Skip to main content
Top
Published in:
Cover of the book

2022 | OriginalPaper | Chapter

1. Introduction

Authors : Lei Ding, Qing-Long Han, Boda Ning

Published in: Distributed Control and Optimization of Networked Microgrids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the ever-increasing demand for electricity, the exhaustion of traditional energy resources (e.g., coal, fossil oil, gas) and environmental deterioration have been becoming the major concern for the modern society. This stimulates the rapid development of green and renewable energy resources. Undoubtedly, smart grids can provide a necessary and important support to realize the transformation of high-efficient, low-carbon and clean energy. Currently, many countries and regions such as China, the United States, Europe and Canada have invested mounts of human and material resources to develop such a novel smart grid. For example, in the “China Manufacturing 2025” plan, smart grids have been listed as one of key breakthrough strategic domains and become a critical mission for “Internet+Smart Energy”, aiming fundamentally to make a significant promotion of energy transformation and accomplish the strategic plan of energy development.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Mohammed, S.S. Refaat, S. Bayhan, H. Abu-Rub, AC microgrid control and management strategies: evaluation and review. IEEE Power Electron. Mag. 6(2), 18–31 (2019)CrossRef A. Mohammed, S.S. Refaat, S. Bayhan, H. Abu-Rub, AC microgrid control and management strategies: evaluation and review. IEEE Power Electron. Mag. 6(2), 18–31 (2019)CrossRef
2.
go back to reference D.E. Olivares, A. Mehrizi-Sani, A.H. Etemadi, C.A. Canizares, R. Iravani, M. Kazerani, A.H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)CrossRef D.E. Olivares, A. Mehrizi-Sani, A.H. Etemadi, C.A. Canizares, R. Iravani, M. Kazerani, A.H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)CrossRef
3.
go back to reference J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. De Vicuña, M. Castilla, Hierarchical control of droop-controlled ac and dc microgrids- general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)CrossRef J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. De Vicuña, M. Castilla, Hierarchical control of droop-controlled ac and dc microgrids- general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)CrossRef
4.
go back to reference J.P. Lopes, C. Moreira, A. Madureira, Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)CrossRef J.P. Lopes, C. Moreira, A. Madureira, Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)CrossRef
5.
go back to reference F. Chen, M. Chen, Q. Li, K. Meng, Y. Zheng, J.M. Guerrero, D. Abbott, Cost-based droop schemes for economic dispatch in islanded microgrids. IEEE Trans. Smart Grid 8(1), 63–74 (2017)CrossRef F. Chen, M. Chen, Q. Li, K. Meng, Y. Zheng, J.M. Guerrero, D. Abbott, Cost-based droop schemes for economic dispatch in islanded microgrids. IEEE Trans. Smart Grid 8(1), 63–74 (2017)CrossRef
6.
go back to reference Q.-C. Zhong, Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans. Ind. Electron. 60(4), 1281–1290 (2013)CrossRef Q.-C. Zhong, Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans. Ind. Electron. 60(4), 1281–1290 (2013)CrossRef
7.
go back to reference J.W. Simpson-Porco, F. Drfler, F. Bullo, Voltage stabilization in microgrids via quadratic droop control. IEEE Trans. Autom. Control 62(3), 1239–1253 (2017)MathSciNetMATHCrossRef J.W. Simpson-Porco, F. Drfler, F. Bullo, Voltage stabilization in microgrids via quadratic droop control. IEEE Trans. Autom. Control 62(3), 1239–1253 (2017)MathSciNetMATHCrossRef
8.
go back to reference K. Tan, X. Peng, P.L. So, Y.C. Chu, M. Chen, Centralized control for parallel operation of distributed generation inverters in microgrids. IEEE Trans. Smart Grid 3(4), 1977–1987 (2012)CrossRef K. Tan, X. Peng, P.L. So, Y.C. Chu, M. Chen, Centralized control for parallel operation of distributed generation inverters in microgrids. IEEE Trans. Smart Grid 3(4), 1977–1987 (2012)CrossRef
9.
go back to reference J.W. Simpson-Porco, Q. Shafiee, F. Dörfler, J.C. Vasquez, J.M. Guerrero, F. Bullo, Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 62(11), 7025–7038 (2015)CrossRef J.W. Simpson-Porco, Q. Shafiee, F. Dörfler, J.C. Vasquez, J.M. Guerrero, F. Bullo, Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 62(11), 7025–7038 (2015)CrossRef
10.
go back to reference A. Bidram, A. Davoudi, F.L. Lewis, J.M. Guerrero, Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst. 28(3), 3462–3470 (2013)CrossRef A. Bidram, A. Davoudi, F.L. Lewis, J.M. Guerrero, Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst. 28(3), 3462–3470 (2013)CrossRef
11.
go back to reference J. Schiffer, T. Seel, J. Raisch, T. Sezi, Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control. IEEE Trans. Control Syst. Technol. 24(1), 96–109 (2016)CrossRef J. Schiffer, T. Seel, J. Raisch, T. Sezi, Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control. IEEE Trans. Control Syst. Technol. 24(1), 96–109 (2016)CrossRef
12.
go back to reference Y. Xu, H. Sun, W. Gu, Y. Xu, Z. Li, Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid. IEEE Trans. Ind. Inform. 15(1), 225–235 (2019)CrossRef Y. Xu, H. Sun, W. Gu, Y. Xu, Z. Li, Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid. IEEE Trans. Ind. Inform. 15(1), 225–235 (2019)CrossRef
13.
go back to reference X. Lu, X. Yu, J. Lai, J.M. Guerrero, H. Zhou, Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links. IEEE Trans. Ind. Inform. 13(2), 448–460 (2017)CrossRef X. Lu, X. Yu, J. Lai, J.M. Guerrero, H. Zhou, Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links. IEEE Trans. Ind. Inform. 13(2), 448–460 (2017)CrossRef
14.
go back to reference X. Lu, X. Yu, J. Lai, J.M. Guerrero, Y. Wang, H. Zhou, A novel distributed secondary coordination control approach for islanded microgrids. IEEE Trans. Smart Grid 9(4), 2726–2740 (2018)CrossRef X. Lu, X. Yu, J. Lai, J.M. Guerrero, Y. Wang, H. Zhou, A novel distributed secondary coordination control approach for islanded microgrids. IEEE Trans. Smart Grid 9(4), 2726–2740 (2018)CrossRef
15.
go back to reference T. Morstyn, B. Hredzak, V.G. Agelidis, Distributed cooperative control of microgrid storage. IEEE Trans. Power Syst. 30(5), 2780–2789 (2015)CrossRef T. Morstyn, B. Hredzak, V.G. Agelidis, Distributed cooperative control of microgrid storage. IEEE Trans. Power Syst. 30(5), 2780–2789 (2015)CrossRef
16.
go back to reference J. Khazaei, Z. Miao, Consensus control for energy storage systems. IEEE Trans. Smart Grid 9(4), 3009–3017 (2018)CrossRef J. Khazaei, Z. Miao, Consensus control for energy storage systems. IEEE Trans. Smart Grid 9(4), 3009–3017 (2018)CrossRef
17.
go back to reference D.H. Nguyen, J. Khazaei, Multiagent time-delayed fast consensus design for distributed battery energy storage systems. IEEE Trans. Sustain. Energy 9(3), 1397–1406 (2018)CrossRef D.H. Nguyen, J. Khazaei, Multiagent time-delayed fast consensus design for distributed battery energy storage systems. IEEE Trans. Sustain. Energy 9(3), 1397–1406 (2018)CrossRef
18.
go back to reference J. Khazaei, D.H. Nguyen, Multi-agent consensus design for heterogeneous energy storage devices with droop control in smart grids. IEEE Trans. Smart Grid 10(2), 1395–1404 (2019)CrossRef J. Khazaei, D.H. Nguyen, Multi-agent consensus design for heterogeneous energy storage devices with droop control in smart grids. IEEE Trans. Smart Grid 10(2), 1395–1404 (2019)CrossRef
19.
go back to reference T. Morstyn, B. Hredzak, V.G. Agelidis, Cooperative multi-agent control of heterogeneous storage devices distributed in a DC microgrid. IEEE Trans. Power Syst. 31(4), 2974–2986 (2016)CrossRef T. Morstyn, B. Hredzak, V.G. Agelidis, Cooperative multi-agent control of heterogeneous storage devices distributed in a DC microgrid. IEEE Trans. Power Syst. 31(4), 2974–2986 (2016)CrossRef
20.
go back to reference J. Hu, A. Lanzon, Distributed finite-time consensus control for heterogeneous battery energy storage systems in droop-controlled microgrids. IEEE Trans. Smart Grid 10(5), 4751–4761 (2019)CrossRef J. Hu, A. Lanzon, Distributed finite-time consensus control for heterogeneous battery energy storage systems in droop-controlled microgrids. IEEE Trans. Smart Grid 10(5), 4751–4761 (2019)CrossRef
21.
go back to reference Z. Zuo, Q.-L. Han, B. Ning, X. Ge, X.-M. Zhang, An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans. Ind. Inform. 14(6), 2322–2334 (2018)CrossRef Z. Zuo, Q.-L. Han, B. Ning, X. Ge, X.-M. Zhang, An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans. Ind. Inform. 14(6), 2322–2334 (2018)CrossRef
22.
go back to reference L. Meng, T. Dragicevic, J. Roldán-Pérez, J.C. Vasquez, J.M. Guerrero, Modeling and sensitivity study of consensus algorithm-based distributed hierarchical control for DC microgrids. IEEE Trans. Smart Grid 7(3), 1504–1515 (2016)CrossRef L. Meng, T. Dragicevic, J. Roldán-Pérez, J.C. Vasquez, J.M. Guerrero, Modeling and sensitivity study of consensus algorithm-based distributed hierarchical control for DC microgrids. IEEE Trans. Smart Grid 7(3), 1504–1515 (2016)CrossRef
23.
go back to reference S. Anand, B.G. Fernandes, J. Guerrero, Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans. Power Electron. 28(4), 1900–1913 (2013)CrossRef S. Anand, B.G. Fernandes, J. Guerrero, Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans. Power Electron. 28(4), 1900–1913 (2013)CrossRef
24.
go back to reference V. Nasirian, S. Moayedi, A. Davoudi, F.L. Lewis, Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron. 30(4), 2288–2303 (2015)CrossRef V. Nasirian, S. Moayedi, A. Davoudi, F.L. Lewis, Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron. 30(4), 2288–2303 (2015)CrossRef
25.
go back to reference Z. Zhang, M.-Y. Chow, Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid. IEEE Trans. Power Syst. 27(4), 1761–1768 (2012)CrossRef Z. Zhang, M.-Y. Chow, Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid. IEEE Trans. Power Syst. 27(4), 1761–1768 (2012)CrossRef
26.
go back to reference S. Yang, S. Tan, J.-X. Xu, Consensus based approach for economic dispatch problem in a smart grid. IEEE Trans. Power Syst. 28(4), 4416–4426 (2013)CrossRef S. Yang, S. Tan, J.-X. Xu, Consensus based approach for economic dispatch problem in a smart grid. IEEE Trans. Power Syst. 28(4), 4416–4426 (2013)CrossRef
27.
go back to reference G. Binetti, A. Davoudi, F.L. Lewis, D. Naso, B. Turchiano, Distributed consensus-based economic dispatch with transmission losses. IEEE Trans. Power Syst. 29(4), 1711–1720 (2014)CrossRef G. Binetti, A. Davoudi, F.L. Lewis, D. Naso, B. Turchiano, Distributed consensus-based economic dispatch with transmission losses. IEEE Trans. Power Syst. 29(4), 1711–1720 (2014)CrossRef
28.
go back to reference N. Li, L. Chen, S. H. Low, Optimal demand response based on utility maximization in power networks, in Proceedings of 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, 1–8 (2011) N. Li, L. Chen, S. H. Low, Optimal demand response based on utility maximization in power networks, in Proceedings of 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, 1–8 (2011)
29.
go back to reference P. Samadi, H. Mohsenian-Rad, R. Schober, V.W. Wong, Advanced demand side management for the future smart grid using mechanism design. IEEE Trans. Smart Grid 3(3), 1170–1180 (2012)CrossRef P. Samadi, H. Mohsenian-Rad, R. Schober, V.W. Wong, Advanced demand side management for the future smart grid using mechanism design. IEEE Trans. Smart Grid 3(3), 1170–1180 (2012)CrossRef
30.
go back to reference Z. Fan, A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Trans. Smart Grid 3(3), 1280–1290 (2012)CrossRef Z. Fan, A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Trans. Smart Grid 3(3), 1280–1290 (2012)CrossRef
31.
go back to reference N. Li, L. Chen, S. H. Low, Demand response in radial distribution networks: Distributed algorithm, in Proceedings of the 46th Asilomar Conference on Signal Systems and Computers, Pacific Grove, CA (2012), pp. 1549–1553 N. Li, L. Chen, S. H. Low, Demand response in radial distribution networks: Distributed algorithm, in Proceedings of the 46th Asilomar Conference on Signal Systems and Computers, Pacific Grove, CA (2012), pp. 1549–1553
32.
go back to reference A. Safdarian, M. Fotuhi-Firuzabad, M. Lehtonen, A distributed algorithm for managing residential demand response in smart grids. IEEE Trans. Ind. Inform. 10(4), 2385–2393 (2014)CrossRef A. Safdarian, M. Fotuhi-Firuzabad, M. Lehtonen, A distributed algorithm for managing residential demand response in smart grids. IEEE Trans. Ind. Inform. 10(4), 2385–2393 (2014)CrossRef
33.
go back to reference E. Allen, M. IIic, Z. Younes, Providing for transmission in times of scarcity: An ISO cannot do it all. Int. J. Elec. Power 21(2), 147–163 (1999) E. Allen, M. IIic, Z. Younes, Providing for transmission in times of scarcity: An ISO cannot do it all. Int. J. Elec. Power 21(2), 147–163 (1999)
34.
go back to reference L. Wang, C. Wang, G. Yin, Y. Wang, Weighted and constrained consensus for distributed power flow control, in Proceedings of 12th International Conference on Probabilistic Methods Applied to Power Systems PMAPS, Istanbul, Turkey (2012) L. Wang, C. Wang, G. Yin, Y. Wang, Weighted and constrained consensus for distributed power flow control, in Proceedings of 12th International Conference on Probabilistic Methods Applied to Power Systems PMAPS, Istanbul, Turkey (2012)
35.
go back to reference L.Y. Wang, C. Wang, G. Yin, Y. Wang, Weighted and constrained consensus for distributed power dispatch of scalable microgrids. Asian J. Control 17(5), 1725–1741 (2015)MathSciNetMATHCrossRef L.Y. Wang, C. Wang, G. Yin, Y. Wang, Weighted and constrained consensus for distributed power dispatch of scalable microgrids. Asian J. Control 17(5), 1725–1741 (2015)MathSciNetMATHCrossRef
36.
go back to reference H. Xing, Y. Mou, M. Fu, Z. Lin, Distributed bisection method for economic power dispatch in smart grid. IEEE Trans. Power Syst. 30(6), 3024–3035 (2015)CrossRef H. Xing, Y. Mou, M. Fu, Z. Lin, Distributed bisection method for economic power dispatch in smart grid. IEEE Trans. Power Syst. 30(6), 3024–3035 (2015)CrossRef
37.
go back to reference G. Chen, J. Ren, E.N. Feng, Distributed finite-time economic dispatch of a network of energy resources. IEEE Trans. Smart Grid 8(2), 822–832 (2017) G. Chen, J. Ren, E.N. Feng, Distributed finite-time economic dispatch of a network of energy resources. IEEE Trans. Smart Grid 8(2), 822–832 (2017)
38.
go back to reference N. Rahbari-Asr, U. Ojha, Z. Zhang, M.-Y. Chow, Incremental welfare consensus algorithm for cooperative distributed generation/demand response in smart grid. IEEE Trans. Smart Grid 5(6), 2836–2845 (2014)CrossRef N. Rahbari-Asr, U. Ojha, Z. Zhang, M.-Y. Chow, Incremental welfare consensus algorithm for cooperative distributed generation/demand response in smart grid. IEEE Trans. Smart Grid 5(6), 2836–2845 (2014)CrossRef
39.
go back to reference C. Zhao, J. He, P. Cheng, J. Chen, Consensus-based energy management in smart grid with transmission losses and directed communication. IEEE Trans. Smart Grid 8(5), 2049–2061 (2017)CrossRef C. Zhao, J. He, P. Cheng, J. Chen, Consensus-based energy management in smart grid with transmission losses and directed communication. IEEE Trans. Smart Grid 8(5), 2049–2061 (2017)CrossRef
40.
go back to reference Y. Xu, Z. Yang, W. Gu, M. Li, Z. Deng, Robust real-time distributed optimal control based energy management in a smart grid. IEEE Trans. Smart Grid 8(4), 1568–1579 (2017)CrossRef Y. Xu, Z. Yang, W. Gu, M. Li, Z. Deng, Robust real-time distributed optimal control based energy management in a smart grid. IEEE Trans. Smart Grid 8(4), 1568–1579 (2017)CrossRef
41.
go back to reference R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49(9), 1520–1533 (2004)MathSciNetMATHCrossRef R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49(9), 1520–1533 (2004)MathSciNetMATHCrossRef
42.
go back to reference J. Hu, Y. Hong, Leader-following coordination of multi-agent systems with coupling time delays. Phys. A 374, 853–863 (2007)CrossRef J. Hu, Y. Hong, Leader-following coordination of multi-agent systems with coupling time delays. Phys. A 374, 853–863 (2007)CrossRef
43.
go back to reference K. Peng, Y. Yang, Leader-following consensus problem with a varying-velocity leader and time-varying delays. Phys. A 388(2–3), 193–208 (2009)CrossRef K. Peng, Y. Yang, Leader-following consensus problem with a varying-velocity leader and time-varying delays. Phys. A 388(2–3), 193–208 (2009)CrossRef
44.
go back to reference J. Qin, H. Gao, W.X. Zheng, Second-order consensus for multi-agent systems with switching topology and communication delay. Syst. Control Lett. 60(6), 390–397 (2011)MathSciNetMATHCrossRef J. Qin, H. Gao, W.X. Zheng, Second-order consensus for multi-agent systems with switching topology and communication delay. Syst. Control Lett. 60(6), 390–397 (2011)MathSciNetMATHCrossRef
45.
go back to reference X. Ge, Q.-L. Han, X.-M. Zhang, Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delay. IEEE Trans. Ind. Electron. 65(4), 3417–3426 (2018)CrossRef X. Ge, Q.-L. Han, X.-M. Zhang, Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delay. IEEE Trans. Ind. Electron. 65(4), 3417–3426 (2018)CrossRef
46.
go back to reference Q. Jia, Z. Han, W. K. S. Tang, Synchronization of multi-agent systems with time-varying control and delayed communications. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(11), 4429–4438 (2019) Q. Jia, Z. Han, W. K. S. Tang, Synchronization of multi-agent systems with time-varying control and delayed communications. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(11), 4429–4438 (2019)
47.
go back to reference D. Wang, D. Wang, W. Wang, Necessary and sufficient conditions for containment control of multi-agent systems with time delay. Automatica 103, 418–423 (2019)MathSciNetMATHCrossRef D. Wang, D. Wang, W. Wang, Necessary and sufficient conditions for containment control of multi-agent systems with time delay. Automatica 103, 418–423 (2019)MathSciNetMATHCrossRef
48.
go back to reference S. Liu, X. Wang, P.X. Liu, Impact of communication delays on secondary frequency control in an islanded microgrid. IEEE Trans. Ind. Electron. 62(4), 2021–2031 (2015)CrossRef S. Liu, X. Wang, P.X. Liu, Impact of communication delays on secondary frequency control in an islanded microgrid. IEEE Trans. Ind. Electron. 62(4), 2021–2031 (2015)CrossRef
49.
go back to reference E.A. Coelho, D. Wu, J.M. Guerrero, J.C. Vasquez, T. Dragicevi, C. Stefanovi, P. Popovski, Small-signal analysis of the microgrid secondary control considering a communication time delay. IEEE Trans. Ind. Electron. 63(10), 6257–6269 (2016)CrossRef E.A. Coelho, D. Wu, J.M. Guerrero, J.C. Vasquez, T. Dragicevi, C. Stefanovi, P. Popovski, Small-signal analysis of the microgrid secondary control considering a communication time delay. IEEE Trans. Ind. Electron. 63(10), 6257–6269 (2016)CrossRef
50.
go back to reference J. Lai, H. Zhou, X. Lu, X. Yu, W. Hu, Droop-based distributed cooperative control for microgrids with time-varying delays. IEEE Trans. Smart Grid 7(4), 1775–1789 (2016)CrossRef J. Lai, H. Zhou, X. Lu, X. Yu, W. Hu, Droop-based distributed cooperative control for microgrids with time-varying delays. IEEE Trans. Smart Grid 7(4), 1775–1789 (2016)CrossRef
51.
go back to reference C. Ahumada, R. Crdenas, D. Sez, J.M. Guerrero, Secondary control strategies for frequency restoration in islanded microgrids with consideration of communication delays. IEEE Trans. Smart Grid 7(3), 1430–1441 (2016)CrossRef C. Ahumada, R. Crdenas, D. Sez, J.M. Guerrero, Secondary control strategies for frequency restoration in islanded microgrids with consideration of communication delays. IEEE Trans. Smart Grid 7(3), 1430–1441 (2016)CrossRef
52.
go back to reference G. Lou, W. Gu, X. Lu, Y. Xu, H. Hong, Distributed secondary voltage control in islanded microgrids with consideration of communication network and time delays. IEEE Trans. Smart Grid 11(5), 3702–3715 (2020)CrossRef G. Lou, W. Gu, X. Lu, Y. Xu, H. Hong, Distributed secondary voltage control in islanded microgrids with consideration of communication network and time delays. IEEE Trans. Smart Grid 11(5), 3702–3715 (2020)CrossRef
53.
go back to reference G. Lou, W. Gu, Y. Xu, W. Jin, X. Du, Stability robustness for secondary voltage control in autonomous microgrids with consideration of communication delays. IEEE Trans. Power Syst. 33(4), 4164–4178 (2018)CrossRef G. Lou, W. Gu, Y. Xu, W. Jin, X. Du, Stability robustness for secondary voltage control in autonomous microgrids with consideration of communication delays. IEEE Trans. Power Syst. 33(4), 4164–4178 (2018)CrossRef
54.
go back to reference C. Zhao, W. Sun, J. Wang, Q. Li, D. Mu, X. Xu, Distributed cooperative secondary control for islanded microgrid with markov time-varying delays. IEEE Trans. Energy Conver. 34(4), 2235–2247 (2019)CrossRef C. Zhao, W. Sun, J. Wang, Q. Li, D. Mu, X. Xu, Distributed cooperative secondary control for islanded microgrid with markov time-varying delays. IEEE Trans. Energy Conver. 34(4), 2235–2247 (2019)CrossRef
55.
go back to reference G. Chen, Z. Guo, Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays. IEEE Trans. Smart Grid 10(2), 2002–2014 (2019)CrossRef G. Chen, Z. Guo, Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays. IEEE Trans. Smart Grid 10(2), 2002–2014 (2019)CrossRef
56.
go back to reference R. Zhang, B. Hredzak, Nonlinear Sliding Mode and Distributed control of battery energy storage and photovoltaic systems in AC microgrids with communication delays. IEEE Trans. Ind. Inform. 15(9), 5149–5160 (2019)CrossRef R. Zhang, B. Hredzak, Nonlinear Sliding Mode and Distributed control of battery energy storage and photovoltaic systems in AC microgrids with communication delays. IEEE Trans. Ind. Inform. 15(9), 5149–5160 (2019)CrossRef
57.
go back to reference M. Raeispour, H. Atrianfar, H. Baghaee, G.B. Gharehpetian, Resilient \({H}_\infty \) consensus-based control of autonomous AC microgrids with uncertain time-delayed communications. IEEE Trans. Smart Grid 11(5), 3871–3884 (2020)CrossRef M. Raeispour, H. Atrianfar, H. Baghaee, G.B. Gharehpetian, Resilient \({H}_\infty \) consensus-based control of autonomous AC microgrids with uncertain time-delayed communications. IEEE Trans. Smart Grid 11(5), 3871–3884 (2020)CrossRef
58.
go back to reference C. Dou, D. Yue, J.M. Guerrero, X. Xie, S. Hu, Multiagent system-based distributed coordinated control for radial DC microgrid considering transmission time delays. IEEE Trans. Smart Grid 8(5), 2370–2381 (2017)CrossRef C. Dou, D. Yue, J.M. Guerrero, X. Xie, S. Hu, Multiagent system-based distributed coordinated control for radial DC microgrid considering transmission time delays. IEEE Trans. Smart Grid 8(5), 2370–2381 (2017)CrossRef
59.
go back to reference C. Dou, D. Yue, Z. Zhang, K. Ma, MAS-Based distributed cooperative control for DC microgrid through switching topology communication network with time-varying delays. IEEE Syst. J. 13(1), 615–624 (2019)CrossRef C. Dou, D. Yue, Z. Zhang, K. Ma, MAS-Based distributed cooperative control for DC microgrid through switching topology communication network with time-varying delays. IEEE Syst. J. 13(1), 615–624 (2019)CrossRef
60.
go back to reference M. Dong, L. Li, Y. Nie, D. Song, J. Yang, Stability analysis of a novel distributed secondary control considering communication delay in DC microgrids. IEEE Trans. Smart Grid 10(6), 6690–6700 (2019)CrossRef M. Dong, L. Li, Y. Nie, D. Song, J. Yang, Stability analysis of a novel distributed secondary control considering communication delay in DC microgrids. IEEE Trans. Smart Grid 10(6), 6690–6700 (2019)CrossRef
61.
go back to reference R. Zhang, B. Hredzak, Distributed Finite-Time multiagent montrol for DC microgrids with time felays. IEEE Trans. Smart Grid 10(3), 2692–2701 (2019)CrossRef R. Zhang, B. Hredzak, Distributed Finite-Time multiagent montrol for DC microgrids with time felays. IEEE Trans. Smart Grid 10(3), 2692–2701 (2019)CrossRef
62.
go back to reference J. Lai, X. Lu, X. Yu, A. Monti, H. Zhou, Distributed voltage regulation for cyber-physical microgrids with coupling delays and slow switching topologies. IEEE Trans. Syst. Man Cyben. Syst. 50(1), 100–110 (2020) J. Lai, X. Lu, X. Yu, A. Monti, H. Zhou, Distributed voltage regulation for cyber-physical microgrids with coupling delays and slow switching topologies. IEEE Trans. Syst. Man Cyben. Syst. 50(1), 100–110 (2020)
63.
go back to reference P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control. 52(9), 1680–1685 (2007)MathSciNetMATHCrossRef P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control. 52(9), 1680–1685 (2007)MathSciNetMATHCrossRef
64.
65.
go back to reference M. Donkers, W. Heemels, Output-based event-triggered control with guaranteed \({L}_\infty \)-gain and improved and decentralized event-triggering. IEEE Trans. Autom. Control 57(6), 1362 (2012)MathSciNetMATHCrossRef M. Donkers, W. Heemels, Output-based event-triggered control with guaranteed \({L}_\infty \)-gain and improved and decentralized event-triggering. IEEE Trans. Autom. Control 57(6), 1362 (2012)MathSciNetMATHCrossRef
66.
go back to reference C. Peng, Q.-L. Han, A novel event-triggered transmission scheme and \(\cal{L}_2\) control co-design for sampled-data control systems. IEEE Trans. Autom. Control 58(10), 2620–2626 (2013)MATHCrossRef C. Peng, Q.-L. Han, A novel event-triggered transmission scheme and \(\cal{L}_2\) control co-design for sampled-data control systems. IEEE Trans. Autom. Control 58(10), 2620–2626 (2013)MATHCrossRef
67.
go back to reference W. Heemels, M. Donkers, A. Teel, Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)MathSciNetMATHCrossRef W. Heemels, M. Donkers, A. Teel, Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)MathSciNetMATHCrossRef
68.
go back to reference D. Yue, E. Tian, Q.-L. Han, A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2013)MathSciNetMATHCrossRef D. Yue, E. Tian, Q.-L. Han, A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2013)MathSciNetMATHCrossRef
69.
go back to reference X.-M. Zhang, Q.-L. Han, A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybern. 46(12), 2745–2757 (2016)CrossRef X.-M. Zhang, Q.-L. Han, A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybern. 46(12), 2745–2757 (2016)CrossRef
70.
go back to reference B.-L. Zhang, Q.-L. Han, X.-M. Zhang, Event-triggered \({H}_\infty \) reliable control for offshore structures in network environments. J. Sound Vib. 368, 1–21 (2016)CrossRef B.-L. Zhang, Q.-L. Han, X.-M. Zhang, Event-triggered \({H}_\infty \) reliable control for offshore structures in network environments. J. Sound Vib. 368, 1–21 (2016)CrossRef
71.
go back to reference X.-M. Zhang, Q.-L. Han, X. Yu, Survey on recent advances in networked control systems. IEEE Trans. Ind. Inform. 12(5), 1740–1752 (2016)CrossRef X.-M. Zhang, Q.-L. Han, X. Yu, Survey on recent advances in networked control systems. IEEE Trans. Ind. Inform. 12(5), 1740–1752 (2016)CrossRef
72.
go back to reference X.-M. Zhang, Q.-L. Han, B.-L. Zhang, An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Inform. 13(1), 4–16 (2017)MathSciNetCrossRef X.-M. Zhang, Q.-L. Han, B.-L. Zhang, An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Inform. 13(1), 4–16 (2017)MathSciNetCrossRef
73.
go back to reference G. Seyboth, D. Dimarogonas, K. Johansson, Event-based broadcasting for multi-agent average consensus. Automatica 49, 245–252 (2013)MathSciNetMATHCrossRef G. Seyboth, D. Dimarogonas, K. Johansson, Event-based broadcasting for multi-agent average consensus. Automatica 49, 245–252 (2013)MathSciNetMATHCrossRef
74.
go back to reference Y. Fan, G. Feng, Y. Wang, C. Song, Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica 49(2), 671–675 (2013)MathSciNetMATHCrossRef Y. Fan, G. Feng, Y. Wang, C. Song, Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica 49(2), 671–675 (2013)MathSciNetMATHCrossRef
75.
go back to reference W. Zhu, Z.-P. Jiang, G. Feng, Event-based consensus of multi-agent systems with general linear models. Automatica 50(2), 552–558 (2014)MathSciNetMATHCrossRef W. Zhu, Z.-P. Jiang, G. Feng, Event-based consensus of multi-agent systems with general linear models. Automatica 50(2), 552–558 (2014)MathSciNetMATHCrossRef
76.
go back to reference C. Nowzari, J. Cortés, Distributed event-triggered coordination for average consensus on weight-balanced digraphs. Automatica 68, 237–244 (2016)MathSciNetMATHCrossRef C. Nowzari, J. Cortés, Distributed event-triggered coordination for average consensus on weight-balanced digraphs. Automatica 68, 237–244 (2016)MathSciNetMATHCrossRef
77.
go back to reference E. Garcia, Y. Cao, D. Casbeer, Decentralized event-triggered consensus with general linear dynamics. Automatica 50(10), 2633–2640 (2014)MathSciNetMATHCrossRef E. Garcia, Y. Cao, D. Casbeer, Decentralized event-triggered consensus with general linear dynamics. Automatica 50(10), 2633–2640 (2014)MathSciNetMATHCrossRef
78.
go back to reference X. Ge, F. Yang, Q.-L. Han, Distributed networked control systems: A brief overview. Inform. Sci. 380, 117–131 (2017)CrossRef X. Ge, F. Yang, Q.-L. Han, Distributed networked control systems: A brief overview. Inform. Sci. 380, 117–131 (2017)CrossRef
79.
go back to reference J. Qin, Q. Ma, Y. Shi, L. Wang, Recent advances in consensus of multi-agent systems: A brief survey. IEEE Trans. Ind. Electron. 64(6), 4972–4983 (2017)CrossRef J. Qin, Q. Ma, Y. Shi, L. Wang, Recent advances in consensus of multi-agent systems: A brief survey. IEEE Trans. Ind. Electron. 64(6), 4972–4983 (2017)CrossRef
80.
go back to reference C. Li, X. Yu, W. Yu, T. Huang, Z.-W. Liu, Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Trans. Ind. Inform. 12(5), 1775–1785 (2016)CrossRef C. Li, X. Yu, W. Yu, T. Huang, Z.-W. Liu, Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Trans. Ind. Inform. 12(5), 1775–1785 (2016)CrossRef
81.
go back to reference M. Tahir, S.K. Mazumder, Self-triggered communication enabled control of distributed generation in microgrids. IEEE Trans. Ind. Inform. 11(2), 441–449 (2015) M. Tahir, S.K. Mazumder, Self-triggered communication enabled control of distributed generation in microgrids. IEEE Trans. Ind. Inform. 11(2), 441–449 (2015)
82.
go back to reference Y. Fan, G. Hu, M. Egerstedt, Distributed reactive power sharing control for microgrids with event-triggered communication. IEEE Trans. Control Syst. Technol. 25(1), 118–128 (2017)CrossRef Y. Fan, G. Hu, M. Egerstedt, Distributed reactive power sharing control for microgrids with event-triggered communication. IEEE Trans. Control Syst. Technol. 25(1), 118–128 (2017)CrossRef
83.
go back to reference W. Meng, X. Wang, S. Liu, Distributed load sharing of an inverter-based microgrid with reduced communication. IEEE Trans. Smart Grid 9(2), 1354–1364 (2018)CrossRef W. Meng, X. Wang, S. Liu, Distributed load sharing of an inverter-based microgrid with reduced communication. IEEE Trans. Smart Grid 9(2), 1354–1364 (2018)CrossRef
84.
go back to reference S. Weng, D. Yue, C. Dou, J. Shi, C. Huang, Distributed event-triggered cooperative control for frequency and voltage stability and power sharing in isolated inverter-based microgrid. IEEE Trans. Cybern. 49(4), 1427–1439 (2018)CrossRef S. Weng, D. Yue, C. Dou, J. Shi, C. Huang, Distributed event-triggered cooperative control for frequency and voltage stability and power sharing in isolated inverter-based microgrid. IEEE Trans. Cybern. 49(4), 1427–1439 (2018)CrossRef
85.
go back to reference M. Chen, X. Xiao, J.M. Guerrero, Secondary restoration control of islanded microgrids with decentralized event-triggered strategy. IEEE Trans. Ind. Inform. 14(9), 3870–3880 (2018)CrossRef M. Chen, X. Xiao, J.M. Guerrero, Secondary restoration control of islanded microgrids with decentralized event-triggered strategy. IEEE Trans. Ind. Inform. 14(9), 3870–3880 (2018)CrossRef
86.
go back to reference R. Han, L. Meng, J.M. Guerrero, J.C. Vasquez, Distributed nonlinear control with event-triggered communication to achieve current-sharing and voltage regulation in DC Microgrids. IEEE Trans. Power Electron. 33(7), 6416–6433 (2018)CrossRef R. Han, L. Meng, J.M. Guerrero, J.C. Vasquez, Distributed nonlinear control with event-triggered communication to achieve current-sharing and voltage regulation in DC Microgrids. IEEE Trans. Power Electron. 33(7), 6416–6433 (2018)CrossRef
87.
go back to reference F. Guo, L. Wang, C. Wen, D. Zhang, Q. Xu, Distributed voltage restoration and current sharing control in islanded DC microgrid systems without continuous communication. IEEE Trans. Ind. Electron. 67(4), 3043–3053 (2020)CrossRef F. Guo, L. Wang, C. Wen, D. Zhang, Q. Xu, Distributed voltage restoration and current sharing control in islanded DC microgrid systems without continuous communication. IEEE Trans. Ind. Electron. 67(4), 3043–3053 (2020)CrossRef
88.
go back to reference S. Sahoo, S. Mishra, An adaptive event-triggered communication-based distributed secondary control for DC microgrids. IEEE Trans. Smart Grid 9(6), 6674–6683 (2018)CrossRef S. Sahoo, S. Mishra, An adaptive event-triggered communication-based distributed secondary control for DC microgrids. IEEE Trans. Smart Grid 9(6), 6674–6683 (2018)CrossRef
89.
go back to reference B. Fan, J. Peng, Q. Yang, W. Liu, Distributed periodic event-triggered algorithm for current sharing and voltage regulation in DC microgrids. IEEE Trans. Smart Grid 11(1), 577–589 (2020)CrossRef B. Fan, J. Peng, Q. Yang, W. Liu, Distributed periodic event-triggered algorithm for current sharing and voltage regulation in DC microgrids. IEEE Trans. Smart Grid 11(1), 577–589 (2020)CrossRef
90.
go back to reference J. Zhou, Y. Xu, H. Sun, L. Wang, M.-Y. Chow, Distributed event-triggered \({H}_\infty \) consensus based current sharing control of DC microgrids considering uncertainties. IEEE Trans. Ind. Inform. 16(12), 7413–7425 (2020)CrossRef J. Zhou, Y. Xu, H. Sun, L. Wang, M.-Y. Chow, Distributed event-triggered \({H}_\infty \) consensus based current sharing control of DC microgrids considering uncertainties. IEEE Trans. Ind. Inform. 16(12), 7413–7425 (2020)CrossRef
91.
go back to reference D. Ding, Q.-L. Han, Y. Xiang, X. Ge, X.-M. Zhang, A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing 275, 1674–1683 (2018)CrossRef D. Ding, Q.-L. Han, Y. Xiang, X. Ge, X.-M. Zhang, A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing 275, 1674–1683 (2018)CrossRef
92.
go back to reference W. Zeng, Y. Zhang, M.-Y. Chow, Resilient distributed energy management subject to unexpected misbehaving generation units. IEEE Trans. Ind. Inform. 13(1), 208–216 (2017)CrossRef W. Zeng, Y. Zhang, M.-Y. Chow, Resilient distributed energy management subject to unexpected misbehaving generation units. IEEE Trans. Ind. Inform. 13(1), 208–216 (2017)CrossRef
93.
go back to reference Q. Zhou, M. Shahidehpour, A. Alabdulwahab, A. Abusorrah, A cyber-attack resilient distributed control strategy in islanded microgrids. IEEE Trans. Smart Grid 11(5), 3690–3701 (2020)CrossRef Q. Zhou, M. Shahidehpour, A. Alabdulwahab, A. Abusorrah, A cyber-attack resilient distributed control strategy in islanded microgrids. IEEE Trans. Smart Grid 11(5), 3690–3701 (2020)CrossRef
94.
go back to reference R. Lu, J. Wang, Z. Wang, Distributed observer-based finite-time control of AC microgrid under attack. IEEE Trans. Smart Grid 12(1), 157–168 (2021)CrossRef R. Lu, J. Wang, Z. Wang, Distributed observer-based finite-time control of AC microgrid under attack. IEEE Trans. Smart Grid 12(1), 157–168 (2021)CrossRef
95.
go back to reference S. Zuo, O.A. Beg, F.L. Lewis, A. Davoudi, Resilient networked AC microgrids under unbounded cyber attacks. IEEE Trans. Smart Grid 11(5), 3850–3859 (2020)CrossRef S. Zuo, O.A. Beg, F.L. Lewis, A. Davoudi, Resilient networked AC microgrids under unbounded cyber attacks. IEEE Trans. Smart Grid 11(5), 3850–3859 (2020)CrossRef
96.
go back to reference S. Hu, P. Yuan, D. Yue, C. Dou, Z. Cheng, Y. Zhang, Attack-resilient event-triggered controller design of DC microgrids under DoS attacks. IEEE Trans. Circuits Syst. I: Regul. Pap. 67(2), 699–710(2020) S. Hu, P. Yuan, D. Yue, C. Dou, Z. Cheng, Y. Zhang, Attack-resilient event-triggered controller design of DC microgrids under DoS attacks. IEEE Trans. Circuits Syst. I: Regul. Pap. 67(2), 699–710(2020)
97.
go back to reference S. Zuo, T. Altun, F.L. Lewis, A. Davoudi, Distributed resilient secondary control of DC microgrids against unbounded attacks. IEEE Trans. Smart Grid 11(5), 3785–3794 (2020)CrossRef S. Zuo, T. Altun, F.L. Lewis, A. Davoudi, Distributed resilient secondary control of DC microgrids against unbounded attacks. IEEE Trans. Smart Grid 11(5), 3785–3794 (2020)CrossRef
98.
go back to reference S. Sahoo, S. Mishra, J. C.-H. Peng, T. Dragi\(\check{c}\)evi\(\acute{c}\), A stealth cyber-attack detection strategy for DC microgrids. IEEE Trans. Power Electron. 34(8), 8162–8174 (2019) S. Sahoo, S. Mishra, J. C.-H. Peng, T. Dragi\(\check{c}\)evi\(\acute{c}\), A stealth cyber-attack detection strategy for DC microgrids. IEEE Trans. Power Electron. 34(8), 8162–8174 (2019)
Metadata
Title
Introduction
Authors
Lei Ding
Qing-Long Han
Boda Ning
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-95029-3_1