Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we first define the transfer operator, dynamical determinants, and the spectral and determinantal resonances of a weighted differentiable dynamical system. We then state the main results linking these resonances. We also discuss anisotropic spaces and the techniques used to prove these results, illustrating them by simple examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We exclude the easier case where \(T\) is analytic.
 
2
The infimum over those positive real numbers \(\rho\) such that the spectrum of the operator outside of the disc of radius \(\rho\) consists of isolated eigenvalues of finite multiplicity. Appendix A.1.
 
3
All inclusions are continuous.
 
4
For nonuniformly hyperbolic dynamics, for example Collet–Eckmann logistic maps, it would be interesting to make Definition 1.1 compatible with the results of Keller–Nowicki [110]. See Problem 2.​43.
 
5
In the nuclear case, this last claim holds if \(\mathcal{Q}\) is \(2/3\)-nuclear.
 
6
See also Remark 3.​1 there.
 
7
In the analytic setting, it turns out that the flat traces and thus the dynamical determinant coincide with the traces and determinant of the nuclear operators involved.
 
8
For expanding maps \(T\), we have \(\lim_{n \to\infty} \frac{1}{n}\sum_{k=0}^{n-1} \varphi\circ T^{k}(x) =\int\varphi\, \mathrm{d}\mu \) for every continuous function \(\varphi\) and almost all \(x\in M\), where \(\mu\) is an ergodic \(T\)-invariant probability measure. In addition, \(\mu\) is absolutely continuous with respect to Lebesgue measure. [14]
 
9
The corresponding result for expanding maps is classical, see e.g. [14] and the references therein.
 
10
The residues of the poles depend on \(\varphi\) and \(\psi\). In particular, they can vanish for some (non-generic) \(\varphi\) and \(\psi\).
 
11
As this book was going to press, Jézéquel [100] introduced an “intermediate” finite-dimensional ancillary matrix description which has its advantages, for example the proof of Proposition 3.​15 becomes simpler.
 
12
The analytic setting will not be discussed in detail in this book.
 
13
As explained in the preface, Liverani and Tsujii [119, 120] had previously obtained suboptimal results on \(d_{T, g}(z)\).
 
Literature
4.
go back to reference Anosov, D. V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder. Amer. Math. Soc., Providence, RI (1969) MATH Anosov, D. V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder. Amer. Math. Soc., Providence, RI (1969) MATH
5.
go back to reference Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets. I. Cycle expansions. Nonlinearity 3, 325–359 (1990) MathSciNetCrossRef Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets. I. Cycle expansions. Nonlinearity 3, 325–359 (1990) MathSciNetCrossRef
6.
go back to reference Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets. II. Applications. Nonlinearity 3, 361–386 (1990) MathSciNetCrossRef Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets. II. Applications. Nonlinearity 3, 361–386 (1990) MathSciNetCrossRef
9.
go back to reference Avila, A., Gouëzel, S., Tsujii, M.: Smoothness of solenoidal attractors. Discrete and continuous dynamical systems. 15, 21–35 (2006) MathSciNetCrossRef Avila, A., Gouëzel, S., Tsujii, M.: Smoothness of solenoidal attractors. Discrete and continuous dynamical systems. 15, 21–35 (2006) MathSciNetCrossRef
14.
go back to reference Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing, River Edge, NJ (2000) MATH Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing, River Edge, NJ (2000) MATH
15.
go back to reference Baladi, V.: Anisotropic Sobolev spaces and dynamical transfer operators: \(C^{\infty}\) foliations. In: Kolyada, S., Manin, Y., Ward, T. (eds.) Algebraic and topological dynamics, pp. 123–135, Contemp. Math., 385, Amer. Math. Soc., Providence, RI (2005) CrossRef Baladi, V.: Anisotropic Sobolev spaces and dynamical transfer operators: \(C^{\infty}\) foliations. In: Kolyada, S., Manin, Y., Ward, T. (eds.) Algebraic and topological dynamics, pp. 123–135, Contemp. Math., 385, Amer. Math. Soc., Providence, RI (2005) CrossRef
17.
go back to reference Baladi, V.: The quest for the ultimate anisotropic Banach space. J. Stat. Phys. Special Volume for D. Ruelle and Ya. Sinai 166, 525–557 (2017) MathSciNetMATH Baladi, V.: The quest for the ultimate anisotropic Banach space. J. Stat. Phys. Special Volume for D. Ruelle and Ya. Sinai 166, 525–557 (2017) MathSciNetMATH
19.
go back to reference Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018) MathSciNetCrossRef Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018) MathSciNetCrossRef
20.
go back to reference Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009) MathSciNetCrossRef Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009) MathSciNetCrossRef
21.
go back to reference Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010) MathSciNetMATH Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010) MathSciNetMATH
25.
go back to reference Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012) MathSciNetCrossRef Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012) MathSciNetCrossRef
26.
go back to reference Baladi, V., Pujals, E., Sambarino, M.: Dynamical zeta functions for analytic surface diffeomorphisms with dominated splitting. J. Inst. Math. de Jussieu 4, 175–218 (2005) MathSciNetCrossRef Baladi, V., Pujals, E., Sambarino, M.: Dynamical zeta functions for analytic surface diffeomorphisms with dominated splitting. J. Inst. Math. de Jussieu 4, 175–218 (2005) MathSciNetCrossRef
28.
go back to reference Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) MathSciNetCrossRef Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) MathSciNetCrossRef
29.
go back to reference Baladi, V., Tsujii, M.: Spectra of differentiable hyperbolic maps. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in number theory, geometry and quantum fields, pp. 1–21, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008) Baladi, V., Tsujii, M.: Spectra of differentiable hyperbolic maps. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in number theory, geometry and quantum fields, pp. 1–21, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008)
31.
go back to reference Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef
37.
go back to reference Blank, M., Keller, G., Liverani, C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002) MathSciNetCrossRef Blank, M., Keller, G., Liverani, C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002) MathSciNetCrossRef
39.
go back to reference Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Second revised edition. With a preface by D. Ruelle. Edited by J.-R. Chazottes. Lecture Notes in Math. 470, Springer-Verlag, Berlin (2008) CrossRef Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Second revised edition. With a preface by D. Ruelle. Edited by J.-R. Chazottes. Lecture Notes in Math. 470, Springer-Verlag, Berlin (2008) CrossRef
59.
go back to reference Demers, M. F., Liverani, C.: Stability of statistical properties in two-dimensional piecewise hyperbolic maps. Trans. Amer. Math. Soc. 360, 4777–4814 (2008) MathSciNetCrossRef Demers, M. F., Liverani, C.: Stability of statistical properties in two-dimensional piecewise hyperbolic maps. Trans. Amer. Math. Soc. 360, 4777–4814 (2008) MathSciNetCrossRef
60.
go back to reference Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011) MathSciNetCrossRef Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011) MathSciNetCrossRef
62.
go back to reference Durrett, R.: Probability: theory and examples. Second edition. Duxbury Press, Belmont, Ca (1996) MATH Durrett, R.: Probability: theory and examples. Second edition. Duxbury Press, Belmont, Ca (1996) MATH
65.
go back to reference Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances. Book in preparation. Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances. Book in preparation.
68.
go back to reference Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008) MathSciNetCrossRef Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008) MathSciNetCrossRef
73.
79.
85.
go back to reference Gouëzel, S.: Almost sure invariance principle for dynamical systems by spectral methods. Annals of Probability. 38, 1639–1671 (2010) MathSciNetCrossRef Gouëzel, S.: Almost sure invariance principle for dynamical systems by spectral methods. Annals of Probability. 38, 1639–1671 (2010) MathSciNetCrossRef
86.
go back to reference Gouëzel, S.: Spectre du flot géodésique en courbure négative, d’après F. Faure et M. Tsujii. Séminaire Bourbaki, March 2015. Gouëzel, S.: Spectre du flot géodésique en courbure négative, d’après F. Faure et M. Tsujii. Séminaire Bourbaki, March 2015.
87.
go back to reference Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef
88.
go back to reference Gouëzel, S., Liverani, C.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differential Geom., 79, 433–477 (2008) MathSciNetCrossRef Gouëzel, S., Liverani, C.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differential Geom., 79, 433–477 (2008) MathSciNetCrossRef
91.
go back to reference Gundlach, V. M., Latushkin, Y.: A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces. Ergodic Theory Dynam. Systems 23, 175–191 (2003) MathSciNetCrossRef Gundlach, V. M., Latushkin, Y.: A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces. Ergodic Theory Dynam. Systems 23, 175–191 (2003) MathSciNetCrossRef
100.
go back to reference Jézéquel, M.: Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. arXiv:1708.01055 Jézéquel, M.: Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. arXiv:​1708.​01055
102.
go back to reference Jiang, M., Differentiating potential functions of SRB measures on hyperbolic attractors. Ergodic Theory Dynam. Systems 32, 1350–1369 (2012) MathSciNetCrossRef Jiang, M., Differentiating potential functions of SRB measures on hyperbolic attractors. Ergodic Theory Dynam. Systems 32, 1350–1369 (2012) MathSciNetCrossRef
105.
go back to reference Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef
109.
go back to reference Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 141–152 (1999) MathSciNetMATH Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 141–152 (1999) MathSciNetMATH
110.
go back to reference Keller, G., Nowicki, T.: Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps. Comm. Math. Phys. 149, 31–69 (1992) MathSciNetCrossRef Keller, G., Nowicki, T.: Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps. Comm. Math. Phys. 149, 31–69 (1992) MathSciNetCrossRef
111.
112.
go back to reference Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999) MathSciNetCrossRef Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999) MathSciNetCrossRef
116.
go back to reference Liverani, C.: Central limit theorem for deterministic systems. In: Proceedings of the International Conference on Dynamical Systems (Montevideo, 1995), Longman, Harlow (1996) Liverani, C.: Central limit theorem for deterministic systems. In: Proceedings of the International Conference on Dynamical Systems (Montevideo, 1995), Longman, Harlow (1996)
118.
go back to reference Liverani, C.: Invariant measures and their properties. A functional analytic point of view. In: Dynamical systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics, pp. 185–237, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa (2003) Liverani, C.: Invariant measures and their properties. A functional analytic point of view. In: Dynamical systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics, pp. 185–237, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa (2003)
119.
go back to reference Liverani, C.: Fredholm determinants, Anosov maps and Ruelle resonances. Discrete Contin. Dyn. Syst. 13, 1203–1215 (2005) MathSciNetCrossRef Liverani, C.: Fredholm determinants, Anosov maps and Ruelle resonances. Discrete Contin. Dyn. Syst. 13, 1203–1215 (2005) MathSciNetCrossRef
120.
123.
go back to reference Milnor J., Thurston W.: Iterated maps of the interval. In: Alexander J.C., ed., Dynamical Systems (Maryland 1986–1987), pp. 465–563, Lecture Notes in Math. 1342, Springer-Verlag, Berlin (1988) Milnor J., Thurston W.: Iterated maps of the interval. In: Alexander J.C., ed., Dynamical Systems (Maryland 1986–1987), pp. 465–563, Lecture Notes in Math. 1342, Springer-Verlag, Berlin (1988)
127.
go back to reference Naud, F.: Anosov diffeomorphisms with non-trivial Ruelle spectrum. Personal communication (June 2015) Naud, F.: Anosov diffeomorphisms with non-trivial Ruelle spectrum. Personal communication (June 2015)
131.
go back to reference Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque No. 187–188. Soc. Math. France, Paris (1990) MATH Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque No. 187–188. Soc. Math. France, Paris (1990) MATH
139.
go back to reference Ruelle, D.: Thermodynamic Formalism. The mathematical structures of classical equilibrium statistical mechanics. Encyclopedia of Mathematics and its Applications, 5. Addison-Wesley, Reading, Mass. (1978) (Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004) MATH Ruelle, D.: Thermodynamic Formalism. The mathematical structures of classical equilibrium statistical mechanics. Encyclopedia of Mathematics and its Applications, 5. Addison-Wesley, Reading, Mass. (1978) (Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004) MATH
141.
142.
go back to reference Ruelle, D.: An extension of the theory of Fredholm determinants. Inst. Hautes Études Sci. Publ. Math. 72, 175–193 (1990) MathSciNetCrossRef Ruelle, D.: An extension of the theory of Fredholm determinants. Inst. Hautes Études Sci. Publ. Math. 72, 175–193 (1990) MathSciNetCrossRef
144.
go back to reference Ruelle, D.: Dynamical zeta functions: where do they come from and what are they good for? in: Mathematical physics, X (Leipzig, 1991) 43–51, Springer, Berlin (1992) Ruelle, D.: Dynamical zeta functions: where do they come from and what are they good for? in: Mathematical physics, X (Leipzig, 1991) 43–51, Springer, Berlin (1992)
145.
go back to reference Ruelle, D.: Dynamical zeta functions for piecewise monotone maps of the interval. CRM Monograph Series, 4, Amer. Math. Soc., Providence, RI (1994) MATH Ruelle, D.: Dynamical zeta functions for piecewise monotone maps of the interval. CRM Monograph Series, 4, Amer. Math. Soc., Providence, RI (1994) MATH
147.
go back to reference Ruelle, D.: Correction and complements: “Differentiation of SRB states” [Comm. Math. Phys. 187, (1997)]. Comm. Math. Phys. 234, 185–190 (2003) MathSciNetCrossRef Ruelle, D.: Correction and complements: “Differentiation of SRB states” [Comm. Math. Phys. 187, (1997)]. Comm. Math. Phys. 234, 185–190 (2003) MathSciNetCrossRef
148.
go back to reference Ruelle, D.: Dynamical zeta functions and transfer operators. Notices Amer. Math. Soc. 49, 887–895 (2002) MathSciNetMATH Ruelle, D.: Dynamical zeta functions and transfer operators. Notices Amer. Math. Soc. 49, 887–895 (2002) MathSciNetMATH
150.
151.
go back to reference Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996) MathSciNetCrossRef Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996) MathSciNetCrossRef
160.
go back to reference Slipantschuk, J., Bandtlow, O.F., Just, W.: Analytic expanding circle maps with explicit spectra. Nonlinearity 26, 3231–3245 (2013) MathSciNetCrossRef Slipantschuk, J., Bandtlow, O.F., Just, W.: Analytic expanding circle maps with explicit spectra. Nonlinearity 26, 3231–3245 (2013) MathSciNetCrossRef
161.
go back to reference Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017) MathSciNetCrossRef Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017) MathSciNetCrossRef
178.
go back to reference Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982) MATH Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982) MATH
182.
go back to reference Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Statist. Phys. 108, 733–754 (2002) MathSciNetCrossRef Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Statist. Phys. 108, 733–754 (2002) MathSciNetCrossRef
Metadata
Title
Introduction
Author
Viviane Baladi
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-77661-3_1

Premium Partner