamarion, V.M.: Unraveling the nature of Turkevich gold nanoparticles: the unexpected role of the Dicarboxyketone species. RSC Adv. 5, 5716–5724 (2015)CrossRef
91.
go back to reference Booth, S.G., Uehara, A., Chang, S.Y., Mosselmans, J.F.W., Schroeder, S.L.M., Dryfe, R.A.W.: Gold deposition at a free-standing liquid/liquid interface: evidence for the formation of Au(I) by microfocus X-Ray spectroscopy (μXRF and μXAFS) and cyclic voltammetry. J. Phys. Chem. C 119, 16785–16792 (2015)CrossRef Booth, S.G., Uehara, A., Chang, S.Y., Mosselmans, J.F.W., Schroeder, S.L.M., Dryfe, R.A.W.: Gold deposition at a free-standing liquid/liquid interface: evidence for the formation of Au(I) by microfocus X-Ray spectroscopy (μXRF and μXAFS) and cyclic voltammetry. J. Phys. Chem. C 119, 16785–16792 (2015)CrossRef
92.
go back to reference Ojea-Jiménez, I., Campanera, J.: Molecular modeling of the reduction mechanism in the Citrate-Mediated synthesis of gold nanoparticles. J. Phys. Chem. C 116, 23682–23691 (2012)CrossRef Ojea-Jiménez, I., Campanera, J.: Molecular modeling of the reduction mechanism in the Citrate-Mediated synthesis of gold nanoparticles. J. Phys. Chem. C 116, 23682–23691 (2012)CrossRef
93.
go back to reference Drude, P.: Zur Elektronentheorie Der Metalle. Ann. Phys. 306, 566–613 (1900)CrossRef Drude, P.: Zur Elektronentheorie Der Metalle. Ann. Phys. 306, 566–613 (1900)CrossRef
94.
go back to reference Drude, P.: Zur Elektronentheorie Der Metalle; II. Teil. Galvanomagnetische Und Thermomagnetische Effecte. Ann. Phys. 308, 369–402 (1900)CrossRef Drude, P.: Zur Elektronentheorie Der Metalle; II. Teil. Galvanomagnetische Und Thermomagnetische Effecte. Ann. Phys. 308, 369–402 (1900)CrossRef
95.
go back to reference Myers, H.P.: Introductory Solid State Physics, 2nd edn. CRC Press, London (1997) Myers, H.P.: Introductory Solid State Physics, 2nd edn. CRC Press, London (1997)
96.
go back to reference Kittel, C.: Introduction to Solid State Physics. 8th edn. Wiley, New York (2004) Kittel, C.: Introduction to Solid State Physics. 8th edn. Wiley, New York (2004)
97.
go back to reference Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)CrossRef Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)CrossRef
98.
go back to reference Moskovits, M., Srnová-Šloufová, I., Vlčková, B.: Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002)CrossRef Moskovits, M., Srnová-Šloufová, I., Vlčková, B.: Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002)CrossRef
100.
go back to reference Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)CrossRef Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)CrossRef
101.
go back to reference Olmon, R.L., Slovick, B., Johnson, T.W., Shelton, D., Oh, S.-H., Boreman, G.D., Raschke, M.B.: Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)CrossRef Olmon, R.L., Slovick, B., Johnson, T.W., Shelton, D., Oh, S.-H., Boreman, G.D., Raschke, M.B.: Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)CrossRef
102.
go back to reference Palik, E.D. (ed.) The Handbook of Optical Constants of Solids. Academic Press, New York (1985) Palik, E.D. (ed.) The Handbook of Optical Constants of Solids. Academic Press, New York (1985)
103.
go back to reference Mie, G.: Beitrage Zur Optik Truber Medien. Speziell Kolloidaler Metllosungen. Ann. Phys. 25, 377–445 (1908) Mie, G.: Beitrage Zur Optik Truber Medien. Speziell Kolloidaler Metllosungen. Ann. Phys. 25, 377–445 (1908)
104.
go back to reference Guillaume, B.: Mie theory for metal nanoparticles, 1–2 (2012) Guillaume, B.: Mie theory for metal nanoparticles, 1–2 (2012)
105.
go back to reference Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A.M., Novo, C., Mulvaney, P., Liz-Marzán, L.M., García de Abajo, F.J.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)CrossRef Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A.M., Novo, C., Mulvaney, P., Liz-Marzán, L.M., García de Abajo, F.J.: Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008)CrossRef
106.
go back to reference Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer Series in Materials Science. Springer, Berlin, vol. 25 (1995)CrossRef Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer Series in Materials Science. Springer, Berlin, vol. 25 (1995)CrossRef
107.
go back to reference Amendola, V., Meneghetti, M.: Size evaluation of gold nanoparticles by uv − vis spectroscopy. J. Phys. Chem. C 113, 4277–4285 (2009)CrossRef Amendola, V., Meneghetti, M.: Size evaluation of gold nanoparticles by uv − vis spectroscopy. J. Phys. Chem. C 113, 4277–4285 (2009)CrossRef
108.
go back to reference Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)CrossRef Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)CrossRef
109.
go back to reference Yang, Z., Chen, S., Fang, P., Ren, B., Girault, H.H., Tian, Z.: LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface. Phys. Chem. Chem. Phys. 15, 5374–5378 (2013)CrossRef Yang, Z., Chen, S., Fang, P., Ren, B., Girault, H.H., Tian, Z.: LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface. Phys. Chem. Chem. Phys. 15, 5374–5378 (2013)CrossRef
110.
go back to reference Zapata Herrera, M., Aizpurua, J., Kazansky, A.K., Borisov, A.G.: Plasmon response and electron dynamics in charged metallic nanoparticles. Langmuir 32, 2829–2840 (2016)CrossRef Zapata Herrera, M., Aizpurua, J., Kazansky, A.K., Borisov, A.G.: Plasmon response and electron dynamics in charged metallic nanoparticles. Langmuir 32, 2829–2840 (2016)CrossRef
111.
go back to reference Cirri, A., Silakov, A., Jensen, L., Lear, B.J.: Probing ligand-induced modulation of metallic states in small gold nanoparticles using conduction electron spin resonance. Phys. Chem. Chem. Phys. 18, 25443–25451 (2016)CrossRef Cirri, A., Silakov, A., Jensen, L., Lear, B.J.: Probing ligand-induced modulation of metallic states in small gold nanoparticles using conduction electron spin resonance. Phys. Chem. Chem. Phys. 18, 25443–25451 (2016)CrossRef
112.
go back to reference Novo, C., Funston, A.M., Mulvaney, P.: Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598–602 (2008)CrossRef Novo, C., Funston, A.M., Mulvaney, P.: Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598–602 (2008)CrossRef
113.
go back to reference Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Optical properties of thin films of Au@SiO 2 particles. J. Phys. Chem. B 105, 3441–3452 (2001)CrossRef Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Optical properties of thin films of Au@SiO 2 particles. J. Phys. Chem. B 105, 3441–3452 (2001)CrossRef
114.
go back to reference Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Gold nanoparticle thin films. Colloids Surfaces A Physicochem. Eng. Asp. 202, 119–126 (2002)CrossRef Ung, T., Liz-Marzán, L.M., Mulvaney, P.: Gold nanoparticle thin films. Colloids Surfaces A Physicochem. Eng. Asp. 202, 119–126 (2002)CrossRef
115.
go back to reference Jung, H., Cha, H., Lee, D., Yoon, S.: Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles. ACS Nano 9, 12292–12300 (2015)CrossRef Jung, H., Cha, H., Lee, D., Yoon, S.: Bridging the nanogap with light: continuous tuning of plasmon coupling between gold nanoparticles. ACS Nano 9, 12292–12300 (2015)CrossRef
116.
go back to reference Grouchko, M., Roitman, P., Zhu, X., Popov, I., Kamyshny, A., Su, H., Magdassi, S.: Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nat. Commun. 5, 2994 (2014)CrossRef Grouchko, M., Roitman, P., Zhu, X., Popov, I., Kamyshny, A., Su, H., Magdassi, S.: Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nat. Commun. 5, 2994 (2014)CrossRef
117.
go back to reference Lange, H., Juárez, B.H., Carl, A., Richter, M., Bastús, N.G., Weller, H., Thomsen, C., von Klitzing, R., Knorr, A.: Tunable plasmon coupling in distance-controlled gold nanoparticles. Langmuir 28, 8862–8866 (2012)CrossRef Lange, H., Juárez, B.H., Carl, A., Richter, M., Bastús, N.G., Weller, H., Thomsen, C., von Klitzing, R., Knorr, A.: Tunable plasmon coupling in distance-controlled gold nanoparticles. Langmuir 28, 8862–8866 (2012)CrossRef
118.
go back to reference Ramsden, W.: Separation of solids in the surface-layers of solutions and “suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). – preliminary account. Proc. R. Soc. London 72, 156–164 (1903)CrossRef Ramsden, W.: Separation of solids in the surface-layers of solutions and “suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). – preliminary account. Proc. R. Soc. London 72, 156–164 (1903)CrossRef
119.
go back to reference Pickering, S.U.: CXCVI. emulsions. J. Chem. Soc. Trans. 1907, 91 (2001) Pickering, S.U.: CXCVI. emulsions. J. Chem. Soc. Trans. 1907, 91 (2001)
120.
go back to reference Binks, B.P.: Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002)CrossRef Binks, B.P.: Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002)CrossRef
121.
go back to reference Bormashenko, E.: Liquid marbles: properties and applications. Curr. Opin. Colloid Interface Sci. 16, 266–271 (2011)CrossRef Bormashenko, E.: Liquid marbles: properties and applications. Curr. Opin. Colloid Interface Sci. 16, 266–271 (2011)CrossRef
122.
go back to reference Bresme, F., Oettel, M.: Nanoparticles at fluid interfaces. J. Phys. Condens. Matter 19, 413101 (2007)CrossRef Bresme, F., Oettel, M.: Nanoparticles at fluid interfaces. J. Phys. Condens. Matter 19, 413101 (2007)CrossRef
123.
go back to reference Edel, J.B., Kornyshev, A.A., Kucernak, A.R., Urbakh, M.: Fundamentals and applications of self-assembled Plasmonic nanoparticles at interfaces. Chem. Soc. Rev. 45, 1581–1596 (2016)CrossRef Edel, J.B., Kornyshev, A.A., Kucernak, A.R., Urbakh, M.: Fundamentals and applications of self-assembled Plasmonic nanoparticles at interfaces. Chem. Soc. Rev. 45, 1581–1596 (2016)CrossRef
124.
go back to reference Pieranski, P.: Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett. 45, 569–572 (1980)CrossRef Pieranski, P.: Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett. 45, 569–572 (1980)CrossRef
125.
go back to reference Johans, C., Liljeroth, P., Kontturi, K.: Electrodeposition at polarisable liquid|liquid interfaces: the role of interfacial tension on nucleation kinetics. Phys. Chem. Chem. Phys. 4, 1067–1071 (2002)CrossRef Johans, C., Liljeroth, P., Kontturi, K.: Electrodeposition at polarisable liquid|liquid interfaces: the role of interfacial tension on nucleation kinetics. Phys. Chem. Chem. Phys. 4, 1067–1071 (2002)CrossRef
126.
go back to reference Denkov, N., Ivanov, I., Kralchevsky, P., Wasan, D.: A possible mechanism of stabilization of emulsions by solid particles. J. Colloid Interface Sci. 150, 589–593 (1992)CrossRef Denkov, N., Ivanov, I., Kralchevsky, P., Wasan, D.: A possible mechanism of stabilization of emulsions by solid particles. J. Colloid Interface Sci. 150, 589–593 (1992)CrossRef
127.
go back to reference Hunter, T.N., Pugh, R.J., Franks, G.V., Jameson, G.J.: The role of particles in stabilising foams and emulsions. Adv. Colloid Interface Sci. 137, 57–81 (2008)CrossRef Hunter, T.N., Pugh, R.J., Franks, G.V., Jameson, G.J.: The role of particles in stabilising foams and emulsions. Adv. Colloid Interface Sci. 137, 57–81 (2008)CrossRef
128.
go back to reference Flatte, M.E., Kornyshev, A.A., Urbakh, M.: Giant stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters. Proc. Natl. Acad. Sci. USA 105, 18212–18214 (2008)CrossRef Flatte, M.E., Kornyshev, A.A., Urbakh, M.: Giant stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters. Proc. Natl. Acad. Sci. USA 105, 18212–18214 (2008)CrossRef
129.
go back to reference Flatte, M.E., Kornyshev, A.A., Urbakh, M.: Electrovariable nanoplasmonics and self-assembling smart mirrors. J. Phys. Chem. C 114, 1735–1747 (2010)CrossRef Flatte, M.E., Kornyshev, A.A., Urbakh, M.: Electrovariable nanoplasmonics and self-assembling smart mirrors. J. Phys. Chem. C 114, 1735–1747 (2010)CrossRef
130.
go back to reference Flatté, M.E., Kornyshev, A.A., Urbakh, M.: Understanding voltage-induced localization of nanoparticles at a liquid–liquid interface. J. Phys. Condens. Matter 20, 73102 (2008)CrossRef Flatté, M.E., Kornyshev, A.A., Urbakh, M.: Understanding voltage-induced localization of nanoparticles at a liquid–liquid interface. J. Phys. Condens. Matter 20, 73102 (2008)CrossRef
131.
go back to reference Aveyard, R., Clint, J.: Particle wettability and line tension. J. Chem. Soc. Faraday Trans. 92, 85–89 (1996)CrossRef Aveyard, R., Clint, J.: Particle wettability and line tension. J. Chem. Soc. Faraday Trans. 92, 85–89 (1996)CrossRef
132.
go back to reference Aveyard, R., Beake, B.D., Clint, J.H.: Wettability of spherical particles at liquid surfaces. J. Chem. Soc. Faraday Trans. 92, 4271 (1996)CrossRef Aveyard, R., Beake, B.D., Clint, J.H.: Wettability of spherical particles at liquid surfaces. J. Chem. Soc. Faraday Trans. 92, 4271 (1996)CrossRef
133.
go back to reference Aveyard, R., Clint, J.H., Nees, D.: Small solid particles and liquid lenses at fluid/fluid interfaces. Colloid Polym. Sci. 278, 155–163 (2000)CrossRef Aveyard, R., Clint, J.H., Nees, D.: Small solid particles and liquid lenses at fluid/fluid interfaces. Colloid Polym. Sci. 278, 155–163 (2000)CrossRef
134.
go back to reference Widom, B.: Line tension and the shape of a sessile drop. J. Phys. Chem. 99, 2803–2806 (1995)CrossRef Widom, B.: Line tension and the shape of a sessile drop. J. Phys. Chem. 99, 2803–2806 (1995)CrossRef
135.
go back to reference Bresme, F., Quirke, N.: Computer simulation study of the wetting behavior and line tensions of nanometer size particulates at a liquid-vapor interface. Phys. Rev. Lett. 80, 3791–3794 (1998)CrossRef Bresme, F., Quirke, N.: Computer simulation study of the wetting behavior and line tensions of nanometer size particulates at a liquid-vapor interface. Phys. Rev. Lett. 80, 3791–3794 (1998)CrossRef
136.
go back to reference Faraudo, J., Bresme, F.: Stability of particles adsorbed at liquid/fluid interfaces: shape effects induced by line tension. J. Chem. Phys. 118, 6518–6528 (2003)CrossRef Faraudo, J., Bresme, F.: Stability of particles adsorbed at liquid/fluid interfaces: shape effects induced by line tension. J. Chem. Phys. 118, 6518–6528 (2003)CrossRef
137.
go back to reference Kontturi, K., Manzanares, J., Murtomäki, L.: Effect of concentration polarization on the current-voltage characteristics of ion transfer across ities. Electrochim. Acta 40, 2979–2984 (1995)CrossRef Kontturi, K., Manzanares, J., Murtomäki, L.: Effect of concentration polarization on the current-voltage characteristics of ion transfer across ities. Electrochim. Acta 40, 2979–2984 (1995)CrossRef
138.
go back to reference Manzanares, J.A., Allen, R.M., Kontturi, K.: Enhanced ion transfer rate due to the presence of zwitterionic phospholipid monolayers at the ITIES. J. Electroanal. Chem. 483, 188–196 (2000)CrossRef Manzanares, J.A., Allen, R.M., Kontturi, K.: Enhanced ion transfer rate due to the presence of zwitterionic phospholipid monolayers at the ITIES. J. Electroanal. Chem. 483, 188–196 (2000)CrossRef
139.
go back to reference Verwey, E., Overbeek, J.: Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company, Inc. (1948) Verwey, E., Overbeek, J.: Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Company, Inc. (1948)
140.
go back to reference Adamczyk, Z., Weroński, P.: Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 83, 137–226 (1999)CrossRef Adamczyk, Z., Weroński, P.: Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 83, 137–226 (1999)CrossRef
141.
go back to reference Reincke, F., Kegel, W.K., Zhang, H., Nolte, M., Wang, D., Vanmaekelbergh, D., Mohwald, H.: Understanding the self-assembly of charged nanoparticles at the water/oil interface. Phys. Chem. Chem. Phys. 8, 3828–3835 (2006)CrossRef Reincke, F., Kegel, W.K., Zhang, H., Nolte, M., Wang, D., Vanmaekelbergh, D., Mohwald, H.: Understanding the self-assembly of charged nanoparticles at the water/oil interface. Phys. Chem. Chem. Phys. 8, 3828–3835 (2006)CrossRef
142.
go back to reference Uzi, A., Ostrovski, Y., Levy, A.: Modeling and simulation of particles in gas-liquid interface. Adv. Powder Technol. 27, 112–123 (2016)CrossRef Uzi, A., Ostrovski, Y., Levy, A.: Modeling and simulation of particles in gas-liquid interface. Adv. Powder Technol. 27, 112–123 (2016)CrossRef
143.
go back to reference Lehle, H., Oettel, M.: Importance of boundary conditions for fluctuation-induced forces between colloids at interfaces. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–18 (2007) Lehle, H., Oettel, M.: Importance of boundary conditions for fluctuation-induced forces between colloids at interfaces. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 75, 1–18 (2007)
144.
go back to reference Lehle, H., Oettel, M., Dietrich, S.: Effective forces between colloids at interfaces induced by capillary wavelike fluctuations. Eur. Lett. 75, 174–180 (2006)CrossRef Lehle, H., Oettel, M., Dietrich, S.: Effective forces between colloids at interfaces induced by capillary wavelike fluctuations. Eur. Lett. 75, 174–180 (2006)CrossRef
145.
go back to reference McBride, S.P., Law, B.M.: Influence of line tension on spherical colloidal particles at liquid-vapor interfaces. Phys. Rev. Lett. 109, 1–5 (2012) McBride, S.P., Law, B.M.: Influence of line tension on spherical colloidal particles at liquid-vapor interfaces. Phys. Rev. Lett. 109, 1–5 (2012)
146.
go back to reference Snoeyink, C., Barman, S., Christopher, G.F.: Contact angle distribution of particles at fluid interfaces. Langmuir 31, 891–897 (2015)CrossRef Snoeyink, C., Barman, S., Christopher, G.F.: Contact angle distribution of particles at fluid interfaces. Langmuir 31, 891–897 (2015)CrossRef
147.
go back to reference Maestro, A., Guzmán, E., Ortega, F., Rubio, R.G.: Contact angle of micro- and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 1–13 (2014) Maestro, A., Guzmán, E., Ortega, F., Rubio, R.G.: Contact angle of micro- and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 1–13 (2014)
148.
go back to reference Isa, L., Lucas, F., Wepf, R., Reimhult, E.: Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy. Nat. Commun. 2, 438 (2011)CrossRef Isa, L., Lucas, F., Wepf, R., Reimhult, E.: Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy. Nat. Commun. 2, 438 (2011)CrossRef
149.
go back to reference Velankar, S.S.: A non-equilibrium state diagram for liquid/fluid/particle mixtures. Soft Matter 11, 8393–8403 (2015)CrossRef Velankar, S.S.: A non-equilibrium state diagram for liquid/fluid/particle mixtures. Soft Matter 11, 8393–8403 (2015)CrossRef
150.
151.
go back to reference McHale, G., Newton, M.I.: Liquid marbles: principles and applications. Soft Matter 7, 5473 (2011)CrossRef McHale, G., Newton, M.I.: Liquid marbles: principles and applications. Soft Matter 7, 5473 (2011)CrossRef
152.
go back to reference Bormashenko, E., Pogreb, R., Balter, R., Gendelman, O., Aurbach, D.: Composite non-stick droplets and their actuation with electric field. Appl. Phys. Lett. 100, 10–14 (2012)CrossRef Bormashenko, E., Pogreb, R., Balter, R., Gendelman, O., Aurbach, D.: Composite non-stick droplets and their actuation with electric field. Appl. Phys. Lett. 100, 10–14 (2012)CrossRef
153.
go back to reference Zhao, Y., Fang, J., Wang, H., Wang, X., Lin, T.: magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv. Mater. 22, 707–710 (2010)CrossRef Zhao, Y., Fang, J., Wang, H., Wang, X., Lin, T.: magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv. Mater. 22, 707–710 (2010)CrossRef
154.
go back to reference Bormashenko, E.: New insights into liquid marbles. Soft Matter 8, 11018–11021 (2012)CrossRef Bormashenko, E.: New insights into liquid marbles. Soft Matter 8, 11018–11021 (2012)CrossRef
155.
go back to reference Fujii, S., Sawada, S., Nakayama, S., Kappl, M., Ueno, K., Shitajima, K., Butt, H.-J., Nakamura, Y.: Pressure-sensitive adhesive powder. Mater. Horiz. 3, 47–52 (2016)CrossRef Fujii, S., Sawada, S., Nakayama, S., Kappl, M., Ueno, K., Shitajima, K., Butt, H.-J., Nakamura, Y.: Pressure-sensitive adhesive powder. Mater. Horiz. 3, 47–52 (2016)CrossRef
156.
go back to reference Paven, M., Mayama, H., Sekido, T., Butt, H.J., Nakamura, Y., Fujii, S.: Light-driven delivery and release of materials using liquid marbles. Adv. Funct. Mater. 3199–3206 (2016)CrossRef Paven, M., Mayama, H., Sekido, T., Butt, H.J., Nakamura, Y., Fujii, S.: Light-driven delivery and release of materials using liquid marbles. Adv. Funct. Mater. 3199–3206 (2016)CrossRef
157.
go back to reference Lee, H.K., Lee, Y.H., Phang, I.Y., Wei, J., Miao, Y.-E., Liu, T., Ling, X.Y.: Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. Angew. Chemie 126, 5154–5158 (2014)CrossRef Lee, H.K., Lee, Y.H., Phang, I.Y., Wei, J., Miao, Y.-E., Liu, T., Ling, X.Y.: Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. Angew. Chemie 126, 5154–5158 (2014)CrossRef
158.
go back to reference Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chemie Int. Ed. 43, 458–462 (2004)CrossRef Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chemie Int. Ed. 43, 458–462 (2004)CrossRef
159.
go back to reference Vazquez, G., Alvarez, E., Navaza, J.M.: Surface tension of alcohol water + water from 20 to 50.degree.C. J. Chem. Eng. Data 40, 611–614 (1995)CrossRef Vazquez, G., Alvarez, E., Navaza, J.M.: Surface tension of alcohol water + water from 20 to 50.degree.C. J. Chem. Eng. Data 40, 611–614 (1995)CrossRef
160.
go back to reference Luo, M., Song, Y., Dai, L.L.: Effects of methanol on nanoparticle self-assembly at liquid-liquid interfaces: a molecular dynamics approach. J. Chem. Phys. 131, 194703 (2009)CrossRef Luo, M., Song, Y., Dai, L.L.: Effects of methanol on nanoparticle self-assembly at liquid-liquid interfaces: a molecular dynamics approach. J. Chem. Phys. 131, 194703 (2009)CrossRef
161.
go back to reference Li, Y.-J., Huang, W.-J., Sun, S.-G.: A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew. Chemie 118, 2599–2601 (2006)CrossRef Li, Y.-J., Huang, W.-J., Sun, S.-G.: A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew. Chemie 118, 2599–2601 (2006)CrossRef
162.
go back to reference Arumugam, P., Patra, D., Samanta, B., Agasti, S.S., Subramani, C., Rotello, V.M.: Self-assembly and cross-linking of FePt nanoparticles at planar and colloidal liquid-liquid interfaces. J. Am. Chem. Soc. 130, 10046–10047 (2008)CrossRef Arumugam, P., Patra, D., Samanta, B., Agasti, S.S., Subramani, C., Rotello, V.M.: Self-assembly and cross-linking of FePt nanoparticles at planar and colloidal liquid-liquid interfaces. J. Am. Chem. Soc. 130, 10046–10047 (2008)CrossRef
163.
go back to reference Guo, P., Sikdar, D., Huang, X., Si, K.J., Su, B., Chen, Y., Xiong, W., Yap, L.W., Premaratne, M., Cheng, W.: Large-scale self-assembly and stretch-induced plasmonic properties of core–shell metal nanoparticle superlattice sheets. J. Phys. Chem. C (2014) Guo, P., Sikdar, D., Huang, X., Si, K.J., Su, B., Chen, Y., Xiong, W., Yap, L.W., Premaratne, M., Cheng, W.: Large-scale self-assembly and stretch-induced plasmonic properties of core–shell metal nanoparticle superlattice sheets. J. Phys. Chem. C (2014)
164.
go back to reference Xia, H., Wang, D.: Fabrication of macroscopic freestanding films of metallic nanoparticle monolayers by interfacial self-assembly. Adv. Mater. 20, 4253–4256 (2008)CrossRef Xia, H., Wang, D.: Fabrication of macroscopic freestanding films of metallic nanoparticle monolayers by interfacial self-assembly. Adv. Mater. 20, 4253–4256 (2008)CrossRef
165.
go back to reference Younan, N., Hojeij, M., Ribeaucourt, L., Girault, H.H.: Electrochemical properties of gold nanoparticles assembly at polarised liquid|liquid interfaces. Electrochem. Commun. 12, 912–915 (2010)CrossRef Younan, N., Hojeij, M., Ribeaucourt, L., Girault, H.H.: Electrochemical properties of gold nanoparticles assembly at polarised liquid|liquid interfaces. Electrochem. Commun. 12, 912–915 (2010)CrossRef
166.
go back to reference Fang, P.-P., Chen, S., Deng, H., Scanlon, M.D., Gumy, F., Lee, H.J., Momotenko, D., Amstutz, V., Cortés-Salazar, F., Pereira, C.M., et al.: Conductive gold nanoparticle mirrors at liquid/liquid interfaces. ACS Nano 7, 9241–9248 (2013)CrossRef Fang, P.-P., Chen, S., Deng, H., Scanlon, M.D., Gumy, F., Lee, H.J., Momotenko, D., Amstutz, V., Cortés-Salazar, F., Pereira, C.M., et al.: Conductive gold nanoparticle mirrors at liquid/liquid interfaces. ACS Nano 7, 9241–9248 (2013)CrossRef
167.
go back to reference Hojeij, M., Younan, N., Ribeaucourt, L., Girault, H.H.: Surface plasmon resonance of gold nanoparticles assemblies at liquid | liquid interfaces. Nanoscale 2, 1665–1669 (2010)CrossRef Hojeij, M., Younan, N., Ribeaucourt, L., Girault, H.H.: Surface plasmon resonance of gold nanoparticles assemblies at liquid | liquid interfaces. Nanoscale 2, 1665–1669 (2010)CrossRef
168.
go back to reference Meyer, M., Ru Le, E.C., Etchegoin, P.G.: Self-limiting aggregation leads to long-lived metastable clusters in colloidal solutions. J. Phys. Chem. B 110, 6040–6047 (2006)CrossRef Meyer, M., Ru Le, E.C., Etchegoin, P.G.: Self-limiting aggregation leads to long-lived metastable clusters in colloidal solutions. J. Phys. Chem. B 110, 6040–6047 (2006)CrossRef
169.
go back to reference Konrad, M.P., Doherty, A.P., Bell, S.E.J.: Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013)CrossRef Konrad, M.P., Doherty, A.P., Bell, S.E.J.: Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013)CrossRef
170.
go back to reference Xu, Y., Konrad, M.P., Lee, W.W.Y., Ye, Z., Bell, S.E.J.: A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 16, 5255–5260 (2016)CrossRef Xu, Y., Konrad, M.P., Lee, W.W.Y., Ye, Z., Bell, S.E.J.: A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 16, 5255–5260 (2016)CrossRef
171.
go back to reference Turek, V.A., Cecchini, M.P., Paget, J., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Plasmonic ruler at the liquid-liquid interface. ACS Nano 6, 7789–7799 (2012)CrossRef Turek, V.A., Cecchini, M.P., Paget, J., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Plasmonic ruler at the liquid-liquid interface. ACS Nano 6, 7789–7799 (2012)CrossRef
172.
go back to reference Cecchini, M.P., Turek, V.A., Paget, J., Kornyshev, A.A., Edel, J.B.: Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 12, 165–171 (2012)CrossRef Cecchini, M.P., Turek, V.A., Paget, J., Kornyshev, A.A., Edel, J.B.: Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 12, 165–171 (2012)CrossRef
173.
go back to reference Turek, V.A., Elliott, L.N., Tyler, A.I.I., Demetriadou, A., Paget, J., Cecchini, M.P., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Self-assembly and applications of ultraconcentrated nanoparticle solutions. ACS Nano 7, 8753–8759 (2013)CrossRef Turek, V.A., Elliott, L.N., Tyler, A.I.I., Demetriadou, A., Paget, J., Cecchini, M.P., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Self-assembly and applications of ultraconcentrated nanoparticle solutions. ACS Nano 7, 8753–8759 (2013)CrossRef
174.
go back to reference Turek, V.A., Francescato, Y., Cadinu, P., Crick, C.R., Elliott, L., Chen, Y., Urland, V., Ivanov, A.P., Velleman, L., Hong, M., et al.: Self-assembled spherical supercluster metamaterials from nanoscale building blocks. ACS Photonics 3, 35–42 (2016)CrossRef Turek, V.A., Francescato, Y., Cadinu, P., Crick, C.R., Elliott, L., Chen, Y., Urland, V., Ivanov, A.P., Velleman, L., Hong, M., et al.: Self-assembled spherical supercluster metamaterials from nanoscale building blocks. ACS Photonics 3, 35–42 (2016)CrossRef
175.
go back to reference Wang, D., Tejerina, B., Lagzi, I., Kowalczyk, B., Grzybowski, B.A.: Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano, 5, 530–536 (2011)CrossRef Wang, D., Tejerina, B., Lagzi, I., Kowalczyk, B., Grzybowski, B.A.: Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano, 5, 530–536 (2011)CrossRef
176.
go back to reference Cecchini, M.P., Turek, V.A., Demetriadou, A., Britovsek, G., Welton, T., Kornyshev, A.A., Wilton-Ely, J.D.E.T., Edel, J.B.: Heavy metal sensing using self-assembled nanoparticles at a liquid-liquid interface. Adv. Opt. Mater. 2, 966–977 (2014)CrossRef Cecchini, M.P., Turek, V.A., Demetriadou, A., Britovsek, G., Welton, T., Kornyshev, A.A., Wilton-Ely, J.D.E.T., Edel, J.B.: Heavy metal sensing using self-assembled nanoparticles at a liquid-liquid interface. Adv. Opt. Mater. 2, 966–977 (2014)CrossRef
177.
go back to reference Nalawade, P., Mukherjee, T., Kapoor, S.: Versatile film formation and phase transfer of gold nanoparticles by changing the polarity of the media. Mater. Chem. Phys. 136, 460–465 (2012)CrossRef Nalawade, P., Mukherjee, T., Kapoor, S.: Versatile film formation and phase transfer of gold nanoparticles by changing the polarity of the media. Mater. Chem. Phys. 136, 460–465 (2012)CrossRef
178.
go back to reference Luo, M., Olivier, G.K., Frechette, J.: Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oil–water interface. Soft Matter 8, 11923 (2012)CrossRef Luo, M., Olivier, G.K., Frechette, J.: Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oil–water interface. Soft Matter 8, 11923 (2012)CrossRef
179.
go back to reference Sashuk, V., Winkler, K., Żywociński, A., Wojciechowski, T., Górecka, E., Fiałkowski, M.: Nanoparticles in a capillary trap: dynamic self-assembly at fluid interfaces. ACS Nano 7, 8833–8839 (2013)CrossRef Sashuk, V., Winkler, K., Żywociński, A., Wojciechowski, T., Górecka, E., Fiałkowski, M.: Nanoparticles in a capillary trap: dynamic self-assembly at fluid interfaces. ACS Nano 7, 8833–8839 (2013)CrossRef
180.
go back to reference Peng, L., You, M., Wu, C., Han, D., Öçsoy, I., Chen, T., Chen, Z., Tan, W.: Reversible phase transfer of nanoparticles based on photoswitchable host-guest chemistry. ACS Nano 8, 2555–2561 (2014)CrossRef Peng, L., You, M., Wu, C., Han, D., Öçsoy, I., Chen, T., Chen, Z., Tan, W.: Reversible phase transfer of nanoparticles based on photoswitchable host-guest chemistry. ACS Nano 8, 2555–2561 (2014)CrossRef
181.
go back to reference Kowalczyk, B., Apodaca, M.M., Nakanishi, H., Smoukov, S.K., Grzybowski, B.A.: Lift-off and micropatterning of mono- and multilayer nanoparticle films. Small, 5, 1970–1973 (2009)CrossRef Kowalczyk, B., Apodaca, M.M., Nakanishi, H., Smoukov, S.K., Grzybowski, B.A.: Lift-off and micropatterning of mono- and multilayer nanoparticle films. Small, 5, 1970–1973 (2009)CrossRef
182.
go back to reference Le Ouay, B., Guldin, S., Luo, Z., Allegri, S., Stellacci, F.: Freestanding ultrathin nanoparticle membranes assembled at transient liquid-liquid interfaces. Adv. Mater. Interfaces, 1–8 (2016) Le Ouay, B., Guldin, S., Luo, Z., Allegri, S., Stellacci, F.: Freestanding ultrathin nanoparticle membranes assembled at transient liquid-liquid interfaces. Adv. Mater. Interfaces, 1–8 (2016)
183.
go back to reference Yogev, D., Efrima, S.: Novel silver metal liquidlike films. J. Phys. Chem. 92, 5754–5760 (1988)CrossRef Yogev, D., Efrima, S.: Novel silver metal liquidlike films. J. Phys. Chem. 92, 5754–5760 (1988)CrossRef
184.
go back to reference Yen, Y., Lu, T., Lee, Y., Yu, C., Tsai, Y., Tseng, Y., Chen, H.: Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films. ACS Appl. Mater. Interfaces 6, 4292–4300 (2014)CrossRef Yen, Y., Lu, T., Lee, Y., Yu, C., Tsai, Y., Tseng, Y., Chen, H.: Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films. ACS Appl. Mater. Interfaces 6, 4292–4300 (2014)CrossRef
185.
go back to reference Borra, E.F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K.R., Worden, S.P.: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007)CrossRef Borra, E.F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K.R., Worden, S.P.: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007)CrossRef
186.
go back to reference Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M., Vieira da Silva, L.: Optical Tests of nanoengineered liquid mirrors. Appl. Opt. 42, 1882–1887 (2003)CrossRef Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M., Vieira da Silva, L.: Optical Tests of nanoengineered liquid mirrors. Appl. Opt. 42, 1882–1887 (2003)CrossRef
187.
go back to reference Gingras, J., Déry, J.-P., Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M.: Surface films of silver nanoparticles for new liquid mirrors. Colloids Surfaces A Physicochem. Eng. Asp. 279, 79–86 (2006)CrossRef Gingras, J., Déry, J.-P., Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M.: Surface films of silver nanoparticles for new liquid mirrors. Colloids Surfaces A Physicochem. Eng. Asp. 279, 79–86 (2006)CrossRef
188.
go back to reference Déry, J.-P., Borra, E.F., Ritcey, A.M.: Ethylene Glycol based Ferrofluid for the fabrication of magnetically deformable liquid mirrors. Chem. Mater. 20, 6420–6426 (2008)CrossRef Déry, J.-P., Borra, E.F., Ritcey, A.M.: Ethylene Glycol based Ferrofluid for the fabrication of magnetically deformable liquid mirrors. Chem. Mater. 20, 6420–6426 (2008)CrossRef
189.
go back to reference Bucaro, M.A., Kolodner, P.R., Taylor, J.A., Sidorenko, A., Aizenberg, J., Krupenkin, T.N.: Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled janus tiles. Langmuir, 25, 3876–3879 (2009)CrossRef Bucaro, M.A., Kolodner, P.R., Taylor, J.A., Sidorenko, A., Aizenberg, J., Krupenkin, T.N.: Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled janus tiles. Langmuir, 25, 3876–3879 (2009)CrossRef
190.
go back to reference Paget, J., Walpole, V., Blancafort Jorquera, M., Edel, J.B., Urbakh, M., Kornyshev, A.A., Demetriadou, A.: Optical properties of ordered self-assembled nanoparticle arrays at interfaces. J. Phys. Chem. C 140925151957002 (2014) Paget, J., Walpole, V., Blancafort Jorquera, M., Edel, J.B., Urbakh, M., Kornyshev, A.A., Demetriadou, A.: Optical properties of ordered self-assembled nanoparticle arrays at interfaces. J. Phys. Chem. C 140925151957002 (2014)
191.
go back to reference Scanlon, M.D., Smirnov, E., Stockmann, T.J., Peljo, P.: Gold nanofilms at liquid − liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors, and electrovariable optics. Chem. Rev. (2018) Scanlon, M.D., Smirnov, E., Stockmann, T.J., Peljo, P.: Gold nanofilms at liquid − liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors, and electrovariable optics. Chem. Rev. (2018)
192.
go back to reference Abid, J.-P., Abid, M., Bauer, C., Girault, H.H., Brevet, P.-F.: Controlled reversible adsorption of core-shell metallic nanoparticles at the polarized Water/1,2-Dichloroethane interface investigated by optical second-harmonic generation. J. Phys. Chem. C 111, 8849–8855 (2007)CrossRef Abid, J.-P., Abid, M., Bauer, C., Girault, H.H., Brevet, P.-F.: Controlled reversible adsorption of core-shell metallic nanoparticles at the polarized Water/1,2-Dichloroethane interface investigated by optical second-harmonic generation. J. Phys. Chem. C 111, 8849–8855 (2007)CrossRef
193.
go back to reference Bera, M.K., Chan, H., Moyano, D.F., Yu, H., Tatur, S., Amoanu, D., Bu, W., Rotello, V.M., Meron, M., Král, P., et al.: Interfacial localization and voltage-tunable arrays of charged nanoparticles. Nano Lett. 14, 6816–6822 (2014)CrossRef Bera, M.K., Chan, H., Moyano, D.F., Yu, H., Tatur, S., Amoanu, D., Bu, W., Rotello, V.M., Meron, M., Král, P., et al.: Interfacial localization and voltage-tunable arrays of charged nanoparticles. Nano Lett. 14, 6816–6822 (2014)CrossRef
194.
go back to reference Millyard, M.G., Min Huang, F., White, R., Spigone, E., Kivioja, J., Baumberg, J.J.: Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Appl. Phys. Lett. 100, 73101 (2012)CrossRef Millyard, M.G., Min Huang, F., White, R., Spigone, E., Kivioja, J., Baumberg, J.J.: Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Appl. Phys. Lett. 100, 73101 (2012)CrossRef
195.
go back to reference Weber, M.L., Litz, J.P., Masiello, D.J., Willets, K.A.: Super-resolution imaging reveals a difference between SERS and luminescence centroids. ACS Nano, 6, 1839–1848 (2012)CrossRef Weber, M.L., Litz, J.P., Masiello, D.J., Willets, K.A.: Super-resolution imaging reveals a difference between SERS and luminescence centroids. ACS Nano, 6, 1839–1848 (2012)CrossRef
196.
go back to reference Kleinman, S.L., Frontiera, R.R., Henry, A.-I., Dieringer, J.A., Van Duyne, R.P.: Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013)CrossRef Kleinman, S.L., Frontiera, R.R., Henry, A.-I., Dieringer, J.A., Van Duyne, R.P.: Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013)CrossRef
197.
go back to reference Dieringer, J.A., Wustholz, K.L., Masiello, D.J., Camden, J.P., Kleinman, S.L., Schatz, G.C., Van Duyne, R.P.: Surface-enhanced raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc. 131, 849–854 (2009)CrossRef Dieringer, J.A., Wustholz, K.L., Masiello, D.J., Camden, J.P., Kleinman, S.L., Schatz, G.C., Van Duyne, R.P.: Surface-enhanced raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc. 131, 849–854 (2009)CrossRef
198.
go back to reference Taylor, R.W., Benz, F., Sigle, D.O., Bowman, R.W., Bao, P., Roth, J.S., Heath, G.R., Evans, S.D., Baumberg, J.J.: Watching individual molecules flex within lipid membranes using SERS. Sci. Rep. 4, 1–6 (2014) Taylor, R.W., Benz, F., Sigle, D.O., Bowman, R.W., Bao, P., Roth, J.S., Heath, G.R., Evans, S.D., Baumberg, J.J.: Watching individual molecules flex within lipid membranes using SERS. Sci. Rep. 4, 1–6 (2014)
199.
go back to reference Kim, K., Han, H.S., Choi, I., Lee, C., Hong, S., Suh, S.-H., Lee, L.P., Kang, T.: Interfacial liquid-state surface-enhanced raman spectroscopy. Nat. Commun. 4, 2182 (2013)CrossRef Kim, K., Han, H.S., Choi, I., Lee, C., Hong, S., Suh, S.-H., Lee, L.P., Kang, T.: Interfacial liquid-state surface-enhanced raman spectroscopy. Nat. Commun. 4, 2182 (2013)CrossRef
200.
go back to reference Wu, D.-Y., Li, J.-F., Ren, B., Tian, Z.-Q.: Electrochemical surface-enhanced raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008)CrossRef Wu, D.-Y., Li, J.-F., Ren, B., Tian, Z.-Q.: Electrochemical surface-enhanced raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008)CrossRef
201.
go back to reference Zhang, K., Zhao, J., Xu, H., Li, Y., Ji, J., Liu, B.: Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces. 7, 16767–16774 (2015)CrossRef Zhang, K., Zhao, J., Xu, H., Li, Y., Ji, J., Liu, B.: Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces. 7, 16767–16774 (2015)CrossRef
202.
go back to reference Zhang, K., Ji, J., Li, Y., Liu, B.: Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced raman scattering sensor for specific detection of trace analytes. Anal. Chem. 86, 6660–6665 (2014)CrossRef Zhang, K., Ji, J., Li, Y., Liu, B.: Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced raman scattering sensor for specific detection of trace analytes. Anal. Chem. 86, 6660–6665 (2014)CrossRef
203.
go back to reference Gadogbe, M., Ansar, S.M., Chu, I.-W., Zou, S., Zhang, D.: Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30, 11520–11527 (2014)CrossRef Gadogbe, M., Ansar, S.M., Chu, I.-W., Zou, S., Zhang, D.: Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30, 11520–11527 (2014)CrossRef
204.
go back to reference Zhang, K., Zhao, J., Ji, J., Li, Y., Liu, B.: Quantitative label-free and real-time surface-enhanced raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays. Anal. Chem. 87, 8702–8708 (2015)CrossRef Zhang, K., Zhao, J., Ji, J., Li, Y., Liu, B.: Quantitative label-free and real-time surface-enhanced raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays. Anal. Chem. 87, 8702–8708 (2015)CrossRef
205.
go back to reference Dinsmore, A.D., Hsu, M.F., Nikolaides, M.G., Marquez, M., Bausch, A.R., Weitz, D.A.: Colloidosomes: selectively permeable capsules composed of colloidal particles. Science (80-.) 298, 1006–1009 (2002)CrossRef Dinsmore, A.D., Hsu, M.F., Nikolaides, M.G., Marquez, M., Bausch, A.R., Weitz, D.A.: Colloidosomes: selectively permeable capsules composed of colloidal particles. Science (80-.) 298, 1006–1009 (2002)CrossRef
206.
go back to reference Niikura, K., Iyo, N., Matsuo, Y., Mitomo, H., Ijiro, K.: Sub-100 Nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl. Mater. Interfaces. 5, 3900–3907 (2013)CrossRef Niikura, K., Iyo, N., Matsuo, Y., Mitomo, H., Ijiro, K.: Sub-100 Nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl. Mater. Interfaces. 5, 3900–3907 (2013)CrossRef
207.
go back to reference Huang, P., Lin, J., Li, W., Rong, P., Wang, Z., Wang, S., Wang, X., Sun, X., Aronova, M., Niu, G., et al.: Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chemie Int. Ed. 52, 13958–13964 (2013)CrossRef Huang, P., Lin, J., Li, W., Rong, P., Wang, Z., Wang, S., Wang, X., Sun, X., Aronova, M., Niu, G., et al.: Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chemie Int. Ed. 52, 13958–13964 (2013)CrossRef
208.
go back to reference Lin, J., Wang, S., Huang, P., Wang, Z., Chen, S., Niu, G., Li, W., He, J., Cui, D., Lu, G., et al.: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013)CrossRef Lin, J., Wang, S., Huang, P., Wang, Z., Chen, S., Niu, G., Li, W., He, J., Cui, D., Lu, G., et al.: Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013)CrossRef
209.
go back to reference Liu, D., Zhou, F., Li, C., Zhang, T., Zhang, H., Cai, W., Li, Y.: Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system. Angew. Chemie Int. Ed. 54, 9596–9600 (2015)CrossRef Liu, D., Zhou, F., Li, C., Zhang, T., Zhang, H., Cai, W., Li, Y.: Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system. Angew. Chemie Int. Ed. 54, 9596–9600 (2015)CrossRef
210.
go back to reference Patra, D., Sanyal, A., Rotello, V.M.: Colloidal microcapsules: self-assembly of nanoparticles at the liquid-liquid interface. Chem. Asian J. 5, 2442–2453 (2010)CrossRef Patra, D., Sanyal, A., Rotello, V.M.: Colloidal microcapsules: self-assembly of nanoparticles at the liquid-liquid interface. Chem. Asian J. 5, 2442–2453 (2010)CrossRef
211.
go back to reference Yang, Z., Altantzis, T., Zanaga, D., Bals, S., Van Tendeloo, G., Pileni, M.-P.: Supracrystalline Colloidal eggs: epitaxial growth and freestanding three-dimensional supracrystals in nanoscaled colloidosomes. J. Am. Chem. Soc. 138, 3493–3500 (2016)CrossRef Yang, Z., Altantzis, T., Zanaga, D., Bals, S., Van Tendeloo, G., Pileni, M.-P.: Supracrystalline Colloidal eggs: epitaxial growth and freestanding three-dimensional supracrystals in nanoscaled colloidosomes. J. Am. Chem. Soc. 138, 3493–3500 (2016)CrossRef
212.
go back to reference Zanaga, D., Bleichrodt, F., Altantzis, T., Winckelmans, N., Palenstijn, W.J., Sijbers, J., de Nijs, B., van Huis, M.A., Sánchez-Iglesias, A., Liz-Marzán, L.M., et al.: Quantitative 3D analysis of huge nanoparticle assemblies. Nanoscale 8, 292–299 (2016)CrossRef Zanaga, D., Bleichrodt, F., Altantzis, T., Winckelmans, N., Palenstijn, W.J., Sijbers, J., de Nijs, B., van Huis, M.A., Sánchez-Iglesias, A., Liz-Marzán, L.M., et al.: Quantitative 3D analysis of huge nanoparticle assemblies. Nanoscale 8, 292–299 (2016)CrossRef
Metadata
Title
Introduction
Author
Dr. Evgeny Smirnov
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-77914-0_1

Premium Partners