Skip to main content

2018 | OriginalPaper | Buchkapitel

2. Smooth expanding maps: The spectrum of the transfer operator

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a variant of Ruelle’s bound on the essential spectral radius of transfer operators associated with differentiable expanding dynamics and weights, replacing the Hölder spaces by Sobolev spaces. The chapter ends with the Gouëzel-Keller-Liverani perturbation theory, which will also be applicable in the hyperbolic setting of Part II.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We shall not discuss the analytic case, referring instead to [137], [73, 150, 151], [74, 1], and [160, 161].
 
2
Existence of a maximal eigenvalue can also be obtained from Theorems 3.​3 or 3.​5 and Corollary 3.​8, as explained in Lemma 6.​1 in the hyperbolic case.
 
3
See Collet–Isola [52] for an earlier result in the symbolic setting for \(0< t<1\).
 
4
See [52, 107] for eigenvalues of modulus \(\le\ell^{-r}\), in slightly different settings.
 
5
Section 7.​1.​1 of the present book contains the analogous theory for the peripheral spectrum of hyperbolic maps \(T\).
 
6
This follows from the fact that expanding maps are topologically mixing.
 
7
See Appendix B. We use the expressions equilibrium state and equilibrium measure interchangeably.
 
8
\(\Pi _{j}\) is just the spectral projector \((2\pi \mathrm{i})^{-1}\int_{|z-\gamma_{j}|=\epsilon_{j}} (z-\mathcal{L}_{g})^{-1} \, \mathrm{d}z\) for the isolated eigenvalue \(\gamma_{j}\).
 
9
Spaces of bounded variation or generalised bounded variation can also be used, but this approach is not simpler to carry out.
 
10
See e.g. [165, §I.6, Chap. XI], where the notation \(\mathcal{L}^{t}_{p}\) is used.
 
11
Since \(\Omega\) is finite, the norms defined by taking the sum or the maximum over \(\omega\) are equivalent. In order to get a Hilbert norm when \(p=2\), one should consider the sum.
 
12
See also [40].
 
13
See the discussion before Theorem 2.31 below and Appendix D.1 for the general notion of an operator \(a^{Op}\) associated with a symbol \(a\).
 
14
The limit (2.27) exists and coincides with the infimum by submultiplicativity.
 
15
Note that the last claim of [11, Lemma 16 (3)] is incorrect in general, the number \(\theta\) there must be replaced by the maximal contraction.
 
16
The extendability condition (2.29) holds e.g. if \(U\) is a small ball and \(F\) is close enough to its derivative on \(U\). Condition (2.29) is not needed in Section 2.3.2. It will be used to control the term \(\mathcal{M}_{c}\) in the decomposition (2.95) in Section 2.4.2.
 
17
The indicator function of a set \(X\) satisfies \(\mathbf{1}_{X}^{p/(p-1)}=\mathbf{1}_{X}\) for all \(1< p<\infty\).
 
18
A topological space in which distinct points have disjoint neighbourhoods.
 
19
This can be done by using a cover of \(M\) by \(d\)-dimensional balls of radius equal to the Lebesgue number of \(\mathcal{V}_{m}\) and with centers on an appropriate lattice; see e.g. [179] for a more general result, and the references therein. It is possible to take \(\nu_{d}=d+1\), see [176, Thm 4.5.8, Thm 4.5.13].
 
20
Together with Remark 2.22, up to replacing \(\tilde{g}\) by \(\tilde{g}+\epsilon\) for arbitrarily small \(\epsilon\) if \(t'\) is very small
 
21
A smooth expanding map has no complexity at the beginning, in contrast to the piecewise smooth systems in [167] or [47].
 
22
In particular, \(\psi_{n}\) is a symbol of order 0 (see Appendix D.1).
 
23
See the discussion before Theorem 2.31 below and Appendix D.1 for the general notion of an operator \(a^{Op}\) associated with a symbol \(a\).
 
24
This is basically a generalisation of Pythagoras’ theorem.
 
25
An analogous decomposition will be essential in Chapter 3 and in the hyperbolic setting of Part II.
 
26
In the hyperbolic setting of Part II, the analogue of Lemma 2.34 is (4.​57).
 
27
The finite set depends on the dimension \(d\).
 
28
The argument above also shows that there exists a constant \(C>0\) such that \(b_{n} * b_{m}(x)\le C \cdot b_{\min\{n,m\}}(x)\) for any \(x\in \mathbb{R}^{d}\) and any \(n,m\ge0\), as noted in [31, (4.21)]. The proof can be organised differently, stating this fact as a separate lemma, see [31, App C].
 
29
If \(r\) is large enough and \(T_{\epsilon}\in C^{N}([-1,1],C^{r}(M,M))\) for \(N\ge3\), it is possible to write down explicit formulas for derivatives of higher order.
 
30
The invariant density has singularities of the type \(\sqrt{x-c_{k}}^{-1}\), and belongs to \(H^{t}_{p}\) for \(t<1/2\) and \(p>1\) close enough to 1.
 
31
By (2.25) in Lemma 2.16, the upper bound \(R_{*}^{t,p}(g)\) for \(p\ne\infty\) improves the bound in [11]. See also footnote 15.
 
32
There, a dynamical proof is given, bypassing Theorem C.1.
 
33
See also [84, Thm 3.3] for a slight generalisation.
 
Literatur
1.
2.
Zurück zum Zitat Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdamn (2003) MATH Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdamn (2003) MATH
11.
Zurück zum Zitat Baillif, M., Baladi, V.: Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case. Ergodic Theory Dynam. Systems 25, 1437–1470 (2005) MathSciNetCrossRef Baillif, M., Baladi, V.: Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case. Ergodic Theory Dynam. Systems 25, 1437–1470 (2005) MathSciNetCrossRef
14.
Zurück zum Zitat Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing, River Edge, NJ (2000) MATH Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing, River Edge, NJ (2000) MATH
19.
Zurück zum Zitat Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018) MathSciNetCrossRef Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018) MathSciNetCrossRef
20.
Zurück zum Zitat Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009) MathSciNetCrossRef Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009) MathSciNetCrossRef
21.
Zurück zum Zitat Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010) MathSciNetMATH Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010) MathSciNetMATH
23.
Zurück zum Zitat Baladi, V., Kitaev, A., Ruelle, D., Semmes, S.: Sharp determinants and kneading operators for holomorphic maps. Tr. Mat. Inst. Steklova 216, Din. Sist. i Smezhnye Vopr., 193–235 (1997); translation in Proc. Steklov Inst. Math. 216, 186–228 (1997) Baladi, V., Kitaev, A., Ruelle, D., Semmes, S.: Sharp determinants and kneading operators for holomorphic maps. Tr. Mat. Inst. Steklova 216, Din. Sist. i Smezhnye Vopr., 193–235 (1997); translation in Proc. Steklov Inst. Math. 216, 186–228 (1997)
25.
Zurück zum Zitat Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012) MathSciNetCrossRef Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012) MathSciNetCrossRef
28.
Zurück zum Zitat Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) MathSciNetCrossRef Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007) MathSciNetCrossRef
29.
Zurück zum Zitat Baladi, V., Tsujii, M.: Spectra of differentiable hyperbolic maps. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in number theory, geometry and quantum fields, pp. 1–21, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008) Baladi, V., Tsujii, M.: Spectra of differentiable hyperbolic maps. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in number theory, geometry and quantum fields, pp. 1–21, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008)
31.
Zurück zum Zitat Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef
32.
Zurück zum Zitat Baladi, V., Young, L.-S.: On the spectra of randomly perturbed expanding maps. Comm. Math. Phys 156, 355–385 (1993). Erratum. Comm. Math. Phys 166, 219–220 (1994) MathSciNetCrossRef Baladi, V., Young, L.-S.: On the spectra of randomly perturbed expanding maps. Comm. Math. Phys 156, 355–385 (1993). Erratum. Comm. Math. Phys 166, 219–220 (1994) MathSciNetCrossRef
36.
Zurück zum Zitat Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York (1976) CrossRef Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York (1976) CrossRef
40.
Zurück zum Zitat Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011) MATH Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011) MATH
41.
Zurück zum Zitat Brin, M., Stuck, G.: Introduction to dynamical systems. Cambridge University Press, Cambridge (2002) CrossRef Brin, M., Stuck, G.: Introduction to dynamical systems. Cambridge University Press, Cambridge (2002) CrossRef
45.
Zurück zum Zitat Buzzi, J.: No or infinitely many a.c.i.p. for piecewise expanding \(C^{r}\) maps in higher dimensions. Comm. Math. Phys. 222, 495–501 (2001) MathSciNetCrossRef Buzzi, J.: No or infinitely many a.c.i.p. for piecewise expanding \(C^{r}\) maps in higher dimensions. Comm. Math. Phys. 222, 495–501 (2001) MathSciNetCrossRef
47.
Zurück zum Zitat Buzzi, J., Maume-Deschamps, V.: Decay of correlations for piecewise invertible maps in higher dimensions. Israel J. Math. 131, 203–220 (2002) MathSciNetCrossRef Buzzi, J., Maume-Deschamps, V.: Decay of correlations for piecewise invertible maps in higher dimensions. Israel J. Math. 131, 203–220 (2002) MathSciNetCrossRef
51.
Zurück zum Zitat Collet, P., Eckmann, J.-P.: Liapunov multipliers and decay of correlations in dynamical systems. J. Statist. Phys. 115, 217–254 (2004) MathSciNetCrossRef Collet, P., Eckmann, J.-P.: Liapunov multipliers and decay of correlations in dynamical systems. J. Statist. Phys. 115, 217–254 (2004) MathSciNetCrossRef
52.
Zurück zum Zitat Collet, P., Isola, S.: On the essential spectrum of the transfer operator for expanding Markov maps. Comm. Math. Phys. 139, 551–557 (1991) MathSciNetCrossRef Collet, P., Isola, S.: On the essential spectrum of the transfer operator for expanding Markov maps. Comm. Math. Phys. 139, 551–557 (1991) MathSciNetCrossRef
60.
Zurück zum Zitat Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011) MathSciNetCrossRef Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011) MathSciNetCrossRef
68.
Zurück zum Zitat Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008) MathSciNetCrossRef Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008) MathSciNetCrossRef
73.
74.
75.
Zurück zum Zitat Fried, D.: The flat-trace asymptotics of a uniform system of contractions. Ergodic Theory Dynam. Systems 15, 1061–1073 (1995) MathSciNetCrossRef Fried, D.: The flat-trace asymptotics of a uniform system of contractions. Ergodic Theory Dynam. Systems 15, 1061–1073 (1995) MathSciNetCrossRef
84.
Zurück zum Zitat Gouëzel, S.: Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps. Israel J. Math. 180, 1–41 (2010) MathSciNetCrossRef Gouëzel, S.: Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps. Israel J. Math. 180, 1–41 (2010) MathSciNetCrossRef
87.
Zurück zum Zitat Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef
89.
Zurück zum Zitat Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981) MathSciNetCrossRef Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981) MathSciNetCrossRef
91.
Zurück zum Zitat Gundlach, V. M., Latushkin, Y.: A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces. Ergodic Theory Dynam. Systems 23, 175–191 (2003) MathSciNetCrossRef Gundlach, V. M., Latushkin, Y.: A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces. Ergodic Theory Dynam. Systems 23, 175–191 (2003) MathSciNetCrossRef
98.
Zurück zum Zitat Hörmander, L.: The analysis of linear partial differential operators. III. Pseudo-differential operators. Grundlehren der Mathematischen Wissenschaften 274, Springer-Verlag, Berlin (Corrected reprint of the 1985 original, 1994) MATH Hörmander, L.: The analysis of linear partial differential operators. III. Pseudo-differential operators. Grundlehren der Mathematischen Wissenschaften 274, Springer-Verlag, Berlin (Corrected reprint of the 1985 original, 1994) MATH
100.
Zurück zum Zitat Jézéquel, M.: Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. arXiv:1708.01055 Jézéquel, M.: Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. arXiv:​1708.​01055
105.
Zurück zum Zitat Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef
107.
Zurück zum Zitat Keller, G.: On the rate of convergence to equilibrium in one-dimensional systems. Comm. Math. Phys. 96, 181–193 (1984) MathSciNetCrossRef Keller, G.: On the rate of convergence to equilibrium in one-dimensional systems. Comm. Math. Phys. 96, 181–193 (1984) MathSciNetCrossRef
109.
Zurück zum Zitat Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 141–152 (1999) MathSciNetMATH Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 141–152 (1999) MathSciNetMATH
111.
Zurück zum Zitat Keller, G., Rugh, H.H.: Eigenfunctions for smooth expanding circle maps. Nonlinearity 17, 1723–1730 (2004) MathSciNetCrossRef Keller, G., Rugh, H.H.: Eigenfunctions for smooth expanding circle maps. Nonlinearity 17, 1723–1730 (2004) MathSciNetCrossRef
113.
Zurück zum Zitat Krzyżewski, K., Szlenk, W.: On invariant measures for expanding differentiable mappings. Studia Math. 33, 83–92 (1969) MathSciNetCrossRef Krzyżewski, K., Szlenk, W.: On invariant measures for expanding differentiable mappings. Studia Math. 33, 83–92 (1969) MathSciNetCrossRef
117.
Zurück zum Zitat Liverani, C.: Rigorous numerical investigation of the statistical properties of piecewise expanding maps – A feasibility study, Nonlinearity 14, 463–490 (2001) MathSciNetCrossRef Liverani, C.: Rigorous numerical investigation of the statistical properties of piecewise expanding maps – A feasibility study, Nonlinearity 14, 463–490 (2001) MathSciNetCrossRef
118.
Zurück zum Zitat Liverani, C.: Invariant measures and their properties. A functional analytic point of view. In: Dynamical systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics, pp. 185–237, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa (2003) Liverani, C.: Invariant measures and their properties. A functional analytic point of view. In: Dynamical systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics, pp. 185–237, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa (2003)
121.
Zurück zum Zitat Mañé, R.: Ergodic Theory and Differentiable Dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete, 8. Springer-Verlag, Berlin (1987). CrossRef Mañé, R.: Ergodic Theory and Differentiable Dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete, 8. Springer-Verlag, Berlin (1987). CrossRef
128.
Zurück zum Zitat Nonnenmacher, S., Zworski, M.: Decay of correlations for normally hyperbolic trapping. Invent. Math. 200, 345–438 (2015) MathSciNetCrossRef Nonnenmacher, S., Zworski, M.: Decay of correlations for normally hyperbolic trapping. Invent. Math. 200, 345–438 (2015) MathSciNetCrossRef
130.
Zurück zum Zitat Paley, J., Littlewood, R.: Theorems on Fourier series and power series. Proc. London Math. Soc. 42, 52–89 (1937) MathSciNetMATH Paley, J., Littlewood, R.: Theorems on Fourier series and power series. Proc. London Math. Soc. 42, 52–89 (1937) MathSciNetMATH
133.
Zurück zum Zitat Pinkus, A.: \(n\)-Widths in Approximation Theory. Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete (1985) CrossRef Pinkus, A.: \(n\)-Widths in Approximation Theory. Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete (1985) CrossRef
135.
137.
141.
142.
Zurück zum Zitat Ruelle, D.: An extension of the theory of Fredholm determinants. Inst. Hautes Études Sci. Publ. Math. 72, 175–193 (1990) MathSciNetCrossRef Ruelle, D.: An extension of the theory of Fredholm determinants. Inst. Hautes Études Sci. Publ. Math. 72, 175–193 (1990) MathSciNetCrossRef
143.
Zurück zum Zitat Ruelle, D.: Thermodynamic formalism of maps satisfying positive expansiveness and specification. Nonlinearity 5, 1223–1236 (1992) MathSciNetCrossRef Ruelle, D.: Thermodynamic formalism of maps satisfying positive expansiveness and specification. Nonlinearity 5, 1223–1236 (1992) MathSciNetCrossRef
149.
Zurück zum Zitat Ruelle, D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870 (2009) MathSciNetCrossRef Ruelle, D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870 (2009) MathSciNetCrossRef
150.
151.
Zurück zum Zitat Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996) MathSciNetCrossRef Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996) MathSciNetCrossRef
154.
Zurück zum Zitat Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Walter de Gruyter & Co., Berlin (1996) CrossRef Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Walter de Gruyter & Co., Berlin (1996) CrossRef
157.
158.
Zurück zum Zitat Shubin, M.A.: Pseudodifferential operators and spectral theory. Second edition. Springer-Verlag, Berlin (2001) CrossRef Shubin, M.A.: Pseudodifferential operators and spectral theory. Second edition. Springer-Verlag, Berlin (2001) CrossRef
160.
Zurück zum Zitat Slipantschuk, J., Bandtlow, O.F., Just, W.: Analytic expanding circle maps with explicit spectra. Nonlinearity 26, 3231–3245 (2013) MathSciNetCrossRef Slipantschuk, J., Bandtlow, O.F., Just, W.: Analytic expanding circle maps with explicit spectra. Nonlinearity 26, 3231–3245 (2013) MathSciNetCrossRef
161.
Zurück zum Zitat Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017) MathSciNetCrossRef Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017) MathSciNetCrossRef
162.
Zurück zum Zitat Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) MATH Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) MATH
165.
Zurück zum Zitat Taylor, M.E.: Pseudo differential operators. Princeton University Press, Princeton (1981) Taylor, M.E.: Pseudo differential operators. Princeton University Press, Princeton (1981)
166.
Zurück zum Zitat Taylor, M.E.: Pseudodifferential operators and nonlinear PDE. Progress in Math. 100, Birkhäuser Boston, Inc., Boston, MA (1991) CrossRef Taylor, M.E.: Pseudodifferential operators and nonlinear PDE. Progress in Math. 100, Birkhäuser Boston, Inc., Boston, MA (1991) CrossRef
167.
Zurück zum Zitat Thomine, D.: A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems (A) 30, 917–944 (2011) MathSciNetCrossRef Thomine, D.: A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems (A) 30, 917–944 (2011) MathSciNetCrossRef
168.
Zurück zum Zitat Triebel, H.: General function spaces III (spaces \(B^{g(x)}_{p,q}\) and \(F^{g(x)}_{p,q}\), \(1< p < \infty\): basic properties). Analysis Math. 3, 221–249 (1977) MathSciNetCrossRef Triebel, H.: General function spaces III (spaces \(B^{g(x)}_{p,q}\) and \(F^{g(x)}_{p,q}\), \(1< p < \infty\): basic properties). Analysis Math. 3, 221–249 (1977) MathSciNetCrossRef
169.
Zurück zum Zitat Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam (1978) MATH Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam (1978) MATH
170.
Zurück zum Zitat Triebel, H.: Theory of function spaces II. Birkhäuser, Basel (1992) CrossRef Triebel, H.: Theory of function spaces II. Birkhäuser, Basel (1992) CrossRef
172.
Zurück zum Zitat Tsujii, M.: Decay of correlations in suspension semi-flows of angle multiplying maps. Ergodic Theory Dynam. Systems. 28, 291–317 (2008) MathSciNetCrossRef Tsujii, M.: Decay of correlations in suspension semi-flows of angle multiplying maps. Ergodic Theory Dynam. Systems. 28, 291–317 (2008) MathSciNetCrossRef
173.
Zurück zum Zitat Tsujii, M.: Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23, 1495–1545 (2010) MathSciNetCrossRef Tsujii, M.: Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23, 1495–1545 (2010) MathSciNetCrossRef
176.
Zurück zum Zitat van Mill, J.: Infinite-dimensional topology. Prerequisites and introduction. North-Holland Mathematical Library, 43, North-Holland Publishing Co., Amsterdam (1989) MATH van Mill, J.: Infinite-dimensional topology. Prerequisites and introduction. North-Holland Mathematical Library, 43, North-Holland Publishing Co., Amsterdam (1989) MATH
177.
Zurück zum Zitat Viana, M.: Lectures on Lyapunov exponents. Cambridge Studies in Advanced Mathematics, 145, Cambridge University Press, Cambridge (2014) CrossRef Viana, M.: Lectures on Lyapunov exponents. Cambridge Studies in Advanced Mathematics, 145, Cambridge University Press, Cambridge (2014) CrossRef
178.
Zurück zum Zitat Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982) MATH Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982) MATH
179.
Zurück zum Zitat Weller, G.P.: The intersection multiplicity of compact \(n\)-dimensional metric spaces. Proc. Amer. Math. Soc. 36, 293–294 (1972) MathSciNetMATH Weller, G.P.: The intersection multiplicity of compact \(n\)-dimensional metric spaces. Proc. Amer. Math. Soc. 36, 293–294 (1972) MathSciNetMATH
181.
Zurück zum Zitat Yosida, K.: Functional analysis. Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin (1995) CrossRef Yosida, K.: Functional analysis. Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin (1995) CrossRef
Metadaten
Titel
Smooth expanding maps: The spectrum of the transfer operator
verfasst von
Viviane Baladi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-77661-3_2

Premium Partner