Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid development of information technology such as social media, online communities, and mobile communications, huge volumes of digital data are accumulated with data entities involving complex relationships. These data are usually modelled as graphs in view of the simple yet strong expressive power of graph model; that is, entities are represented by vertices and relationships are represented by edges.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. Massive quasi-clique detection. In Proc. of LATIN’02, pages 598–612, 2002. James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. Massive quasi-clique detection. In Proc. of LATIN’02, pages 598–612, 2002.
3.
go back to reference Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In Proc. CIKM’13, pages 909–918, 2013. Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In Proc. CIKM’13, pages 909–918, 2013.
4.
go back to reference Albert Angel, Nick Koudas, Nikos Sarkas, and Divesh Srivastava. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. PVLDB, 5(6):574–585, 2012. Albert Angel, Nick Koudas, Nikos Sarkas, and Divesh Srivastava. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. PVLDB, 5(6):574–585, 2012.
10.
go back to reference Fei Bi, Lijun Chang, Xuemin Lin, and Wenjie Zhang. An optimal and progressive approach to online search of top-k influential communities. PVLDB, 11(9):1056–1068, 2018. Fei Bi, Lijun Chang, Xuemin Lin, and Wenjie Zhang. An optimal and progressive approach to online search of top-k influential communities. PVLDB, 11(9):1056–1068, 2018.
11.
go back to reference S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Structure and dynamics. Physics Reports, 424(4–5):175–308, 2006.MathSciNetCrossRef S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Structure and dynamics. Physics Reports, 424(4–5):175–308, 2006.MathSciNetCrossRef
12.
go back to reference Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In Proc. of WWW’04, pages 595–601, 2004. Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In Proc. of WWW’04, pages 595–601, 2004.
16.
go back to reference Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. Index-based optimal algorithms for computing Steiner components with maximum connectivity. In Proc. of SIGMOD’15, 2015. Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. Index-based optimal algorithms for computing Steiner components with maximum connectivity. In Proc. of SIGMOD’15, 2015.
17.
go back to reference Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang. Efficiently computing k-edge connected components via graph decomposition. In Proc. SIGMOD’13, pages 205–216, 2013. Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang. Efficiently computing k-edge connected components via graph decomposition. In Proc. SIGMOD’13, pages 205–216, 2013.
18.
go back to reference Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In Proc. APPROX’00, pages 84–95, 2000. Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In Proc. APPROX’00, pages 84–95, 2000.
22.
go back to reference Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis, 2008. Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis, 2008.
23.
go back to reference Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, and Riccardo Torlone. Fast enumeration of large k-plexes. In Proc. of KDD’17, pages 115–124, 2017. Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, and Riccardo Torlone. Fast enumeration of large k-plexes. In Proc. of KDD’17, pages 115–124, 2017.
24.
go back to reference Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.
33.
go back to reference David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in massive graphs. In Proc. of VLDB’05, pages 721–732, 2005. David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in massive graphs. In Proc. of VLDB’05, pages 721–732, 2005.
35.
go back to reference A. V. Goldberg. Finding a maximum density subgraph. Technical report, Berkeley, CA, USA, 1984. A. V. Goldberg. Finding a maximum density subgraph. Technical report, Berkeley, CA, USA, 1984.
41.
go back to reference Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying k-truss community in large and dynamic graphs. In Proc. of SIGMOD’14, pages 1311–1322, 2014. Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying k-truss community in large and dynamic graphs. In Proc. of SIGMOD’14, pages 1311–1322, 2014.
42.
go back to reference Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. Community search over big graphs: Models, algorithms, and opportunities. In Proc. of ICDE’17, pages 1451–1454, 2017. Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. Community search over big graphs: Models, algorithms, and opportunities. In Proc. of ICDE’17, pages 1451–1454, 2017.
46.
go back to reference M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse. Identification of influential spreaders in complex networks. Nature Physics, 6:888–893, 2010.CrossRef M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse. Identification of influential spreaders in complex networks. Nature Physics, 6:888–893, 2010.CrossRef
48.
go back to reference Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu C. Aggarwal. A survey of algorithms for dense subgraph discovery. In Managing and Mining Graph Data, pages 303–336. 2010. Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu C. Aggarwal. A survey of algorithms for dense subgraph discovery. In Managing and Mining Graph Data, pages 303–336. 2010.
55.
go back to reference F. D. Malliaros, M.-E. G. Rossi, and M. Vazirgiannis. Locating influential nodes in complex networks. Scientific Reports, 6, 2016. F. D. Malliaros, M.-E. G. Rossi, and M. Vazirgiannis. Locating influential nodes in complex networks. Scientific Reports, 6, 2016.
57.
go back to reference Fragkiskos D. Malliaros and Michalis Vazirgiannis. Graph-based text representations: Boosting text mining, nlp and information retrieval with graphs. In Proc. of EMNLP’17, 2017. Fragkiskos D. Malliaros and Michalis Vazirgiannis. Graph-based text representations: Boosting text mining, nlp and information retrieval with graphs. In Proc. of EMNLP’17, 2017.
59.
go back to reference David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM, 30(3):417–427, 1983.MathSciNetCrossRef David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM, 30(3):417–427, 1983.MathSciNetCrossRef
71.
go back to reference Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and visualization. In Proc. of AAAI’15, 2015. Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and visualization. In Proc. of AAAI’15, 2015.
72.
go back to reference François Rousseau and Michalis Vazirgiannis. Main core retention on graph-of-words for single-document keyword extraction. In Proc. of ECIR’15, pages 382–393, 2015. François Rousseau and Michalis Vazirgiannis. Main core retention on graph-of-words for single-document keyword extraction. In Proc. of ECIR’15, pages 382–393, 2015.
73.
76.
go back to reference Ahmet Erdem Sariyüce and Ali Pinar. Fast hierarchy construction for dense subgraphs. PVLDB, 10(3):97–108, 2016. Ahmet Erdem Sariyüce and Ali Pinar. Fast hierarchy construction for dense subgraphs. PVLDB, 10(3):97–108, 2016.
80.
go back to reference Pablo San Segundo, Alvaro Lopez, and Panos M. Pardalos. A new exact maximum clique algorithm for large and massive sparse graphs. Computers & Operations Research, 66:81–94, 2016.MathSciNetCrossRef Pablo San Segundo, Alvaro Lopez, and Panos M. Pardalos. A new exact maximum clique algorithm for large and massive sparse graphs. Computers & Operations Research, 66:81–94, 2016.MathSciNetCrossRef
82.
go back to reference Stephen B. Seidman and Brian L. Foster. A graph-theoretic generalization of the clique concept. The Journal of Mathematical Sociology, 6(1):139–154, 1978.MathSciNetCrossRef Stephen B. Seidman and Brian L. Foster. A graph-theoretic generalization of the clique concept. The Journal of Mathematical Sociology, 6(1):139–154, 1978.MathSciNetCrossRef
84.
go back to reference Mauro Sozio and Aristides Gionis. The community-search problem and how to plan a successful cocktail party. In Proc. of KDD’10, pages 939–948, 2010. Mauro Sozio and Aristides Gionis. The community-search problem and how to plan a successful cocktail party. In Proc. of KDD’10, pages 939–948, 2010.
88.
go back to reference Antoine J.-P. Tixier, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. A graph degeneracy-based approach to keyword extraction. In Proc. of EMNLP’16, pages 1860–1870, 2016. Antoine J.-P. Tixier, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. A graph degeneracy-based approach to keyword extraction. In Proc. of EMNLP’16, pages 1860–1870, 2016.
89.
go back to reference Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Proc. of WWW’15, pages 1122–1132, 2015. Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Proc. of WWW’15, pages 1122–1132, 2015.
91.
go back to reference Michalis Vazirgiannis. Graph of words: Boosting text mining tasks with graphs. In Proc. of WWW’17, page 1181, 2017. Michalis Vazirgiannis. Graph of words: Boosting text mining tasks with graphs. In Proc. of WWW’17, page 1181, 2017.
92.
go back to reference Jia Wang and James Cheng. Truss decomposition in massive networks. PVLDB, 5(9):812–823, 2012. Jia Wang and James Cheng. Truss decomposition in massive networks. PVLDB, 5(9):812–823, 2012.
93.
go back to reference Jim Webber. The top 5 use cases of graph databases (white paper), 2015. Jim Webber. The top 5 use cases of graph databases (white paper), 2015.
99.
go back to reference Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. I/O efficient ECC graph decomposition via graph reduction. PVLDB, 9(7):516–527, 2016. Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. I/O efficient ECC graph decomposition via graph reduction. PVLDB, 9(7):516–527, 2016.
102.
go back to reference Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin Li. Finding maximal k-edge-connected subgraphs from a large graph. In Proc. of EDBT’12, 2012. Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin Li. Finding maximal k-edge-connected subgraphs from a large graph. In Proc. of EDBT’12, 2012.
Metadata
Title
Introduction
Authors
Lijun Chang
Lu Qin
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-03599-0_1

Premium Partner