Skip to main content
Top
Published in:
Cover of the book

2022 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces the overarching topic of this monograph. After recalling the need for continuum mechanics, it contrasts the concepts of spatial and material forces and highlights why the latter are a necessary concept in various branches of defect mechanics. It then reviews various vistas on material forces before commenting on their computational implications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A descriptive definition of material forces due to Eshelby [30] is the following: ... the total energy of a system ... is a function of the set of parameters necessary to specify the configuration of the imperfections. The negative gradient of the total energy wrt the position of an imperfection may conveniently be called the force on it. This force, in a sense fictitious, is introduced to give a picturesque description of energy changes, and must not be confused with the ordinary surface and body forces acting on the material.
 
Literature
1.
go back to reference Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, Cambridge Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, Cambridge
2.
go back to reference Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, Cambridge Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, Cambridge
3.
go back to reference Anand L, Govindjee S (2020) Continuum mechanics of solids. Oxford University Press, USACrossRef Anand L, Govindjee S (2020) Continuum mechanics of solids. Oxford University Press, USACrossRef
4.
go back to reference Antman SS (2005) Nonlinear problems of elasticity. Springer, Berlin Antman SS (2005) Nonlinear problems of elasticity. Springer, Berlin
5.
go back to reference Bertram A (2012) Elasticity and plasticity of large deformations. Springer, Berlin Bertram A (2012) Elasticity and plasticity of large deformations. Springer, Berlin
6.
go back to reference Ciarlet PG (1988) Mathematical Elasticity: Volume I: three-dimensional elasticity. North-Holland (1988) Ciarlet PG (1988) Mathematical Elasticity: Volume I: three-dimensional elasticity. North-Holland (1988)
7.
go back to reference Goriely A (2017) The mathematics and mechanics of biological growth. Springer, Berlin Goriely A (2017) The mathematics and mechanics of biological growth. Springer, Berlin
8.
go back to reference Gurtin M, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge Gurtin M, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge
9.
go back to reference Haupt P (2013) Continuum mechanics and theory of materials. Springer, Berlin Haupt P (2013) Continuum mechanics and theory of materials. Springer, Berlin
10.
go back to reference Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York
11.
go back to reference Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice Hall, New Jersey Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice Hall, New Jersey
12.
go back to reference Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New York Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New York
13.
go back to reference Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors: an introduction. World Scientific, Singapore Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors: an introduction. World Scientific, Singapore
14.
go back to reference Ogden RW (1997) Non-linear elastic deformations. Dover, New York Ogden RW (1997) Non-linear elastic deformations. Dover, New York
15.
go back to reference Silhavy M (2013) The mechanics and thermodynamics of continuous media. Springer, Berlin Silhavy M (2013) The mechanics and thermodynamics of continuous media. Springer, Berlin
16.
go back to reference Tadmor EB, Miller RE, Elliott RS (2012) Continuum mechanics and thermodynamics: from fundamental concepts to governing equations. Cambridge University Press, Cambridge Tadmor EB, Miller RE, Elliott RS (2012) Continuum mechanics and thermodynamics: from fundamental concepts to governing equations. Cambridge University Press, Cambridge
17.
go back to reference Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, Berlin Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, Berlin
18.
go back to reference Steinmann P (2015) Geometrical foundations of continuum mechanics. Springer, Berlin Steinmann P (2015) Geometrical foundations of continuum mechanics. Springer, Berlin
19.
20.
go back to reference Steinmann P, Smith A, Birang E, McBride A, Javili A (2021) Atomistic two-, three- and four-body potentials. Spatial and material settings. J Mech Phys Solids Steinmann P, Smith A, Birang E, McBride A, Javili A (2021) Atomistic two-, three- and four-body potentials. Spatial and material settings. J Mech Phys Solids
23.
go back to reference Ericksen JL (1995) Remarks concerning forces on line defects. ZAMP: Zeitschrift für Angewandte Mathematik und Physik 46:247–271 Ericksen JL (1995) Remarks concerning forces on line defects. ZAMP: Zeitschrift für Angewandte Mathematik und Physik 46:247–271
24.
go back to reference Ericksen JL (1998) On nonlinear elasticity theory for crystal defects. Int J Plast 14:9–24MATHCrossRef Ericksen JL (1998) On nonlinear elasticity theory for crystal defects. Int J Plast 14:9–24MATHCrossRef
25.
27.
go back to reference Steinmann P, Stein E (1996) On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput Methods Appl Mech Eng 129:235–254MATHCrossRef Steinmann P, Stein E (1996) On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput Methods Appl Mech Eng 129:235–254MATHCrossRef
28.
go back to reference Steinmann P (1996) Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int J Eng Sci 34:1717–1735MATHCrossRef Steinmann P (1996) Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int J Eng Sci 34:1717–1735MATHCrossRef
29.
go back to reference Miehe C, Schotte J (2017) Crystal plasticity and evolution of polycrystalline microstructure. In: Encyclopedia of computational mechanics, 2nd edn, pp 1–23 Miehe C, Schotte J (2017) Crystal plasticity and evolution of polycrystalline microstructure. In: Encyclopedia of computational mechanics, 2nd edn, pp 1–23
30.
go back to reference Eshelby JD (1951) The force on an elastic singularity. Philos Trans R Soc Lon. Ser A, Math Phys Sci 244:87–112 Eshelby JD (1951) The force on an elastic singularity. Philos Trans R Soc Lon. Ser A, Math Phys Sci 244:87–112
31.
go back to reference Zorski H (1981) Force on a defect in non-linear elastic medium. Int J Eng Sci 19:1573–1579MATHCrossRef Zorski H (1981) Force on a defect in non-linear elastic medium. Int J Eng Sci 19:1573–1579MATHCrossRef
32.
go back to reference Abeyaratne R, Knowles JK (1990) On the driving traction acting on a surface of strain discontinuity in a continuum. J Mech Phys Solids 38:345–360MathSciNetMATHCrossRef Abeyaratne R, Knowles JK (1990) On the driving traction acting on a surface of strain discontinuity in a continuum. J Mech Phys Solids 38:345–360MathSciNetMATHCrossRef
33.
go back to reference Abeyaratne R, Knowles JK (1991) Kinetic relations and the propagation of phase boundaries in solids. Arch Ration Mech Anal 114:119–154MathSciNetMATHCrossRef Abeyaratne R, Knowles JK (1991) Kinetic relations and the propagation of phase boundaries in solids. Arch Ration Mech Anal 114:119–154MathSciNetMATHCrossRef
34.
go back to reference Abeyaratne R, Knowles JK (2000) A note on the driving traction acting on a propagating interface: adiabatic and non-adiabatic processes of a continuum. J Appl Mech 67:829–830MATHCrossRef Abeyaratne R, Knowles JK (2000) A note on the driving traction acting on a propagating interface: adiabatic and non-adiabatic processes of a continuum. J Appl Mech 67:829–830MATHCrossRef
35.
go back to reference Cherepanov GP (1967) Crack propagation in continuous media. PMM (Appl Math Mech, Translation from Russian) 31:467–488MATH Cherepanov GP (1967) Crack propagation in continuous media. PMM (Appl Math Mech, Translation from Russian) 31:467–488MATH
36.
go back to reference Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386CrossRef Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386CrossRef
37.
go back to reference Maugin GA (1994) Eshelby stress in elastoplasticity and ductile fracture. Int J Plast 10:393–408MATHCrossRef Maugin GA (1994) Eshelby stress in elastoplasticity and ductile fracture. Int J Plast 10:393–408MATHCrossRef
39.
40.
go back to reference Gurtin M, Podio-Guidugli P (1998) Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. J Mech Phys Solids 46:1343–1378MathSciNetMATHCrossRef Gurtin M, Podio-Guidugli P (1998) Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. J Mech Phys Solids 46:1343–1378MathSciNetMATHCrossRef
41.
go back to reference Agiasofitou E, Kalpakides VK (2006) The concept of a balance law for a cracked elastic body and the configurational force and moment at the crack tip. Int J Eng Sci 44:127–139MathSciNetMATHCrossRef Agiasofitou E, Kalpakides VK (2006) The concept of a balance law for a cracked elastic body and the configurational force and moment at the crack tip. Int J Eng Sci 44:127–139MathSciNetMATHCrossRef
42.
go back to reference Knowles JK, Sternberg E (1972) On a class of conservation laws in linearized and finite elastostatics. Arch Ration Mech Anal 44:187–211MathSciNetMATHCrossRef Knowles JK, Sternberg E (1972) On a class of conservation laws in linearized and finite elastostatics. Arch Ration Mech Anal 44:187–211MathSciNetMATHCrossRef
43.
go back to reference Budiansky B, Rice JR (1973) Conservation laws and energy-release rates. J Appl Mech 40:201–203MATHCrossRef Budiansky B, Rice JR (1973) Conservation laws and energy-release rates. J Appl Mech 40:201–203MATHCrossRef
44.
go back to reference Rice JR (1985) Conserved integrals and energetic forces. Fundamentals of deformation and fracture. Cambridge University Press, Cambridge, pp 33–56 Rice JR (1985) Conserved integrals and energetic forces. Fundamentals of deformation and fracture. Cambridge University Press, Cambridge, pp 33–56
45.
go back to reference Agiasofitou E, Lazar M (2017) Micromechanics of dislocations in solids: J-, M-, and L-integrals and their fundamental relations. Int J Eng Sci 114:16–40MathSciNetMATHCrossRef Agiasofitou E, Lazar M (2017) Micromechanics of dislocations in solids: J-, M-, and L-integrals and their fundamental relations. Int J Eng Sci 114:16–40MathSciNetMATHCrossRef
46.
go back to reference Lazar M, Agiasofitou E (2018) Eshelbian dislocation mechanics: J-, m-, and l-integrals of straight dislocations. Mech Res Commun 93:89–95CrossRef Lazar M, Agiasofitou E (2018) Eshelbian dislocation mechanics: J-, m-, and l-integrals of straight dislocations. Mech Res Commun 93:89–95CrossRef
47.
go back to reference Kirchner H, Lazar M (2008) The thermodynamic driving force for bone growth and remodelling: a hypothesis. J R Soc Interface 5:183–193CrossRef Kirchner H, Lazar M (2008) The thermodynamic driving force for bone growth and remodelling: a hypothesis. J R Soc Interface 5:183–193CrossRef
48.
go back to reference Maugin GA (1995) Material forces: concepts and applications. ASME Appl Mech Rev 48:213–245CrossRef Maugin GA (1995) Material forces: concepts and applications. ASME Appl Mech Rev 48:213–245CrossRef
49.
go back to reference Maugin GA (2011) Configurational forces: thermomechanics, physics, mathematics, and numerics. CRC Press, Boca RatonMATH Maugin GA (2011) Configurational forces: thermomechanics, physics, mathematics, and numerics. CRC Press, Boca RatonMATH
51.
go back to reference Gurtin M (2000) Configurational forces as basic concepts of continuum physics. Springer, New YorkMATH Gurtin M (2000) Configurational forces as basic concepts of continuum physics. Springer, New YorkMATH
53.
go back to reference Askes H, Kuhl E, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications. Comput Methods Appl Mech Eng 193:4223–4245 Askes H, Kuhl E, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications. Comput Methods Appl Mech Eng 193:4223–4245
54.
go back to reference Kuhl E, Askes H, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation. Comput Methods Appl Mech Eng 193:4207–4222 Kuhl E, Askes H, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation. Comput Methods Appl Mech Eng 193:4207–4222
55.
go back to reference Kuhl E, Steinmann P (2005) A hyperelastodynamic ALE formulation based on referential, spatial and material settings of continuum mechanics. Acta Mech 174:201–222MATHCrossRef Kuhl E, Steinmann P (2005) A hyperelastodynamic ALE formulation based on referential, spatial and material settings of continuum mechanics. Acta Mech 174:201–222MATHCrossRef
56.
go back to reference Runesson K, Larsson F, Steinmann P (2009) On energetic changes due to configurational motion of standard continua. Int J Solids Struct 46:1464–1475MATHCrossRef Runesson K, Larsson F, Steinmann P (2009) On energetic changes due to configurational motion of standard continua. Int J Solids Struct 46:1464–1475MATHCrossRef
58.
go back to reference Golebiewska-Herrmann A (1982) Material momentum tensor and path-independent integrals of fracture mechanics. Int J Solids Struct 18:319–326MATHCrossRef Golebiewska-Herrmann A (1982) Material momentum tensor and path-independent integrals of fracture mechanics. Int J Solids Struct 18:319–326MATHCrossRef
60.
go back to reference Maugin GA, Epstein M, Trimarco C (1992) Pseudomomentum and material forces in inhomogeneous materials: application to the fracture of electromagnetic materials in electromagnetoelastic fields. Int J Solids Struct 29:1889–1900MathSciNetMATHCrossRef Maugin GA, Epstein M, Trimarco C (1992) Pseudomomentum and material forces in inhomogeneous materials: application to the fracture of electromagnetic materials in electromagnetoelastic fields. Int J Solids Struct 29:1889–1900MathSciNetMATHCrossRef
61.
go back to reference Maugin GA, Trimarco C (1992) Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech 94:1–28MathSciNetMATHCrossRef Maugin GA, Trimarco C (1992) Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech 94:1–28MathSciNetMATHCrossRef
62.
go back to reference Kalpakides VK, Maugin GA (2004) Canonical formulation and conservation laws of thermoelasticity without dissipation. Rep Math Phys 53:371–391MathSciNetMATHCrossRef Kalpakides VK, Maugin GA (2004) Canonical formulation and conservation laws of thermoelasticity without dissipation. Rep Math Phys 53:371–391MathSciNetMATHCrossRef
63.
64.
go back to reference Steinmann P (2002) On spatial and material settings of hyperelastodynamics. Acta Mech 156:193–218MATHCrossRef Steinmann P (2002) On spatial and material settings of hyperelastodynamics. Acta Mech 156:193–218MATHCrossRef
65.
66.
67.
go back to reference Lazar M, Kirchner H (2006) The Eshelby tensor in nonlocal elasticity and in nonlocal micropolar elasticity. J Mech Mater Struct 1:325–337CrossRef Lazar M, Kirchner H (2006) The Eshelby tensor in nonlocal elasticity and in nonlocal micropolar elasticity. J Mech Mater Struct 1:325–337CrossRef
68.
go back to reference Lazar M, Kirchner H (2007) The Eshelby stress tensor, angular momentum tensor and dilatation flux in gradient elasticity. Int J Solids Struct 44:2477–2486MathSciNetMATHCrossRef Lazar M, Kirchner H (2007) The Eshelby stress tensor, angular momentum tensor and dilatation flux in gradient elasticity. Int J Solids Struct 44:2477–2486MathSciNetMATHCrossRef
69.
go back to reference Lazar M, Maugin GA (2007) On microcontinuum field theories: the Eshelby stress tensor and incompatibility conditions. Phil Mag 87:3853–3870CrossRef Lazar M, Maugin GA (2007) On microcontinuum field theories: the Eshelby stress tensor and incompatibility conditions. Phil Mag 87:3853–3870CrossRef
70.
go back to reference Gupta A, Markenscoff X (2008) Configurational forces as dissipative mechanisms: a revisit. CR Mec 336:126–131MATHCrossRef Gupta A, Markenscoff X (2008) Configurational forces as dissipative mechanisms: a revisit. CR Mec 336:126–131MATHCrossRef
72.
go back to reference Dascalu C, Maugin GA (1993) Material forces and energy-release rates in homogeneous elastic bodies with defects. Comptes Rendus de l’Académie des Sciences II(317):1135–1140MATH Dascalu C, Maugin GA (1993) Material forces and energy-release rates in homogeneous elastic bodies with defects. Comptes Rendus de l’Académie des Sciences II(317):1135–1140MATH
73.
go back to reference Steinmann P, Scherer M, Denzer R (2009) Secret and joy of configurational mechanics: from foundations in continuum mechanics to applications in computational mechanics. ZAMM - J Appl Math Mech 89:614–630MATHCrossRef Steinmann P, Scherer M, Denzer R (2009) Secret and joy of configurational mechanics: from foundations in continuum mechanics to applications in computational mechanics. ZAMM - J Appl Math Mech 89:614–630MATHCrossRef
74.
go back to reference Noether E (1918) Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 2:235–257MATH Noether E (1918) Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 2:235–257MATH
76.
go back to reference Günther W (1962) Über einige Randintegrale der Elastomechanik. Abh Braunschw Wiss Ges 14:53–72MATH Günther W (1962) Über einige Randintegrale der Elastomechanik. Abh Braunschw Wiss Ges 14:53–72MATH
78.
go back to reference Buggisch H, Gross D, Krüger KH (1981) Einige Erhaltungssätze der Kontinuumsmechanik vom J-Integral-Typ. Ingenieur-Archiv 50:103–111MATHCrossRef Buggisch H, Gross D, Krüger KH (1981) Einige Erhaltungssätze der Kontinuumsmechanik vom J-Integral-Typ. Ingenieur-Archiv 50:103–111MATHCrossRef
79.
80.
go back to reference Francfort G, Golebiewska-Herrmann A (1986) A contour integral and an energy release rate in thermoelasticity. Int J Solids Struct 22:759–766MATHCrossRef Francfort G, Golebiewska-Herrmann A (1986) A contour integral and an energy release rate in thermoelasticity. Int J Solids Struct 22:759–766MATHCrossRef
82.
go back to reference Cherepanov GP (1989) A remark on the dynamic invariant or path-independent integral. Int J Solids Struct 25:1267–1269MATHCrossRef Cherepanov GP (1989) A remark on the dynamic invariant or path-independent integral. Int J Solids Struct 25:1267–1269MATHCrossRef
83.
go back to reference Simo JC, Honein T (1990) Variational formulation, discrete conservation laws, and path-domain independent integrals for elasto-viscoplasticity. J Appl Mech 57:488–497MathSciNetMATHCrossRef Simo JC, Honein T (1990) Variational formulation, discrete conservation laws, and path-domain independent integrals for elasto-viscoplasticity. J Appl Mech 57:488–497MathSciNetMATHCrossRef
85.
go back to reference Shield RT (1967) Inverse deformation results in finite elasticity. ZAMP: Zeitschrift für angewandte Mathematik und Physik 18:490–500 Shield RT (1967) Inverse deformation results in finite elasticity. ZAMP: Zeitschrift für angewandte Mathematik und Physik 18:490–500
87.
go back to reference Govindjee S, Mihalic PA (1996) Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136:47–57MATHCrossRef Govindjee S, Mihalic PA (1996) Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136:47–57MATHCrossRef
88.
go back to reference Govindjee S, Mihalic PA (1998) Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Meth Eng 43:821–838MATHCrossRef Govindjee S, Mihalic PA (1998) Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Meth Eng 43:821–838MATHCrossRef
89.
go back to reference Kalpakides VK, Balassas KG (2005) The inverse deformation mapping in the finite element method. Phil Mag 85:4257–4275CrossRef Kalpakides VK, Balassas KG (2005) The inverse deformation mapping in the finite element method. Phil Mag 85:4257–4275CrossRef
90.
go back to reference Kuhl E, Askes H, Steinmann P (2006) An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity. Eur J Mech-A/Solids 25:199–214MathSciNetMATHCrossRef Kuhl E, Askes H, Steinmann P (2006) An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity. Eur J Mech-A/Solids 25:199–214MathSciNetMATHCrossRef
91.
go back to reference Kalpakides VK, Agiasofitou E (2002) On material equations in second gradient electroelasticity. J Elasticity Phys Sci Solids 67:205–227MathSciNetMATH Kalpakides VK, Agiasofitou E (2002) On material equations in second gradient electroelasticity. J Elasticity Phys Sci Solids 67:205–227MathSciNetMATH
93.
go back to reference Steinmann P, Ricker S, Aifantis E (2011) Unconstrained and Cauchy-Born-constrained atomistic systems: deformational and configurational mechanics. Arch Appl Mech 81:669–684MATHCrossRef Steinmann P, Ricker S, Aifantis E (2011) Unconstrained and Cauchy-Born-constrained atomistic systems: deformational and configurational mechanics. Arch Appl Mech 81:669–684MATHCrossRef
94.
go back to reference Birang SE, Steinmann P (2021) Discrete configurational mechanics for the computational study of atomistic fracture mechanics. Forces Mech 2:100009 Birang SE, Steinmann P (2021) Discrete configurational mechanics for the computational study of atomistic fracture mechanics. Forces Mech 2:100009
95.
go back to reference Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct 37:7371–7391 Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct 37:7371–7391
98.
go back to reference Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951–978MATHCrossRef Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951–978MATHCrossRef
99.
go back to reference Kuhl E, Steinmann P (2003) On spatial and material settings of thermo-hyperelastodynamics for open systems. Acta Mech 160:179–217MATHCrossRef Kuhl E, Steinmann P (2003) On spatial and material settings of thermo-hyperelastodynamics for open systems. Acta Mech 160:179–217MATHCrossRef
100.
go back to reference Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Meth Eng 58:1593–1615MathSciNetMATHCrossRef Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Meth Eng 58:1593–1615MathSciNetMATHCrossRef
101.
go back to reference Kuhl E, Steinmann P (2004) Computational modeling of healing: an application of the material force method. Biomech Model Mechanobiol 2:187–203CrossRef Kuhl E, Steinmann P (2004) Computational modeling of healing: an application of the material force method. Biomech Model Mechanobiol 2:187–203CrossRef
103.
go back to reference Steinmann P, McBride A, Bargmann S, Javili A (2012) A deformational and configurational framework for geometrically non-linear continuum thermomechanics coupled to diffusion. Int J Non-Linear Mech 47:215–227CrossRef Steinmann P, McBride A, Bargmann S, Javili A (2012) A deformational and configurational framework for geometrically non-linear continuum thermomechanics coupled to diffusion. Int J Non-Linear Mech 47:215–227CrossRef
104.
go back to reference Quiligotti S, Maugin GA, Dell’Isola F (2003) An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech 160:45–60MATHCrossRef Quiligotti S, Maugin GA, Dell’Isola F (2003) An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech 160:45–60MATHCrossRef
105.
go back to reference Papastavrou A, Steinmann P (2010) On deformational and configurational poro-mechanics: dissipative versus non-dissipative modelling of two-phase solid/fluid mixtures. Arch Appl Mech 80:969–984MATHCrossRef Papastavrou A, Steinmann P (2010) On deformational and configurational poro-mechanics: dissipative versus non-dissipative modelling of two-phase solid/fluid mixtures. Arch Appl Mech 80:969–984MATHCrossRef
106.
go back to reference Vu DK, Steinmann P (2007) Nonlinear electro-and magneto-elastostatics: material and spatial settings. Int J Solids Struct 44:7891–7905MATHCrossRef Vu DK, Steinmann P (2007) Nonlinear electro-and magneto-elastostatics: material and spatial settings. Int J Solids Struct 44:7891–7905MATHCrossRef
107.
go back to reference Vu DK, Steinmann P (2010) Material and spatial motion problems in nonlinear electro-and magneto-elastostatics. Math Mech Solids 15:239–257MathSciNetMATHCrossRef Vu DK, Steinmann P (2010) Material and spatial motion problems in nonlinear electro-and magneto-elastostatics. Math Mech Solids 15:239–257MathSciNetMATHCrossRef
108.
go back to reference Vu DK, Steinmann P (2012) On the spatial and material motion problems in nonlinear electro-elastostatics with consideration of free space. Math Mech Solids 17:803–823MathSciNetMATHCrossRef Vu DK, Steinmann P (2012) On the spatial and material motion problems in nonlinear electro-elastostatics with consideration of free space. Math Mech Solids 17:803–823MathSciNetMATHCrossRef
109.
go back to reference Menzel A, Steinmann P (2005) A note on material forces in finite inelasticity. Arch Appl Mech 74:800–807MATHCrossRef Menzel A, Steinmann P (2005) A note on material forces in finite inelasticity. Arch Appl Mech 74:800–807MATHCrossRef
110.
111.
go back to reference Tillberg J, Larsson F, Runesson K (2010) On the role of material dissipation for the crack-driving force. Int J Plast 26:992–1012MATHCrossRef Tillberg J, Larsson F, Runesson K (2010) On the role of material dissipation for the crack-driving force. Int J Plast 26:992–1012MATHCrossRef
112.
go back to reference Özenç K, Kaliske M, Lin G, Bhashyam G (2014) Evaluation of energy contributions in elasto-plastic fracture: a review of the configurational force approach. Eng Fract Mech 115:137–153CrossRef Özenç K, Kaliske M, Lin G, Bhashyam G (2014) Evaluation of energy contributions in elasto-plastic fracture: a review of the configurational force approach. Eng Fract Mech 115:137–153CrossRef
113.
go back to reference Cermelli P, Fried E (1997) The influence of inertia on configurational forces in a deformable solid. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 453:1915–1927 Cermelli P, Fried E (1997) The influence of inertia on configurational forces in a deformable solid. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 453:1915–1927
114.
go back to reference Mariano PM (2000) Configurational forces in continua with microstructure. ZAMP: Zeitschrift für angewandte Mathematik und Physik 51:752–791 Mariano PM (2000) Configurational forces in continua with microstructure. ZAMP: Zeitschrift für angewandte Mathematik und Physik 51:752–791
115.
go back to reference Kalpakides VK, Dascalu C (20002) On the configurational force balance in thermomechanics. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 458:3023–3039 Kalpakides VK, Dascalu C (20002) On the configurational force balance in thermomechanics. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 458:3023–3039
116.
go back to reference Podio-Guidugli P (2001) Configurational balances via variational arguments. Interfaces Free Bound 3:223–232MathSciNetMATH Podio-Guidugli P (2001) Configurational balances via variational arguments. Interfaces Free Bound 3:223–232MathSciNetMATH
118.
go back to reference Fried E, Gurtin M (2003) The role of the configurational force balance in the nonequilibrium epitaxy of films. J Mech Phys Solids 51:487–517MathSciNetMATHCrossRef Fried E, Gurtin M (2003) The role of the configurational force balance in the nonequilibrium epitaxy of films. J Mech Phys Solids 51:487–517MathSciNetMATHCrossRef
120.
121.
122.
go back to reference Maugin GA, Epstein M (1991) The electroelastic energy–momentum tensor. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 433:299–312 Maugin GA, Epstein M (1991) The electroelastic energy–momentum tensor. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 433:299–312
123.
go back to reference Maugin GA (2013) Continuum mechanics of electromagnetic solids. Elsevier, Amsterdam Maugin GA (2013) Continuum mechanics of electromagnetic solids. Elsevier, Amsterdam
124.
go back to reference Pelteret JP, Steinmann P (2019) Magneto-active polymers: fabrication, characterisation, modelling and simulation at the micro-and macro-scale. Walter de Gruyter Pelteret JP, Steinmann P (2019) Magneto-active polymers: fabrication, characterisation, modelling and simulation at the micro-and macro-scale. Walter de Gruyter
126.
go back to reference Kienzler R, Herrmann G (2000) Mechanics in material space: with applications to defect and fracture mechanics. Springer, Berlin Kienzler R, Herrmann G (2000) Mechanics in material space: with applications to defect and fracture mechanics. Springer, Berlin
127.
128.
go back to reference Brünig M (2004) Eshelby stress tensor in large strain anisotropic damage mechanics. Int J Mech Sci 46:1763–1782MATHCrossRef Brünig M (2004) Eshelby stress tensor in large strain anisotropic damage mechanics. Int J Mech Sci 46:1763–1782MATHCrossRef
129.
go back to reference Verron E, Le Cam JB, Gornet L (2006) A multiaxial criterion for crack nucleation in rubber. Mech Res Commun 33:493–498MATHCrossRef Verron E, Le Cam JB, Gornet L (2006) A multiaxial criterion for crack nucleation in rubber. Mech Res Commun 33:493–498MATHCrossRef
130.
go back to reference Andriyana A, Verron E (2007) Prediction of fatigue life improvement in natural rubber using configurational stress. Int J Solids Struct 44:2079–2092MATHCrossRef Andriyana A, Verron E (2007) Prediction of fatigue life improvement in natural rubber using configurational stress. Int J Solids Struct 44:2079–2092MATHCrossRef
131.
go back to reference Verron E, Andriyana A (2008) Definition of a new predictor for multiaxial fatigue crack nucleation in rubber. J Mech Phys Solids 56:417–443MathSciNetMATHCrossRef Verron E, Andriyana A (2008) Definition of a new predictor for multiaxial fatigue crack nucleation in rubber. J Mech Phys Solids 56:417–443MathSciNetMATHCrossRef
132.
go back to reference Verron E (2010) Configurational mechanics: a tool to investigate fracture and fatigue of rubber. Rubber Chem Technol 83:270–281CrossRef Verron E (2010) Configurational mechanics: a tool to investigate fracture and fatigue of rubber. Rubber Chem Technol 83:270–281CrossRef
133.
go back to reference Previati G, Kaliske M (2012) Crack propagation in pneumatic tires: continuum mechanics and fracture mechanics approaches. Int J Fatigue 37:69–78CrossRef Previati G, Kaliske M (2012) Crack propagation in pneumatic tires: continuum mechanics and fracture mechanics approaches. Int J Fatigue 37:69–78CrossRef
134.
go back to reference Ackermann D, Barth FJ, Steinmann P (1999) Theoretical and computational aspects of geometrically nonlinear problems in fracture mechanics. In: Proceedings (CD-ROM) of the European conference on computational mechanics ECCM’99 (ECCOMAS), August 31 to September 3, Munich, Germany Ackermann D, Barth FJ, Steinmann P (1999) Theoretical and computational aspects of geometrically nonlinear problems in fracture mechanics. In: Proceedings (CD-ROM) of the European conference on computational mechanics ECCM’99 (ECCOMAS), August 31 to September 3, Munich, Germany
135.
go back to reference Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. Int J Solids Struct 38:5509–5526 Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. Int J Solids Struct 38:5509–5526
136.
go back to reference Denzer R, Barth FJ, Steinmann P (2003) Studies in elastic fracture mechanics based on the material force method. Int J Numer Meth Eng 58:1817–1835MATHCrossRef Denzer R, Barth FJ, Steinmann P (2003) Studies in elastic fracture mechanics based on the material force method. Int J Numer Meth Eng 58:1817–1835MATHCrossRef
137.
go back to reference Denzer R, Scherer M, Steinmann P (2007) An adaptive singular finite element in nonlinear fracture mechanics. Int J Fract 147:181–190MATHCrossRef Denzer R, Scherer M, Steinmann P (2007) An adaptive singular finite element in nonlinear fracture mechanics. Int J Fract 147:181–190MATHCrossRef
138.
go back to reference Kuhl E, Denzer R, Barth FJ, Steinmann P (2004) Application of the material force method to thermo-hyperelasticity. Comput Methods Appl Mech Eng 193:3303–3325MathSciNetMATHCrossRef Kuhl E, Denzer R, Barth FJ, Steinmann P (2004) Application of the material force method to thermo-hyperelasticity. Comput Methods Appl Mech Eng 193:3303–3325MathSciNetMATHCrossRef
139.
go back to reference Bargmann S, Denzer R, Steinmann P (2009) Material forces in non-classical thermo-hyperelasticity. J Therm Stresses 32:361–393CrossRef Bargmann S, Denzer R, Steinmann P (2009) Material forces in non-classical thermo-hyperelasticity. J Therm Stresses 32:361–393CrossRef
140.
go back to reference Liebe T, Denzer R, Steinmann P (2003) Application of the material force method to isotropic continuum damage. Comput Mech 30:171–184MATHCrossRef Liebe T, Denzer R, Steinmann P (2003) Application of the material force method to isotropic continuum damage. Comput Mech 30:171–184MATHCrossRef
141.
go back to reference Nguyen TD, Govindjee S, Klein PA, Gao H (2005) A material force method for inelastic fracture mechanics. J Mech Phys Solids 53:91–121MathSciNetMATHCrossRef Nguyen TD, Govindjee S, Klein PA, Gao H (2005) A material force method for inelastic fracture mechanics. J Mech Phys Solids 53:91–121MathSciNetMATHCrossRef
142.
go back to reference Näser B, Kaliske M, Müller R (2007) Material forces for inelastic models at large strains: application to fracture mechanics. Comput Mech 40:1005–1013MATHCrossRef Näser B, Kaliske M, Müller R (2007) Material forces for inelastic models at large strains: application to fracture mechanics. Comput Mech 40:1005–1013MATHCrossRef
143.
go back to reference Menzel A, Denzer R, Steinmann P (2004) On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal-plasticity. Comput Methods Appl Mech Eng 193:5411–5428 Menzel A, Denzer R, Steinmann P (2004) On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal-plasticity. Comput Methods Appl Mech Eng 193:5411–5428
144.
go back to reference Menzel A, Denzer R, Steinmann P (2005) Material forces in computational single-slip crystal-plasticity. Comput Mater Sci 32:446–454CrossRef Menzel A, Denzer R, Steinmann P (2005) Material forces in computational single-slip crystal-plasticity. Comput Mater Sci 32:446–454CrossRef
145.
go back to reference Kuhn C, Lohkamp R, Schneider F, Aurich J, Müller R (2015) Finite element computation of discrete configurational forces in crystal plasticity. Int J Solids Struct 56:62–77CrossRef Kuhn C, Lohkamp R, Schneider F, Aurich J, Müller R (2015) Finite element computation of discrete configurational forces in crystal plasticity. Int J Solids Struct 56:62–77CrossRef
146.
go back to reference Kuhn C, Müller R (2016) A discussion of fracture mechanisms in heterogeneous materials by means of configurational forces in a phase field fracture model. Comput Methods Appl Mech Eng 312:95–116MathSciNetMATHCrossRef Kuhn C, Müller R (2016) A discussion of fracture mechanisms in heterogeneous materials by means of configurational forces in a phase field fracture model. Comput Methods Appl Mech Eng 312:95–116MathSciNetMATHCrossRef
147.
go back to reference Hirschberger CB, Kuhl E, Steinmann P (2007) On deformational and configurational mechanics of micromorphic hyperelasticity-theory and computation. Comput Methods Appl Mech Eng 196:4027–4044MathSciNetMATHCrossRef Hirschberger CB, Kuhl E, Steinmann P (2007) On deformational and configurational mechanics of micromorphic hyperelasticity-theory and computation. Comput Methods Appl Mech Eng 196:4027–4044MathSciNetMATHCrossRef
148.
149.
go back to reference Kolling S, Müller R (2005) On configurational forces in short-time dynamics and their computation with an explicit solver. Comput Mech 35:392–399MATHCrossRef Kolling S, Müller R (2005) On configurational forces in short-time dynamics and their computation with an explicit solver. Comput Mech 35:392–399MATHCrossRef
150.
go back to reference Timmel M, Kaliske M, Kolling S, Müller R (2011) On configurational forces in hyperelastic materials under shock and impact. Comput Mech 47:93–104MathSciNetMATHCrossRef Timmel M, Kaliske M, Kolling S, Müller R (2011) On configurational forces in hyperelastic materials under shock and impact. Comput Mech 47:93–104MathSciNetMATHCrossRef
151.
go back to reference Denzer R, Menzel A (2014) Configurational forces for quasi-incompressible large strain electro-viscoelasticity-application to fracture mechanics. Eur J Mech-A/Solids 48:3–15MathSciNetMATHCrossRef Denzer R, Menzel A (2014) Configurational forces for quasi-incompressible large strain electro-viscoelasticity-application to fracture mechanics. Eur J Mech-A/Solids 48:3–15MathSciNetMATHCrossRef
152.
go back to reference Ricker S, Mergheim J, Steinmann P (2009) On the multiscale computation of defect driving forces. Int J Multiscale Comput Eng 7:457–474CrossRef Ricker S, Mergheim J, Steinmann P (2009) On the multiscale computation of defect driving forces. Int J Multiscale Comput Eng 7:457–474CrossRef
153.
go back to reference Ricker S, Mergheim J, Steinmann P, Müller R (2010) A comparison of different approaches in the multi-scale computation of configurational forces. Int J Fract 166:203–214MATHCrossRef Ricker S, Mergheim J, Steinmann P, Müller R (2010) A comparison of different approaches in the multi-scale computation of configurational forces. Int J Fract 166:203–214MATHCrossRef
154.
go back to reference Braun M (1997) Configurational forces induced by finite-element discretization. Proc Estonian Acad Sci, Phys Math 46:24–31MATH Braun M (1997) Configurational forces induced by finite-element discretization. Proc Estonian Acad Sci, Phys Math 46:24–31MATH
155.
go back to reference Braun M (2007) Configurational forces in discrete elastic systems. Arch Appl Mech 77:85–93MATHCrossRef Braun M (2007) Configurational forces in discrete elastic systems. Arch Appl Mech 77:85–93MATHCrossRef
157.
go back to reference Gross D, Kolling S, Müller R, Schmidt I (2003) Configurational forces and their application in solid mechanics. Eur J Mech-A/Solids 22:669–692MathSciNetMATHCrossRef Gross D, Kolling S, Müller R, Schmidt I (2003) Configurational forces and their application in solid mechanics. Eur J Mech-A/Solids 22:669–692MathSciNetMATHCrossRef
158.
go back to reference Heintz P, Larsson F, Hansbo P, Runesson K (2004) Adaptive strategies and error control for computing material forces in fracture mechanics. Int J Numer Meth Eng 60:1287–1299MATHCrossRef Heintz P, Larsson F, Hansbo P, Runesson K (2004) Adaptive strategies and error control for computing material forces in fracture mechanics. Int J Numer Meth Eng 60:1287–1299MATHCrossRef
159.
go back to reference Müller R, Gross D, Maugin GA (2004) Use of material forces in adaptive finite element methods. Comput Mech 33:421–434MATHCrossRef Müller R, Gross D, Maugin GA (2004) Use of material forces in adaptive finite element methods. Comput Mech 33:421–434MATHCrossRef
160.
go back to reference Müller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53:1557–1574MathSciNetMATHCrossRef Müller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53:1557–1574MathSciNetMATHCrossRef
161.
go back to reference Thoutireddy P, Ortiz M (2004) A variational r-adaption and shape-optimization method for finite-deformation elasticity. Int J Numer Meth Eng 61:1–21MathSciNetMATHCrossRef Thoutireddy P, Ortiz M (2004) A variational r-adaption and shape-optimization method for finite-deformation elasticity. Int J Numer Meth Eng 61:1–21MathSciNetMATHCrossRef
162.
go back to reference Mosler J, Ortiz M (2006) On the numerical implementation of variational arbitrary lagrangian-eulerian (VALE) formulations. Int J Numer Meth Eng 67:1272–1289MathSciNetMATHCrossRef Mosler J, Ortiz M (2006) On the numerical implementation of variational arbitrary lagrangian-eulerian (VALE) formulations. Int J Numer Meth Eng 67:1272–1289MathSciNetMATHCrossRef
163.
164.
go back to reference Tabarraei A, Sukumar N (2007) Adaptive computations using material forces and residual-based error estimators on quadtree meshes. Comput Methods Appl Mech Eng 196:2657–2680MathSciNetMATHCrossRef Tabarraei A, Sukumar N (2007) Adaptive computations using material forces and residual-based error estimators on quadtree meshes. Comput Methods Appl Mech Eng 196:2657–2680MathSciNetMATHCrossRef
165.
go back to reference Scherer M, Denzer R, Steinmann P (2007) Energy-based r-adaptivity: a solution strategy and applications to fracture mechanics. Int J Fract 147:117–132MATHCrossRef Scherer M, Denzer R, Steinmann P (2007) Energy-based r-adaptivity: a solution strategy and applications to fracture mechanics. Int J Fract 147:117–132MATHCrossRef
166.
go back to reference Scherer M, Denzer R, Steinmann P (2008) On a solution strategy for energy-based mesh optimization in finite hyperelastostatics. Comput Methods Appl Mech Eng 197:609–622MathSciNetMATHCrossRef Scherer M, Denzer R, Steinmann P (2008) On a solution strategy for energy-based mesh optimization in finite hyperelastostatics. Comput Methods Appl Mech Eng 197:609–622MathSciNetMATHCrossRef
167.
go back to reference Rajagopal A, Sivakumar SM (2007) A combined rh adaptive strategy based on material forces and error assessment for plane problems and bimaterial interfaces. Comput Mech 41:49–72MATHCrossRef Rajagopal A, Sivakumar SM (2007) A combined rh adaptive strategy based on material forces and error assessment for plane problems and bimaterial interfaces. Comput Mech 41:49–72MATHCrossRef
168.
go back to reference Askes H, Bargmann S, Kuhl E, Steinmann P (2005) Structural optimization by simultaneous equilibration of spatial and material forces. Commun Numer Methods Eng 21:433–442MATHCrossRef Askes H, Bargmann S, Kuhl E, Steinmann P (2005) Structural optimization by simultaneous equilibration of spatial and material forces. Commun Numer Methods Eng 21:433–442MATHCrossRef
169.
go back to reference Materna D, Barthold FJ (2007) Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Int J Fract 147:133–155MATHCrossRef Materna D, Barthold FJ (2007) Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Int J Fract 147:133–155MATHCrossRef
170.
171.
go back to reference Materna D, Barthold FJ (2009) Configurational variations for the primal and dual problem in elasticity. ZAMM: Zeitschrift für Angewandte Mathematik und Mechanik 89:666–676 Materna D, Barthold FJ (2009) Configurational variations for the primal and dual problem in elasticity. ZAMM: Zeitschrift für Angewandte Mathematik und Mechanik 89:666–676
172.
go back to reference Riehl S, Steinmann P (2014) An integrated approach to shape optimization and mesh adaptivity based on material residual forces. Comput Methods Appl Mech Eng 278:640–663MathSciNetMATHCrossRef Riehl S, Steinmann P (2014) An integrated approach to shape optimization and mesh adaptivity based on material residual forces. Comput Methods Appl Mech Eng 278:640–663MathSciNetMATHCrossRef
173.
174.
go back to reference Kolling S, Baaser H, Gross D (2002) Material forces due to crack-inclusion interaction. Int J Fract 118:229–238CrossRef Kolling S, Baaser H, Gross D (2002) Material forces due to crack-inclusion interaction. Int J Fract 118:229–238CrossRef
175.
go back to reference Kolling S, Müller R, Gross D (2003) A computational concept for the kinetics of defects in anisotropic materials. Comput Mater Sci 26:87–94CrossRef Kolling S, Müller R, Gross D (2003) A computational concept for the kinetics of defects in anisotropic materials. Comput Mater Sci 26:87–94CrossRef
176.
go back to reference Timmel M, Kaliske M, Kolling S (2009) Modelling of microstructural void evolution with configurational forces. ZAMM: Zeitschrift für Angewandte Mathematik und Mechanik 89:698–708 Timmel M, Kaliske M, Kolling S (2009) Modelling of microstructural void evolution with configurational forces. ZAMM: Zeitschrift für Angewandte Mathematik und Mechanik 89:698–708
177.
go back to reference Fagerström M, Larsson R (2006) Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Meth Eng 66:911–948MathSciNetMATHCrossRef Fagerström M, Larsson R (2006) Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Meth Eng 66:911–948MathSciNetMATHCrossRef
178.
179.
go back to reference Larsson R, Fagerström M (2005) A framework for fracture modelling based on the material forces concept with xfem kinematics. Int J Numer Meth Eng 62:1763–1788MATHCrossRef Larsson R, Fagerström M (2005) A framework for fracture modelling based on the material forces concept with xfem kinematics. Int J Numer Meth Eng 62:1763–1788MATHCrossRef
180.
go back to reference Heintz P (2006) On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. Int J Numer Meth Eng 65:174–189MathSciNetMATHCrossRef Heintz P (2006) On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. Int J Numer Meth Eng 65:174–189MathSciNetMATHCrossRef
181.
go back to reference Mahnken R (2007) Material forces for crack analysis of functionally graded materials in adaptively refined fe-meshes. Int J Fract 147:269–283MATHCrossRef Mahnken R (2007) Material forces for crack analysis of functionally graded materials in adaptively refined fe-meshes. Int J Fract 147:269–283MATHCrossRef
182.
go back to reference Mahnken R (2009) Geometry update driven by material forces for simulation of brittle crack growth in functionally graded materials. Int J Numer Meth Eng 77:1753–1788MathSciNetMATHCrossRef Mahnken R (2009) Geometry update driven by material forces for simulation of brittle crack growth in functionally graded materials. Int J Numer Meth Eng 77:1753–1788MathSciNetMATHCrossRef
183.
go back to reference Gürses E, Miehe C (2009) A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comput Methods Appl Mech Eng 198:1413–1428MATHCrossRef Gürses E, Miehe C (2009) A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comput Methods Appl Mech Eng 198:1413–1428MATHCrossRef
184.
go back to reference Miehe C, Gürses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment. Int J Numer Meth Eng 72:127–155MathSciNetMATHCrossRef Miehe C, Gürses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment. Int J Numer Meth Eng 72:127–155MathSciNetMATHCrossRef
185.
go back to reference Miehe C, Gürses E, Birkle M (2007) A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. Int J Fract 145:245–259MATHCrossRef Miehe C, Gürses E, Birkle M (2007) A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. Int J Fract 145:245–259MATHCrossRef
186.
go back to reference Schütte H (2009) Curved crack propagation based on configurational forces. Comput Mater Sci 46:642–646CrossRef Schütte H (2009) Curved crack propagation based on configurational forces. Comput Mater Sci 46:642–646CrossRef
187.
go back to reference Brouzoulis J, Larsson F, Runesson K (2011) Strategies for planar crack propagation based on the concept of material forces. Comput Mech 47:295–304MathSciNetMATHCrossRef Brouzoulis J, Larsson F, Runesson K (2011) Strategies for planar crack propagation based on the concept of material forces. Comput Mech 47:295–304MathSciNetMATHCrossRef
188.
go back to reference Özenç K, Chinaryan G, Kaliske M (2016) A configurational force approach to model the branching phenomenon in dynamic brittle fracture. Eng Fract Mech 157:26–42CrossRef Özenç K, Chinaryan G, Kaliske M (2016) A configurational force approach to model the branching phenomenon in dynamic brittle fracture. Eng Fract Mech 157:26–42CrossRef
189.
go back to reference Özenç K, Kaliske M (2014) An implicit adaptive node-splitting algorithm to assess the failure mechanism of inelastic elastomeric continua. Int J Numer Meth Eng 100(9):669–688MathSciNetMATHCrossRef Özenç K, Kaliske M (2014) An implicit adaptive node-splitting algorithm to assess the failure mechanism of inelastic elastomeric continua. Int J Numer Meth Eng 100(9):669–688MathSciNetMATHCrossRef
190.
go back to reference Kaczmarczyk Ł, Nezhad MM, Pearce C (2014) Three-dimensional brittle fracture: configurational-force-driven crack propagation. Int J Numer Meth Eng 97:531–550MathSciNetMATHCrossRef Kaczmarczyk Ł, Nezhad MM, Pearce C (2014) Three-dimensional brittle fracture: configurational-force-driven crack propagation. Int J Numer Meth Eng 97:531–550MathSciNetMATHCrossRef
191.
go back to reference Kaczmarczyk Ł, Ullah Z, Pearce C (2017) Energy consistent framework for continuously evolving 3d crack propagation. Comput Methods Appl Mech Eng 324:54–73MathSciNetMATHCrossRef Kaczmarczyk Ł, Ullah Z, Pearce C (2017) Energy consistent framework for continuously evolving 3d crack propagation. Comput Methods Appl Mech Eng 324:54–73MathSciNetMATHCrossRef
192.
go back to reference Bird R, Coombs W, Giani S (2018) A quasi-static discontinuous Galerkin configurational force crack propagation method for brittle materials. Int J Numer Meth Eng 113:1061–1080MathSciNetCrossRef Bird R, Coombs W, Giani S (2018) A quasi-static discontinuous Galerkin configurational force crack propagation method for brittle materials. Int J Numer Meth Eng 113:1061–1080MathSciNetCrossRef
Metadata
Title
Introduction
Author
Paul Steinmann
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89070-4_1

Premium Partners