Skip to main content
Top
Published in:
Cover of the book

2022 | OriginalPaper | Chapter

1. Introduction

Author : Yunjiao Zhang

Published in: Tuning Autophagy-Inducing Activity and Toxicity for Lanthanide Nanocrystals

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the past few decades, nanomaterials have caused a continuous and extensive research issue in different fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nie, Z., Petukhova, A., et al. (2010). Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 5(1), 15–25.CrossRef Nie, Z., Petukhova, A., et al. (2010). Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 5(1), 15–25.CrossRef
2.
go back to reference Fahlman, B. D. (2007). Materials Chemistry, 1, 282–283 (Springer, Mount Pleasant). Fahlman, B. D. (2007). Materials Chemistry, 1, 282–283 (Springer, Mount Pleasant).
3.
go back to reference Davis, M. E., et al. (2008). Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Review Drug Discovery, 7, 771–782.CrossRef Davis, M. E., et al. (2008). Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Review Drug Discovery, 7, 771–782.CrossRef
4.
go back to reference Robby, A., et al. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 8, 615–627. Robby, A., et al. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 8, 615–627.
5.
go back to reference Adachi, G., Imanaka, N., & Kang, Z. C. (2004). Binary Rare Earth Oxides, 1, 125–126 (Springer, Kluwer, Academic Publishers). Adachi, G., Imanaka, N., & Kang, Z. C. (2004). Binary Rare Earth Oxides, 1, 125–126 (Springer, Kluwer, Academic Publishers).
6.
go back to reference Bouzigues, C., Gacoin, T., et al. (2011). Biological applications of rare-earth based nanoparticles. ACS Nano, 5(11), 8488–8505.CrossRef Bouzigues, C., Gacoin, T., et al. (2011). Biological applications of rare-earth based nanoparticles. ACS Nano, 5(11), 8488–8505.CrossRef
7.
go back to reference Auzel, F., et al. (2004). Upconversion and anti-stokes processes with f and d ions in solids. Chem Reviews, 104(1), 139–173.CrossRef Auzel, F., et al. (2004). Upconversion and anti-stokes processes with f and d ions in solids. Chem Reviews, 104(1), 139–173.CrossRef
8.
go back to reference Bloembergen, N. (1959). Solid state infrared quantum counters. Physical Review Letters, 2, 84–85.CrossRef Bloembergen, N. (1959). Solid state infrared quantum counters. Physical Review Letters, 2, 84–85.CrossRef
9.
go back to reference Auzel, F. (1966). Compteur Quantique Par Transfert D’énergie Entre Deux Ions De Terres Rares Dans Un Tungstate Mixte Et Dans Un Verre. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 262, 1016. Auzel, F. (1966). Compteur Quantique Par Transfert D’énergie Entre Deux Ions De Terres Rares Dans Un Tungstate Mixte Et Dans Un Verre. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 262, 1016.
10.
go back to reference Yu, M. X., Li, F. Y., Chen, Z. G., Hu, H., Zhan, C., Yang, H., & Huang, C. H. (2009). Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Analytical Chemistry, 81(3), 930–935.CrossRef Yu, M. X., Li, F. Y., Chen, Z. G., Hu, H., Zhan, C., Yang, H., & Huang, C. H. (2009). Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Analytical Chemistry, 81(3), 930–935.CrossRef
11.
go back to reference Xiong, L. Q., Chen, Z. G., Tian, Q. W., Cao, T. Y., Xu, C. J., & Huang, C. H. (2009). High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Analytical Chemistry, 81(21), 8687–8694.CrossRef Xiong, L. Q., Chen, Z. G., Tian, Q. W., Cao, T. Y., Xu, C. J., & Huang, C. H. (2009). High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Analytical Chemistry, 81(21), 8687–8694.CrossRef
12.
go back to reference Hu, H., Yu, M. X., Li, F. Y., Chen, Z. G., Gao, X., Xiong, L. Q., & Huang, C. H. (2008). Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chemistry of Materials, 20(22), 7003–7009.CrossRef Hu, H., Yu, M. X., Li, F. Y., Chen, Z. G., Gao, X., Xiong, L. Q., & Huang, C. H. (2008). Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chemistry of Materials, 20(22), 7003–7009.CrossRef
13.
go back to reference Michalet, X., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544.CrossRef Michalet, X., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544.CrossRef
14.
go back to reference McCarthy, J. R., et al. (2008). Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced Drug Delivery Reviews, 60(11), 1241–1251.CrossRef McCarthy, J. R., et al. (2008). Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced Drug Delivery Reviews, 60(11), 1241–1251.CrossRef
15.
go back to reference Gao, J. H., et al. (2009). Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Accounts of Chemical Research, 42(8), 1097–1107.CrossRef Gao, J. H., et al. (2009). Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Accounts of Chemical Research, 42(8), 1097–1107.CrossRef
16.
go back to reference Sharma, C. S., Sarkar, S., et al. (2007). Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanoscience and Nanotechnology, 7(7), 2466–2472.CrossRef Sharma, C. S., Sarkar, S., et al. (2007). Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanoscience and Nanotechnology, 7(7), 2466–2472.CrossRef
17.
go back to reference Toma, F. M., Sartorel, A., et al. (2010). Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. Nature Chemistry, 2(10), 826–831.CrossRef Toma, F. M., Sartorel, A., et al. (2010). Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. Nature Chemistry, 2(10), 826–831.CrossRef
18.
go back to reference Yamakoshi, Y., Umezawa, N., et al. (2003). Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2* versus 1O2. Journal of the Amerian Chemical Society, 125(42), 12803–12809.CrossRef Yamakoshi, Y., Umezawa, N., et al. (2003). Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2* versus 1O2. Journal of the Amerian Chemical Society, 125(42), 12803–12809.CrossRef
19.
go back to reference Corona-Morales, A. A., Castell, A., et al. (2003). Fullerene C60 and ascorbic acid protect cultured chromaffin cells against levodopa toxicity. Journal of Neuroscience Research, 71(1), 121–126.CrossRef Corona-Morales, A. A., Castell, A., et al. (2003). Fullerene C60 and ascorbic acid protect cultured chromaffin cells against levodopa toxicity. Journal of Neuroscience Research, 71(1), 121–126.CrossRef
20.
go back to reference Nakanishi, I., Fukuzumi, S., et al. (2002). DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to gamma-cyclodextrin-bicapped C-60 in an oxygen-saturated aqueous solution. Journal of Physical Chemistry, 106(9), 2372–2380.CrossRef Nakanishi, I., Fukuzumi, S., et al. (2002). DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to gamma-cyclodextrin-bicapped C-60 in an oxygen-saturated aqueous solution. Journal of Physical Chemistry, 106(9), 2372–2380.CrossRef
21.
go back to reference Adlakha-Hutcheon, G., Bally, M. B., et al. (1999). Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity. Nature Biotechnology, 17(8), 775–779.CrossRef Adlakha-Hutcheon, G., Bally, M. B., et al. (1999). Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity. Nature Biotechnology, 17(8), 775–779.CrossRef
22.
go back to reference Wing, S. T., et al. (2011). Self-cleaning fibers via nanotechnology: A virtual reality. Journal of Materials Chemistry, 21(22), 7858–7869.CrossRef Wing, S. T., et al. (2011). Self-cleaning fibers via nanotechnology: A virtual reality. Journal of Materials Chemistry, 21(22), 7858–7869.CrossRef
23.
go back to reference Deng, Z. J., et al. (2011). Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 6(1), 39–44.CrossRef Deng, Z. J., et al. (2011). Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 6(1), 39–44.CrossRef
24.
go back to reference Mikhaylov, G., Mikac, U., et al. (2011). Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotechnology, 6, 594–602.CrossRef Mikhaylov, G., Mikac, U., et al. (2011). Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotechnology, 6, 594–602.CrossRef
25.
go back to reference Patra, C. R., Bhattacharya, R., et al. (2008). Pro-angiogenic properties of europium(III) hydroxide nanorods. Advanced Materials, 20(4), 753.CrossRef Patra, C. R., Bhattacharya, R., et al. (2008). Pro-angiogenic properties of europium(III) hydroxide nanorods. Advanced Materials, 20(4), 753.CrossRef
26.
go back to reference Hauck, T. S., Anderson, R. E., et al. (2010). In vivo quantum-dot toxicity assessment. Small (Weinheim an der Bergstrasse, Germany), 6(1), 138–144.CrossRef Hauck, T. S., Anderson, R. E., et al. (2010). In vivo quantum-dot toxicity assessment. Small (Weinheim an der Bergstrasse, Germany), 6(1), 138–144.CrossRef
27.
go back to reference Wang, F., Banerjee, D., et al. (2010). Upconversion nanoparticles in biological labeling, imaging, and therapy. The Analyst, 135(8), 1839–1854.CrossRef Wang, F., Banerjee, D., et al. (2010). Upconversion nanoparticles in biological labeling, imaging, and therapy. The Analyst, 135(8), 1839–1854.CrossRef
28.
go back to reference Wang, F., Han, Y., et al. (2010). Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 463(7284), 1061–1065.CrossRef Wang, F., Han, Y., et al. (2010). Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 463(7284), 1061–1065.CrossRef
29.
go back to reference Idris, N. M., Li, Z. Q., Ye, L., et al. (2009). Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterial, 30(28), 5104–5113.CrossRef Idris, N. M., Li, Z. Q., Ye, L., et al. (2009). Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterial, 30(28), 5104–5113.CrossRef
30.
go back to reference Jiang, S., & Zhang, Y. (2010). Upconversion nanoparticles-based FRET system for study of SiRNA in live cells. Langmuir, 26(9), 6689–6694.CrossRef Jiang, S., & Zhang, Y. (2010). Upconversion nanoparticles-based FRET system for study of SiRNA in live cells. Langmuir, 26(9), 6689–6694.CrossRef
31.
go back to reference Xiong, L. Q., Chen, Z. G., et al. (2009). Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials, 30(29), 5592–5600.CrossRef Xiong, L. Q., Chen, Z. G., et al. (2009). Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials, 30(29), 5592–5600.CrossRef
32.
go back to reference Ivanova, S., Pelle, F., et al. (2008). Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters. Journal of Luminescence, 128(5), 914–917.CrossRef Ivanova, S., Pelle, F., et al. (2008). Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters. Journal of Luminescence, 128(5), 914–917.CrossRef
33.
go back to reference Suyver, J. F., Grimm, J., et al. (2006). Upconversion spectroscopy and properties of NaYF4 doped with Er (3+), Tm3+ and/or Yb3+. Journal of Luminescence, 117(1), 1–12.CrossRef Suyver, J. F., Grimm, J., et al. (2006). Upconversion spectroscopy and properties of NaYF4 doped with Er (3+), Tm3+ and/or Yb3+. Journal of Luminescence, 117(1), 1–12.CrossRef
34.
go back to reference Wang, L. Y., & Li, Y. D. (2006). Green upconversion nanocrystals for DNA detection. Chemical Communications, (24), 2557–2559. Wang, L. Y., & Li, Y. D. (2006). Green upconversion nanocrystals for DNA detection. Chemical Communications, (24), 2557–2559.
35.
go back to reference Lim, S. F., Riehn, R., et al. (2006). In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Letters, 6(2), 169–174.CrossRef Lim, S. F., Riehn, R., et al. (2006). In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Letters, 6(2), 169–174.CrossRef
36.
go back to reference Hu, H., Yu, M. X., et al. (2008). Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chemistry of Materials, 20(22), 7003–7009.CrossRef Hu, H., Yu, M. X., et al. (2008). Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chemistry of Materials, 20(22), 7003–7009.CrossRef
37.
go back to reference Chen, Z. G., Chen, H. L., et al. (2008). Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. Journal of the Amerian Chemistry Society, 130(10), 3023–3029.CrossRef Chen, Z. G., Chen, H. L., et al. (2008). Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. Journal of the Amerian Chemistry Society, 130(10), 3023–3029.CrossRef
38.
go back to reference Liu, Z. Y., Yi, G. S., et al. (2008). Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. Chemical Communications, 6, 694–696.CrossRef Liu, Z. Y., Yi, G. S., et al. (2008). Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. Chemical Communications, 6, 694–696.CrossRef
39.
go back to reference Van de Rijke, F., Zijlmans, H., et al. (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology, 19(3), 273–276.CrossRef Van de Rijke, F., Zijlmans, H., et al. (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology, 19(3), 273–276.CrossRef
40.
go back to reference Corstjens, P., Zuiderwijk, M., et al. (2001). Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: A rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clinical Chemistry, 47(10), 1885–1893.CrossRef Corstjens, P., Zuiderwijk, M., et al. (2001). Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: A rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clinical Chemistry, 47(10), 1885–1893.CrossRef
41.
go back to reference Chatteriee, D. K., Rufalhah, A. J., et al. (2008). Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 29(7), 937–943.CrossRef Chatteriee, D. K., Rufalhah, A. J., et al. (2008). Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 29(7), 937–943.CrossRef
42.
go back to reference Zhang, P., Steelant, W., et al. (2007). Versatile photosensitizers for photodynamic therapy at infrared excitation. Journal of the American Chemistry Society, 129(15), 4526.CrossRef Zhang, P., Steelant, W., et al. (2007). Versatile photosensitizers for photodynamic therapy at infrared excitation. Journal of the American Chemistry Society, 129(15), 4526.CrossRef
43.
go back to reference Chatterjee, D. K., & Yong, Z. (2008). Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine, 3(1), 73–82.CrossRef Chatterjee, D. K., & Yong, Z. (2008). Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine, 3(1), 73–82.CrossRef
44.
go back to reference Idris, N. M., Gnanasammandhan, M. K., et al. (2012). In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 18(10), 1580–1585.CrossRef Idris, N. M., Gnanasammandhan, M. K., et al. (2012). In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 18(10), 1580–1585.CrossRef
45.
go back to reference Jiang, S., Zhang, Y., Lim, K. M., Sim, E. K., & Ye, L. (2009). NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology, 20(15), 155101. Jiang, S., Zhang, Y., Lim, K. M., Sim, E. K., & Ye, L. (2009). NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology, 20(15), 155101.
46.
go back to reference Lewinski, N., et al. (2008). Cytotoxicity of nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 4(1), 26–49.CrossRef Lewinski, N., et al. (2008). Cytotoxicity of nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 4(1), 26–49.CrossRef
47.
go back to reference Nel, A., et al. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.CrossRef Nel, A., et al. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.CrossRef
48.
go back to reference Arora, S. (2011). Nanotoxicology and in vitro studies: The need of the hour. Toxicology and Applied Pharmacology, 258(2), 151–165.CrossRef Arora, S. (2011). Nanotoxicology and in vitro studies: The need of the hour. Toxicology and Applied Pharmacology, 258(2), 151–165.CrossRef
49.
go back to reference Martinet, W., Schrijvers, D. M., et al. (2009). Phagocytosis of bacteria is enhanced in macrophages undergoing nutrient deprivation. FEBS Journal, 276(8), 2227–2240.CrossRef Martinet, W., Schrijvers, D. M., et al. (2009). Phagocytosis of bacteria is enhanced in macrophages undergoing nutrient deprivation. FEBS Journal, 276(8), 2227–2240.CrossRef
50.
go back to reference Jaeger, P. A., & Wyss-Coray, T. (2009). All-you-can-eat: Autophagy in neurodegeneration and neuroprotection. Molecular Neurodegeneration, 4, 16.CrossRef Jaeger, P. A., & Wyss-Coray, T. (2009). All-you-can-eat: Autophagy in neurodegeneration and neuroprotection. Molecular Neurodegeneration, 4, 16.CrossRef
51.
go back to reference Campoy, E., & Colombo, M. I. (2009). Autophagy in intracellular bacterial infection. Biochimica Et Biophysica Acta-Molecular Cell Research, 1793(9), 1465–1477.CrossRef Campoy, E., & Colombo, M. I. (2009). Autophagy in intracellular bacterial infection. Biochimica Et Biophysica Acta-Molecular Cell Research, 1793(9), 1465–1477.CrossRef
52.
go back to reference Takeshige, K., Baba, M., et al. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology, 119(2), 301–311.CrossRef Takeshige, K., Baba, M., et al. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology, 119(2), 301–311.CrossRef
53.
go back to reference Matsuura, A., Tsukada, M., et al. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192(2), 245–250. Matsuura, A., Tsukada, M., et al. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192(2), 245–250.
54.
go back to reference Mizushima, N., Yoshimori, T., et al. (2011). The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 27, 107–132.CrossRef Mizushima, N., Yoshimori, T., et al. (2011). The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 27, 107–132.CrossRef
55.
go back to reference Liang, X. H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672–676.CrossRef Liang, X. H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672–676.CrossRef
56.
57.
go back to reference Klionsky, D. J. (2007). Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937.CrossRef Klionsky, D. J. (2007). Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937.CrossRef
58.
go back to reference Cuervo, A. M., & Dice, J. F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 273(5274), 501–503.CrossRef Cuervo, A. M., & Dice, J. F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 273(5274), 501–503.CrossRef
59.
go back to reference Lynch-Day, M. A., Mao, K., et al. (2012). The role of autophagy in Parkinson’s disease. Cold Spring Harbor Perspectives Medicine, 2(4), a009357. Lynch-Day, M. A., Mao, K., et al. (2012). The role of autophagy in Parkinson’s disease. Cold Spring Harbor Perspectives Medicine, 2(4), a009357.
60.
go back to reference Melendez, A., & Levine, B. (2009). Autophagy in C. elegans. WormBook, 1, 1–26.CrossRef Melendez, A., & Levine, B. (2009). Autophagy in C. elegans. WormBook, 1, 1–26.CrossRef
61.
go back to reference Klionsky, D. T., et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4(2), 151–175.CrossRef Klionsky, D. T., et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4(2), 151–175.CrossRef
62.
go back to reference Klionsky, D. T., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445–544.CrossRef Klionsky, D. T., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445–544.CrossRef
63.
go back to reference Eskelinen, E. L. (2005). Maturation of autophagic vacuoles in mammalian cells. Autophagy, 1(1), 1–10.CrossRef Eskelinen, E. L. (2005). Maturation of autophagic vacuoles in mammalian cells. Autophagy, 1(1), 1–10.CrossRef
64.
go back to reference Mizushima, N., Yoshimori, T., et al. (2010). Methods in mammalian autophagy research. Cell,140(3), 313–326. Mizushima, N., Yoshimori, T., et al. (2010). Methods in mammalian autophagy research. Cell,140(3), 313–326.
65.
go back to reference Zheng, Q., Su, H., et al. (2011). Autophagy and p62 in cardiac proteinopathy novelty and significance. Circulation Research, 109(3), 296–308.CrossRef Zheng, Q., Su, H., et al. (2011). Autophagy and p62 in cardiac proteinopathy novelty and significance. Circulation Research, 109(3), 296–308.CrossRef
66.
go back to reference Colosetti, P., Puissant, A., et al. (2009). Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy, 5(8), 1092–1098.CrossRef Colosetti, P., Puissant, A., et al. (2009). Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy, 5(8), 1092–1098.CrossRef
67.
go back to reference Toepfer, N., Childress, C., et al. (2011). Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription. Cancer Biology & Therapy, 12(8), 691–699.CrossRef Toepfer, N., Childress, C., et al. (2011). Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription. Cancer Biology & Therapy, 12(8), 691–699.CrossRef
68.
go back to reference Klionsky, D. J., Cuervo, A. M., et al. (2007). Methods for monitoring autophagy from yeast to human. Autophagy, 3(3), 181–206.CrossRef Klionsky, D. J., Cuervo, A. M., et al. (2007). Methods for monitoring autophagy from yeast to human. Autophagy, 3(3), 181–206.CrossRef
69.
go back to reference Pattingre, S., Petiot, A., et al. (2004). Analysis of Gα-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods in Enzymology, 390, 17–31.CrossRef Pattingre, S., Petiot, A., et al. (2004). Analysis of Gα-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods in Enzymology, 390, 17–31.CrossRef
70.
go back to reference Bauvy, C., Meijer, A. J., et al. (2009). Assaying of autophagic protein degradation. Methods in Enzymology, 452, 47–61.CrossRef Bauvy, C., Meijer, A. J., et al. (2009). Assaying of autophagic protein degradation. Methods in Enzymology, 452, 47–61.CrossRef
71.
go back to reference Degenhardt, K., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1), 51–64.CrossRef Degenhardt, K., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1), 51–64.CrossRef
72.
go back to reference Robert, T., et al. (2011). HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 471, 74–79.CrossRef Robert, T., et al. (2011). HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 471, 74–79.CrossRef
73.
go back to reference Liang, X. H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672–676.CrossRef Liang, X. H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762), 672–676.CrossRef
74.
go back to reference Mathew, R., et al. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes and Development, 21, 1367–1381.CrossRef Mathew, R., et al. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes and Development, 21, 1367–1381.CrossRef
75.
go back to reference Mathew, R., et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137, 1062–1075.CrossRef Mathew, R., et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137, 1062–1075.CrossRef
76.
go back to reference Xie, Z., et al. (2007). Autophagosome formation: Core machinery and adaptations. Nature Cell Biology, 9(10), 1102–1109.CrossRef Xie, Z., et al. (2007). Autophagosome formation: Core machinery and adaptations. Nature Cell Biology, 9(10), 1102–1109.CrossRef
77.
go back to reference Youle, R. J., et al. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1), 9–14.CrossRef Youle, R. J., et al. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1), 9–14.CrossRef
78.
go back to reference Guo, J., et al. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes and Development, 25(5), 460–470.CrossRef Guo, J., et al. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes and Development, 25(5), 460–470.CrossRef
79.
go back to reference Yang, S., et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes and Development, 25(7), 17–29.CrossRef Yang, S., et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes and Development, 25(7), 17–29.CrossRef
80.
go back to reference Hu, Y., et al. (2012). Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Research, 72(7), 1773–1783.CrossRef Hu, Y., et al. (2012). Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Research, 72(7), 1773–1783.CrossRef
81.
go back to reference Amaravadi, R., et al. (2011). Principles and current strategies for targeting autophagy for cancer treatment. Clinical Cancer Research, 17(4), 654–666.CrossRef Amaravadi, R., et al. (2011). Principles and current strategies for targeting autophagy for cancer treatment. Clinical Cancer Research, 17(4), 654–666.CrossRef
82.
go back to reference Yang, Z., et al. (2011). The role of autophagy in cancer: Therapeutic implications. Molecular Cancer Therapeutics, 10(9), 1533–1541.CrossRef Yang, Z., et al. (2011). The role of autophagy in cancer: Therapeutic implications. Molecular Cancer Therapeutics, 10(9), 1533–1541.CrossRef
83.
go back to reference Matsuda, F., et al. (2009). Autophagy induced by 2-deoxy-D-glucose suppresses intracellular multiplication of Legionella pneumophila in A/J mouse macrophages. Autophagy, 5(4), 484–493.CrossRef Matsuda, F., et al. (2009). Autophagy induced by 2-deoxy-D-glucose suppresses intracellular multiplication of Legionella pneumophila in A/J mouse macrophages. Autophagy, 5(4), 484–493.CrossRef
84.
go back to reference Mizushima, N., et al. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075. Mizushima, N., et al. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075.
85.
go back to reference Lee, J. H., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell, 141(7), 1146–1191.CrossRef Lee, J. H., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell, 141(7), 1146–1191.CrossRef
86.
go back to reference Wong, E. S., et al. (2008). Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Human Molecular Genetics, 7(16), 2570–2582.CrossRef Wong, E. S., et al. (2008). Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Human Molecular Genetics, 7(16), 2570–2582.CrossRef
87.
go back to reference Vives-Bauza, C., de Vries, R. L., et al. (2010). PINK1/Parkin direct mitochondria to autophagy. Autophagy, 6(2), 315–316. Vives-Bauza, C., de Vries, R. L., et al. (2010). PINK1/Parkin direct mitochondria to autophagy. Autophagy, 6(2), 315–316.
88.
go back to reference Hara, T., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441(7095), 885–889.CrossRef Hara, T., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441(7095), 885–889.CrossRef
89.
go back to reference Komatsu, M., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095), 880–884.CrossRef Komatsu, M., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095), 880–884.CrossRef
90.
go back to reference Tsukamoto, S., et al. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science, 321(5885), 117–120.CrossRef Tsukamoto, S., et al. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science, 321(5885), 117–120.CrossRef
91.
go back to reference Al Rawi, S., et al. (2011). Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science, 334(6059), 1144–1147.CrossRef Al Rawi, S., et al. (2011). Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science, 334(6059), 1144–1147.CrossRef
92.
go back to reference Qu, X., et al. (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 128(5), 931–946.CrossRef Qu, X., et al. (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 128(5), 931–946.CrossRef
93.
go back to reference Kuma, A., et al. (2004). The role of autophagy during the early neonatal starvation period. Nature, 432(7020), 1032–1036.CrossRef Kuma, A., et al. (2004). The role of autophagy during the early neonatal starvation period. Nature, 432(7020), 1032–1036.CrossRef
94.
go back to reference Paludan, C., et al. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science, 307(5709), 593–596.CrossRef Paludan, C., et al. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science, 307(5709), 593–596.CrossRef
95.
go back to reference Nedjic, J., et al. (2008). Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature, 455(7211), 396–400.CrossRef Nedjic, J., et al. (2008). Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature, 455(7211), 396–400.CrossRef
96.
go back to reference Nakagawa, I., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science, 306(5698), 1037–1040.CrossRef Nakagawa, I., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science, 306(5698), 1037–1040.CrossRef
97.
go back to reference Lee, H. K., et al. (2007). Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science, 315(5817), 1398–1401.CrossRef Lee, H. K., et al. (2007). Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science, 315(5817), 1398–1401.CrossRef
98.
go back to reference Singh, S. B., et al. (2006). Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science, 313(5792), 1438–1441.CrossRef Singh, S. B., et al. (2006). Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science, 313(5792), 1438–1441.CrossRef
99.
go back to reference Munz, C. (2010). Antigen processing via autophagy—not only for MHC class II presentation anymore? Current Opinion Immunology, 22(1), 89–93.CrossRef Munz, C. (2010). Antigen processing via autophagy—not only for MHC class II presentation anymore? Current Opinion Immunology, 22(1), 89–93.CrossRef
100.
go back to reference Levine, B., et al. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42.CrossRef Levine, B., et al. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42.CrossRef
101.
go back to reference Ogawa, M., et al. (2005). Escape of intracellular Shigella from autophagy. Science, 307(5710), 727–731.CrossRef Ogawa, M., et al. (2005). Escape of intracellular Shigella from autophagy. Science, 307(5710), 727–731.CrossRef
102.
go back to reference Wileman, T. (2006). Aggresomes and autophagy generate sites for virus replication. Science, 312(5775), 875–878.CrossRef Wileman, T. (2006). Aggresomes and autophagy generate sites for virus replication. Science, 312(5775), 875–878.CrossRef
103.
go back to reference Virgin, H. W., et al. (2009). Autophagy genes in immunity. Nature Immunology, 10(5), 461–470.CrossRef Virgin, H. W., et al. (2009). Autophagy genes in immunity. Nature Immunology, 10(5), 461–470.CrossRef
104.
go back to reference Taylor, M. P., & Kirkegaard, K. (2007). Modification of cellular autophagy protein LC3 by poliovirus. Journal of Virology, 81(22), 12543–12553.CrossRef Taylor, M. P., & Kirkegaard, K. (2007). Modification of cellular autophagy protein LC3 by poliovirus. Journal of Virology, 81(22), 12543–12553.CrossRef
105.
go back to reference Brabec-Zaruba, M., et al. (2007). Induction of autophagy does not affect human rhinovirus type 2 production. Journal of Virology, 81(19), 10815–10817.CrossRef Brabec-Zaruba, M., et al. (2007). Induction of autophagy does not affect human rhinovirus type 2 production. Journal of Virology, 81(19), 10815–10817.CrossRef
106.
go back to reference Blanchet, F. P., Moris, A., et al. (2010). Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity, 32(5), 654–669.CrossRef Blanchet, F. P., Moris, A., et al. (2010). Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity, 32(5), 654–669.CrossRef
107.
go back to reference Nicklin, P., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 136(3), 521–534.CrossRef Nicklin, P., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 136(3), 521–534.CrossRef
108.
go back to reference Singh, R., et al. (2009). Autophagy regulates lipid metabolism. Nature, 458(7242), 1131–1135.CrossRef Singh, R., et al. (2009). Autophagy regulates lipid metabolism. Nature, 458(7242), 1131–1135.CrossRef
109.
go back to reference He, C., et al. (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382), 511–515.CrossRef He, C., et al. (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382), 511–515.CrossRef
110.
go back to reference Rubinsztein, D. C., et al. (2011). Autophagy and aging. Cell, 146(5), 682–695.CrossRef Rubinsztein, D. C., et al. (2011). Autophagy and aging. Cell, 146(5), 682–695.CrossRef
111.
go back to reference Green, D. R., et al. (2011). Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science, 333(6046), 1109–1112.CrossRef Green, D. R., et al. (2011). Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science, 333(6046), 1109–1112.CrossRef
112.
go back to reference Melendez, A., et al. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science, 301(5638), 1387–1391. Melendez, A., et al. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science, 301(5638), 1387–1391.
113.
go back to reference Johnson,T. E. (2008). Caenorhabditis elegans 2007: The premier model for the study of aging. Experimental Gerontology, 43(1), 1–4. Johnson,T. E. (2008). Caenorhabditis elegans 2007: The premier model for the study of aging. Experimental Gerontology, 43(1), 1–4.
114.
go back to reference Chen, Y., et al. (2005). Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochemical Biophysical Research Commun, 337(1), 52–60.CrossRef Chen, Y., et al. (2005). Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochemical Biophysical Research Commun, 337(1), 52–60.CrossRef
115.
go back to reference Seleverstov, O., et al. (2006). Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Letter, 6(12), 2826–2832. Seleverstov, O., et al. (2006). Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Letter, 6(12), 2826–2832.
116.
go back to reference Stern, S. T., et al. (2008). Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? Toxicological Sciences, 106(1), 140–152.CrossRef Stern, S. T., et al. (2008). Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? Toxicological Sciences, 106(1), 140–152.CrossRef
117.
go back to reference Zhang, Q., et al. (2009). Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy, 5(8), 1107–1117.CrossRef Zhang, Q., et al. (2009). Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy, 5(8), 1107–1117.CrossRef
118.
go back to reference Yu, L., et al. (2009). Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small (Weinheim an der Bergstrasse, Germany), 5(24), 2784–2787.CrossRef Yu, L., et al. (2009). Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small (Weinheim an der Bergstrasse, Germany), 5(24), 2784–2787.CrossRef
119.
go back to reference Man, N., et al. (2010). Rare earth oxide nanocrystals as a new class of autophagy inducers. Autophagy, 6(2), 310–311.CrossRef Man, N., et al. (2010). Rare earth oxide nanocrystals as a new class of autophagy inducers. Autophagy, 6(2), 310–311.CrossRef
120.
go back to reference Liu, H. L., et al. (2011). A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death and Disease, 2, e159. Liu, H. L., et al. (2011). A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death and Disease, 2, e159.
121.
go back to reference Wei, P., et al. (2010). C60 (Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology, 21(49), 495101–495112.CrossRef Wei, P., et al. (2010). C60 (Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology, 21(49), 495101–495112.CrossRef
122.
go back to reference Lee, C., et al. (2011). C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide. Nanomedicine, 7(1), 107–114.CrossRef Lee, C., et al. (2011). C60 fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide. Nanomedicine, 7(1), 107–114.CrossRef
123.
go back to reference Zhang, Y., et al. (2010). Nano rare-earth oxides induced size-dependent vacuolization: An independent pathway from autophagy. International Journal of Nanomedicine, 5, 601–609.CrossRef Zhang, Y., et al. (2010). Nano rare-earth oxides induced size-dependent vacuolization: An independent pathway from autophagy. International Journal of Nanomedicine, 5, 601–609.CrossRef
124.
go back to reference Khan, M. I., et al. (2012). Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials, 33(5), 1477–1488.CrossRef Khan, M. I., et al. (2012). Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials, 33(5), 1477–1488.CrossRef
125.
go back to reference Ma, X., et al. (2011). Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano, 5(11), 8629–8639.CrossRef Ma, X., et al. (2011). Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano, 5(11), 8629–8639.CrossRef
126.
go back to reference Wu, Y. N., et al. (2011). The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 32(20), 4565–4573.CrossRef Wu, Y. N., et al. (2011). The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 32(20), 4565–4573.CrossRef
127.
go back to reference Li, C., et al. (2009). PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. Journal of Molecular Cell Biology, 1(1), 37–45.CrossRef Li, C., et al. (2009). PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. Journal of Molecular Cell Biology, 1(1), 37–45.CrossRef
128.
go back to reference Man, N., et al. (2010). Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy, 6(4), 449–454.CrossRef Man, N., et al. (2010). Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy, 6(4), 449–454.CrossRef
129.
go back to reference Eidi, H., et al. (2012). Drug delivery by polymeric nanoparticles induced autophagy in macrophages. International Journal of Pharmaceutics, 422(1), 495–503.CrossRef Eidi, H., et al. (2012). Drug delivery by polymeric nanoparticles induced autophagy in macrophages. International Journal of Pharmaceutics, 422(1), 495–503.CrossRef
130.
go back to reference Kroemer, G., et al. (2008). Autophagic cell death: The story of a misnomer. Nature Reviews Molecular Cell Biology, 9(12), 1004–1010.CrossRef Kroemer, G., et al. (2008). Autophagic cell death: The story of a misnomer. Nature Reviews Molecular Cell Biology, 9(12), 1004–1010.CrossRef
131.
go back to reference Chiara Maiuri, M. (2007). Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8(9), 741–752.CrossRef Chiara Maiuri, M. (2007). Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8(9), 741–752.CrossRef
132.
go back to reference Yang, Lu., et al. (2012). MnO nanocrystals: A platform for integration of MRI and genuine autophagy induction for chemotherapy. Advanced Functional Materials, 10, 1002. Yang, Lu., et al. (2012). MnO nanocrystals: A platform for integration of MRI and genuine autophagy induction for chemotherapy. Advanced Functional Materials, 10, 1002.
133.
go back to reference Li, J. J., Hartono, D., et al. (2010). Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 31(23), 5996–6003.CrossRef Li, J. J., Hartono, D., et al. (2010). Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 31(23), 5996–6003.CrossRef
134.
go back to reference Li, H. Y., Li, Y. H., Jiao, J., & Hu, H. M. (2011). Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumor response. Nature Nanotechnology, 6(10), 645–650.CrossRef Li, H. Y., Li, Y. H., Jiao, J., & Hu, H. M. (2011). Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumor response. Nature Nanotechnology, 6(10), 645–650.CrossRef
135.
go back to reference Chiu, H. (2011). Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiation Research, 175(5), 547–560.CrossRef Chiu, H. (2011). Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiation Research, 175(5), 547–560.CrossRef
136.
go back to reference Johnson-Lyles, D., et al. (2010). Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 248(3), 249–258.CrossRef Johnson-Lyles, D., et al. (2010). Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicology and Applied Pharmacology, 248(3), 249–258.CrossRef
137.
go back to reference Ueng, T., et al. (1997). Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicology Letters, 93(1), 29–37.CrossRef Ueng, T., et al. (1997). Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicology Letters, 93(1), 29–37.CrossRef
138.
go back to reference Chen, H., et al. (1998). Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicologic Pathology, 26(1), 143–151.CrossRef Chen, H., et al. (1998). Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicologic Pathology, 26(1), 143–151.CrossRef
139.
go back to reference Monick, M., et al. (2010). Identification of an autophagy defect in smokers’ alveolar macrophages. Journal of Immunology, 185(9), 5425–5435.CrossRef Monick, M., et al. (2010). Identification of an autophagy defect in smokers’ alveolar macrophages. Journal of Immunology, 185(9), 5425–5435.CrossRef
140.
go back to reference Chen, M. Y., et al. (2005). Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. Journal of Neurosurgery, 103(2), 311–319.CrossRef Chen, M. Y., et al. (2005). Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. Journal of Neurosurgery, 103(2), 311–319.CrossRef
141.
go back to reference Zhang, X. L., Niu, H. Y., et al. (2010). Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Analytical Chemistry, 82(6), 2363–2371.CrossRef Zhang, X. L., Niu, H. Y., et al. (2010). Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Analytical Chemistry, 82(6), 2363–2371.CrossRef
142.
go back to reference Chen, Y. J., Tao, J. A., et al. (2010). Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Development and Industrial Pharmacy, 36(10), 1235–1244.CrossRef Chen, Y. J., Tao, J. A., et al. (2010). Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Development and Industrial Pharmacy, 36(10), 1235–1244.CrossRef
143.
go back to reference Alam, M. M., et al. (2010). Synthesis and characterization of TTAB coated Silver (Ag) nanoparticles. Advanced Materials Research, 264, 530–534. Alam, M. M., et al. (2010). Synthesis and characterization of TTAB coated Silver (Ag) nanoparticles. Advanced Materials Research, 264, 530–534.
144.
go back to reference Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., & Belcher, A. M. (2000). Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 405(6787), 665–668.CrossRef Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., & Belcher, A. M. (2000). Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 405(6787), 665–668.CrossRef
145.
go back to reference Brown, S., Sarikaya, M., et al. (2000). A genetic analysis of crystal growth. Journal of Molecular Biology, 299(3), 725–735.CrossRef Brown, S., Sarikaya, M., et al. (2000). A genetic analysis of crystal growth. Journal of Molecular Biology, 299(3), 725–735.CrossRef
146.
go back to reference Giljohann, D. A., Seferos, D. S., et al. (2007). Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Letters, 7(12), 3818–3821.CrossRef Giljohann, D. A., Seferos, D. S., et al. (2007). Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Letters, 7(12), 3818–3821.CrossRef
147.
go back to reference Bakota, E. L., Aulisa, L., Tsyboulski, D. A., Weisman, R. B., & Hartgerink, J. D. (2009). Multidomain peptides as single-walled carbon nanotube surfactants in cell culture. Biomacromolecules, 10(8), 2201–2206.CrossRef Bakota, E. L., Aulisa, L., Tsyboulski, D. A., Weisman, R. B., & Hartgerink, J. D. (2009). Multidomain peptides as single-walled carbon nanotube surfactants in cell culture. Biomacromolecules, 10(8), 2201–2206.CrossRef
148.
go back to reference Kim, Y. H., Jeon, J., et al. (2011). Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small (Weinheim an der Bergstrasse, Germany), 7(14), 2052–2060.CrossRef Kim, Y. H., Jeon, J., et al. (2011). Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small (Weinheim an der Bergstrasse, Germany), 7(14), 2052–2060.CrossRef
149.
go back to reference Dutta, D., et al. (2007). Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicological Sciences, 100(1), 303–315.CrossRef Dutta, D., et al. (2007). Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicological Sciences, 100(1), 303–315.CrossRef
150.
go back to reference Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.CrossRef Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317.CrossRef
151.
go back to reference Barbas, C. F., III, Burton, D. R., Scott, J. K., & Silverman, G. J. (2001). Phage display: A laboratory manual (Cold Spring Harbour Laboratory Press, New York). Barbas, C. F., III, Burton, D. R., Scott, J. K., & Silverman, G. J. (2001). Phage display: A laboratory manual (Cold Spring Harbour Laboratory Press, New York).
152.
go back to reference Lademann, J., et al. (1999). Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacology and Applied Skin Physiology, 12, 247–256.CrossRef Lademann, J., et al. (1999). Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacology and Applied Skin Physiology, 12, 247–256.CrossRef
153.
go back to reference Lowman, H. B., et al. (1991). Selecting high-affinity binding proteins by monovalent phage display. Biochemistry, 30(45), 10832–10838.CrossRef Lowman, H. B., et al. (1991). Selecting high-affinity binding proteins by monovalent phage display. Biochemistry, 30(45), 10832–10838.CrossRef
154.
go back to reference Pasqualini, R., & Ruoslahti, E. (1996). Organ targeting in vivo using phage display peptide libraries. Nature, 380, 364–366.CrossRef Pasqualini, R., & Ruoslahti, E. (1996). Organ targeting in vivo using phage display peptide libraries. Nature, 380, 364–366.CrossRef
155.
go back to reference Rajotte, D., et al. (1998). Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. The Journal of Clinical Investigation, 102(2), 430–437.CrossRef Rajotte, D., et al. (1998). Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. The Journal of Clinical Investigation, 102(2), 430–437.CrossRef
156.
go back to reference Bai, F., Liang, J., et al. (2007). Inhibitory effects of a specific phage-displayed peptide on high peritoneal metastasis of gastric cancer. Journal of Molecular Medcine, 85, 169–180.CrossRef Bai, F., Liang, J., et al. (2007). Inhibitory effects of a specific phage-displayed peptide on high peritoneal metastasis of gastric cancer. Journal of Molecular Medcine, 85, 169–180.CrossRef
157.
go back to reference Wang, S. X., et al. (2003). Selection of targets locating on the surface of epithelial ovarian cancer cells by using phage peptide library. Zhonghua Fu Chan Ke Za Zhi, 38(7), 412–414. Wang, S. X., et al. (2003). Selection of targets locating on the surface of epithelial ovarian cancer cells by using phage peptide library. Zhonghua Fu Chan Ke Za Zhi, 38(7), 412–414.
158.
go back to reference Hsiung, P. L., et al. (2008). Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Medicine, 14(4), 454–458.CrossRef Hsiung, P. L., et al. (2008). Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Medicine, 14(4), 454–458.CrossRef
159.
go back to reference Du, Y. Z., Cai, L. L., et al. (2012). Tumor cells-specific targeting delivery achieved by A54 peptide functionalized polymeric micelles. Biomaterials, 33(34), 8858–8867.CrossRef Du, Y. Z., Cai, L. L., et al. (2012). Tumor cells-specific targeting delivery achieved by A54 peptide functionalized polymeric micelles. Biomaterials, 33(34), 8858–8867.CrossRef
160.
go back to reference Shukla, G. S., et al. (2005). Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library. Oncology Reports, 13(4), 757–764. Shukla, G. S., et al. (2005). Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library. Oncology Reports, 13(4), 757–764.
161.
go back to reference Wang, Y., et al. (2003). In vivo screening and characterization of peptides specific binding to vasculature of gastric cancer. Chinese Journal of Cell Molmmunology, 19(5), 469–472. Wang, Y., et al. (2003). In vivo screening and characterization of peptides specific binding to vasculature of gastric cancer. Chinese Journal of Cell Molmmunology, 19(5), 469–472.
162.
go back to reference Wang, X. W., et al. (2003). Biospanning of peptide specific to P glycopmtein. Chinese Journal of Urology, 24(12), 824–826. Wang, X. W., et al. (2003). Biospanning of peptide specific to P glycopmtein. Chinese Journal of Urology, 24(12), 824–826.
163.
go back to reference Yao, V. J., et al. (2005). Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. The American Journal of Pathology, 166(2), 625–636.CrossRef Yao, V. J., et al. (2005). Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. The American Journal of Pathology, 166(2), 625–636.CrossRef
164.
go back to reference Wang, B., et al. (2004). Selection of targeted glioblastoma tumor cell binding and internalization peptides through phage display vector. Chinese Journal of Pathophysiology, 20(5), 752–756. Wang, B., et al. (2004). Selection of targeted glioblastoma tumor cell binding and internalization peptides through phage display vector. Chinese Journal of Pathophysiology, 20(5), 752–756.
165.
go back to reference Flynn, C. E., Mao, C. B., et al. (2003). Synthesis and organization of nanoscale II-VI semiconductor materials using evolved peptide specificity and viral capsid assembly. Journal of Materials Chemistry, 13(10), 2414–2421.CrossRef Flynn, C. E., Mao, C. B., et al. (2003). Synthesis and organization of nanoscale II-VI semiconductor materials using evolved peptide specificity and viral capsid assembly. Journal of Materials Chemistry, 13(10), 2414–2421.CrossRef
166.
go back to reference Lee, S. W., Mao, C. B., et al. (2002). Ordering of quantum dots using genetically engineered viruses. Science, 296(5569), 892–895.CrossRef Lee, S. W., Mao, C. B., et al. (2002). Ordering of quantum dots using genetically engineered viruses. Science, 296(5569), 892–895.CrossRef
167.
go back to reference Mao, C. B., Solis, D. J., et al. (2004). Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 303(5655), 213–217.CrossRef Mao, C. B., Solis, D. J., et al. (2004). Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 303(5655), 213–217.CrossRef
168.
go back to reference Reiss, B. D., Mao, C. B., et al. (2004). Biological routes to metal alloy ferromagnetic nanostructures. Nano Letters, 4(6), 1127–1132.CrossRef Reiss, B. D., Mao, C. B., et al. (2004). Biological routes to metal alloy ferromagnetic nanostructures. Nano Letters, 4(6), 1127–1132.CrossRef
169.
go back to reference Naik, R. R., Brott, L. L., et al. (2003). Bio-inspired approaches and biologically derived materials for coatings. Progress in Organic Coatings, 47(3), 249–255.CrossRef Naik, R. R., Brott, L. L., et al. (2003). Bio-inspired approaches and biologically derived materials for coatings. Progress in Organic Coatings, 47(3), 249–255.CrossRef
170.
go back to reference Lee, E., Lim, Y., et al. (2008). Solution structure of peptide AG4 used to form silver nanoparticles. Biochemical adn Biophysical Research Communications, 376(3), 595–598.CrossRef Lee, E., Lim, Y., et al. (2008). Solution structure of peptide AG4 used to form silver nanoparticles. Biochemical adn Biophysical Research Communications, 376(3), 595–598.CrossRef
171.
go back to reference Kulp, J. L., Sarikaya, M., et al. (2004). Molecular characterization of a prokaryotic polypeptide sequence that catalyzes Au crystal formation. Journal of Materials Chemistry, 14(14), 2325–2332.CrossRef Kulp, J. L., Sarikaya, M., et al. (2004). Molecular characterization of a prokaryotic polypeptide sequence that catalyzes Au crystal formation. Journal of Materials Chemistry, 14(14), 2325–2332.CrossRef
172.
go back to reference Kim, J., et al. (2010). Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater ialia, 6(7), 2681–2689.CrossRef Kim, J., et al. (2010). Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater ialia, 6(7), 2681–2689.CrossRef
173.
go back to reference Sano, K. I., Sasaki, H., et al. (2005). Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1). Langmuir, 21(7), 3090–3095.CrossRef Sano, K. I., Sasaki, H., et al. (2005). Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1). Langmuir, 21(7), 3090–3095.CrossRef
174.
go back to reference Okochi, M., Sugita, T., et al. (2010). Peptide array-based characterization and design of ZnO-high affinity peptides. Biotechnology and Bioengineering, 106(6), 845–851.CrossRef Okochi, M., Sugita, T., et al. (2010). Peptide array-based characterization and design of ZnO-high affinity peptides. Biotechnology and Bioengineering, 106(6), 845–851.CrossRef
175.
go back to reference Lewin, M., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18(4), 410–414.CrossRef Lewin, M., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18(4), 410–414.CrossRef
Metadata
Title
Introduction
Author
Yunjiao Zhang
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8166-0_1

Premium Partners