Skip to main content
Top
Published in:
Cover of the book

2023 | OriginalPaper | Chapter

1. Introduction

Author : Krystian Mistewicz

Published in: Low-Dimensional Chalcohalide Nanomaterials

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The basic structural, electrical, and optical properties of chalcohalide bulk crystals as well as low-dimensional nanostructures are reviewed in this chapter. A plenty of different chalcohalide compounds are characterized in relation to their possible applications. The ternary pnictogen chalcohalides are analyzed particularly. A special attention is also paid to the ferroelectricity which occurs in these materials. In order to better understanding this unique phenomenon, a general introduction to the ferroelectric materials and their inherent properties are presented. The effect of reduction of particle size on the phase transition temperature is discussed. Finally, chemical composition modification and strain engineering are elaborated as two main approaches that are used to tune the Curie temperature of the chalcohalide ferroelectrics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Peter Papoh, Introductory chapter: chalcogen chemistry—the footprint into new materials development, in Chalcogen Chemistry (IntechOpen, Rijeka, 2019), p. Ch. 1 N. Peter Papoh, Introductory chapter: chalcogen chemistry—the footprint into new materials development, in Chalcogen Chemistry (IntechOpen, Rijeka, 2019), p. Ch. 1
2.
go back to reference E.-Z.M. Ebeid, M.B. Zakaria, Thermal analysis in recycling and waste management, in Thermal Analysis, ed. by E.-Z.M. Ebeid, M.B. Zakaria (Elsevier, 2021), pp. 247–300 E.-Z.M. Ebeid, M.B. Zakaria, Thermal analysis in recycling and waste management, in Thermal Analysis, ed. by E.-Z.M. Ebeid, M.B. Zakaria (Elsevier, 2021), pp. 247–300
3.
go back to reference M.A. Busch, Halogen chemistry, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, 2018) M.A. Busch, Halogen chemistry, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, 2018)
4.
go back to reference L. Bouëssel Du Bourg, E. Furet, A. Lecomte, L. Le Pollès, S. Kohara, C.J. Benmore, E. Bychkov, D. Le Coq, Experimental and theoretical insights into the structure of tellurium chloride glasses. Inorg. Chem. 57, 2517 (2018)CrossRef L. Bouëssel Du Bourg, E. Furet, A. Lecomte, L. Le Pollès, S. Kohara, C.J. Benmore, E. Bychkov, D. Le Coq, Experimental and theoretical insights into the structure of tellurium chloride glasses. Inorg. Chem. 57, 2517 (2018)CrossRef
5.
go back to reference S. Suehara, O. Noguera, T. Aizawa, T. Sasaki, J. Lucas, Ab Initio calculation of chain structures in chalcohalide glasses. J. Non. Cryst. Solids 354, 168 (2008)CrossRef S. Suehara, O. Noguera, T. Aizawa, T. Sasaki, J. Lucas, Ab Initio calculation of chain structures in chalcohalide glasses. J. Non. Cryst. Solids 354, 168 (2008)CrossRef
6.
go back to reference W. Khan, S. Hussain, J. Minar, S. Azam, Electronic and thermoelectric properties of ternary chalcohalide semiconductors: first principles study. J. Electron. Mater. 47, 1131 (2018)CrossRef W. Khan, S. Hussain, J. Minar, S. Azam, Electronic and thermoelectric properties of ternary chalcohalide semiconductors: first principles study. J. Electron. Mater. 47, 1131 (2018)CrossRef
7.
go back to reference A.C. Wibowo, C.D. Malliakas, H. Li, C.C. Stoumpos, D.Y. Chung, B.W. Wessels, A.J. Freeman, M.G. Kanatzidis, An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: a new candidate for hard radiation detection. Cryst. Growth Des. 16, 2678 (2016) A.C. Wibowo, C.D. Malliakas, H. Li, C.C. Stoumpos, D.Y. Chung, B.W. Wessels, A.J. Freeman, M.G. Kanatzidis, An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: a new candidate for hard radiation detection. Cryst. Growth Des. 16, 2678 (2016)
8.
go back to reference A.C. Wibowo, C.D. Malliakas, D.Y. Chung, J. Im, A.J. Freeman, M.G. Kanatzidis, Mercury bismuth chalcohalides, Hg3Q2Bi2Cl8 (Q = S, Se, Te): syntheses, crystal structures, band structures, and optical properties. Inorg. Chem. 52, 2973 (2013)CrossRef A.C. Wibowo, C.D. Malliakas, D.Y. Chung, J. Im, A.J. Freeman, M.G. Kanatzidis, Mercury bismuth chalcohalides, Hg3Q2Bi2Cl8 (Q = S, Se, Te): syntheses, crystal structures, band structures, and optical properties. Inorg. Chem. 52, 2973 (2013)CrossRef
9.
go back to reference X. Zhang, K. Liu, J.Q. He, H. Wu, Q.Z. Huang, J.H. Lin, Z.Y. Lu, F.Q. Huang, Antiperovskite chalco-halides Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br with spin super-super exchange. Sci. Rep. 5, 15910 (2015)CrossRef X. Zhang, K. Liu, J.Q. He, H. Wu, Q.Z. Huang, J.H. Lin, Z.Y. Lu, F.Q. Huang, Antiperovskite chalco-halides Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br with spin super-super exchange. Sci. Rep. 5, 15910 (2015)CrossRef
10.
go back to reference L. Wang, S.J. Hwu, A new series of chalcohalide semiconductors with composite CdBr2/Sb2Se3 lattices: synthesis and characterization of CdSb2Se3Br2 and indium derivatives InSb2S4X (X = Cl and Br) and InM2Se4Br (M = Sb and Bi). Chem. Mater. 19, 6212 (2007)CrossRef L. Wang, S.J. Hwu, A new series of chalcohalide semiconductors with composite CdBr2/Sb2Se3 lattices: synthesis and characterization of CdSb2Se3Br2 and indium derivatives InSb2S4X (X = Cl and Br) and InM2Se4Br (M = Sb and Bi). Chem. Mater. 19, 6212 (2007)CrossRef
11.
go back to reference H.J. Zhao, P.F. Liu, Synthesis, crystal and electronic structure, and optical property of the pentanary chalcohalide Ba3KSb4S9Cl. J. Solid State Chem. 232, 37 (2015)CrossRef H.J. Zhao, P.F. Liu, Synthesis, crystal and electronic structure, and optical property of the pentanary chalcohalide Ba3KSb4S9Cl. J. Solid State Chem. 232, 37 (2015)CrossRef
12.
go back to reference Y.J. Zheng, Y.F. Shi, C. Bin Tian, H. Lin, L.M. Wu, X.T. Wu, Q.L. Zhu, An unprecedented pentanary chalcohalide with Mn atoms in two chemical environments: unique bonding characteristics and magnetic properties. Chem. Commun. 55, 79 (2019) Y.J. Zheng, Y.F. Shi, C. Bin Tian, H. Lin, L.M. Wu, X.T. Wu, Q.L. Zhu, An unprecedented pentanary chalcohalide with Mn atoms in two chemical environments: unique bonding characteristics and magnetic properties. Chem. Commun. 55, 79 (2019)
13.
go back to reference E.M. El-Fawal, Visible light-driven BiOBr/Bi2S3@CeMOF heterostructured hybrid with extremely efficient photocatalytic reduction performance of nitrophenols: modeling and optimization. ChemistrySelect 6, 6904 (2021)CrossRef E.M. El-Fawal, Visible light-driven BiOBr/Bi2S3@CeMOF heterostructured hybrid with extremely efficient photocatalytic reduction performance of nitrophenols: modeling and optimization. ChemistrySelect 6, 6904 (2021)CrossRef
14.
go back to reference T. Li, X. Wang, Y. Yan, D.B. Mitzi, Phase stability and electronic structure of prospective Sb-based mixed sulfide and iodide 3D perovskite (CH3NH3)SbSI2. J. Phys. Chem. Lett. 9, 3829 (2018)CrossRef T. Li, X. Wang, Y. Yan, D.B. Mitzi, Phase stability and electronic structure of prospective Sb-based mixed sulfide and iodide 3D perovskite (CH3NH3)SbSI2. J. Phys. Chem. Lett. 9, 3829 (2018)CrossRef
15.
go back to reference E. Wlaźlak et al., Heavy pnictogen chalcohalides: the synthesis, structure and properties of these rediscovered semiconductors. Chem. Commun. 54, 12133 (2018)CrossRef E. Wlaźlak et al., Heavy pnictogen chalcohalides: the synthesis, structure and properties of these rediscovered semiconductors. Chem. Commun. 54, 12133 (2018)CrossRef
16.
go back to reference P.I. Rentzeperis, Crystal growth and structure of chalcohalogenides and chalcogenides of the general formulae AmV BnVI CpVII and A2B3 with A = As, Sb, Bi; B = S, Se, Te and C = Cl, Br, I. Prog. Cryst. Growth Charact. Mater. 21, 113 (1991)CrossRef P.I. Rentzeperis, Crystal growth and structure of chalcohalogenides and chalcogenides of the general formulae AmV BnVI CpVII and A2B3 with A = As, Sb, Bi; B = S, Se, Te and C = Cl, Br, I. Prog. Cryst. Growth Charact. Mater. 21, 113 (1991)CrossRef
17.
go back to reference M. Nowak, M. Jesionek, K. Mistewicz, Fabrication techniques of group 15 ternary chalcohalide nanomaterials, in Nanomaterials Synthesis: Design, Fabrication and Applications, ed. by Y. Beeran Pottathara, S. Thomas, N. Kalarikkal, Y. Grohens, V. Kokol (Elsevier, 2019), pp. 337–384 M. Nowak, M. Jesionek, K. Mistewicz, Fabrication techniques of group 15 ternary chalcohalide nanomaterials, in Nanomaterials Synthesis: Design, Fabrication and Applications, ed. by Y. Beeran Pottathara, S. Thomas, N. Kalarikkal, Y. Grohens, V. Kokol (Elsevier, 2019), pp. 337–384
18.
go back to reference M. Nowak, M. Jesionek, K. Mistewicz, Applications of group 15 ternary chalcohalide nanomaterials, in Industrial Applications of Nanomaterials, ed. by S. Thomas, Y. Grohens, N. Pottathara (Elsevier, 2019), pp. 225–282 M. Nowak, M. Jesionek, K. Mistewicz, Applications of group 15 ternary chalcohalide nanomaterials, in Industrial Applications of Nanomaterials, ed. by S. Thomas, Y. Grohens, N. Pottathara (Elsevier, 2019), pp. 225–282
19.
go back to reference K.T. Butler, S. McKechnie, P. Azarhoosh, M. Van Schilfgaarde, D.O. Scanlon, A. Walsh, Quasi-Particle Electronic Band Structure and Alignment of the V-VI-VII Semiconductors SbSI, SbSBr, and SbSeI for Solar Cells. Appl. Phys. Lett. 108, 112103 (2016)CrossRef K.T. Butler, S. McKechnie, P. Azarhoosh, M. Van Schilfgaarde, D.O. Scanlon, A. Walsh, Quasi-Particle Electronic Band Structure and Alignment of the V-VI-VII Semiconductors SbSI, SbSBr, and SbSeI for Solar Cells. Appl. Phys. Lett. 108, 112103 (2016)CrossRef
20.
go back to reference R. Nie, M. Hu, A.M. Risqi, Z. Li, S. Il Seok, Efficient and stable antimony selenoiodide solar cells, Adv. Sci. 8, 2003172 (2021) R. Nie, M. Hu, A.M. Risqi, Z. Li, S. Il Seok, Efficient and stable antimony selenoiodide solar cells, Adv. Sci. 8, 2003172 (2021)
21.
go back to reference H. Shi, W. Ming, M.H. Du, Bismuth chalcohalides and oxyhalides as optoelectronic materials. Phys. Rev. B 93, 104108 (2016)CrossRef H. Shi, W. Ming, M.H. Du, Bismuth chalcohalides and oxyhalides as optoelectronic materials. Phys. Rev. B 93, 104108 (2016)CrossRef
22.
go back to reference S.Z.M. Murtaza, P. Vaqueiro, Rapid synthesis of chalcohalides by ball milling: preparation and characterisation of BiSI and BiSeI. J. Solid State Chem. 291, 121625 (2020)CrossRef S.Z.M. Murtaza, P. Vaqueiro, Rapid synthesis of chalcohalides by ball milling: preparation and characterisation of BiSI and BiSeI. J. Solid State Chem. 291, 121625 (2020)CrossRef
23.
go back to reference R.E. Brandt et al., Searching for “Defect-Tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667 (2017)CrossRef R.E. Brandt et al., Searching for “Defect-Tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667 (2017)CrossRef
24.
go back to reference R. Nie, H.S. Yun, M.J. Paik, A. Mehta, B.W. Park, Y.C. Choi, S. Il Seok, Efficient solar cells based on light-harvesting antimony sulfoiodide, Adv. Energy Mater. 8, 1701901 (2018) R. Nie, H.S. Yun, M.J. Paik, A. Mehta, B.W. Park, Y.C. Choi, S. Il Seok, Efficient solar cells based on light-harvesting antimony sulfoiodide, Adv. Energy Mater. 8, 1701901 (2018)
25.
go back to reference D.W. Davies, K.T. Butler, J.M. Skelton, C. Xie, A.R. Oganov, A. Walsh, Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure. Chem. Sci. 9, 1022 (2018)CrossRef D.W. Davies, K.T. Butler, J.M. Skelton, C. Xie, A.R. Oganov, A. Walsh, Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure. Chem. Sci. 9, 1022 (2018)CrossRef
26.
go back to reference B. Peng, K. Xu, H. Zhang, Z. Ning, H. Shao, G. Ni, J. Li, Y. Zhu, H. Zhu, C.M. Soukoulis, 1D SbSeI, SbSI, and SbSBr with high stability and novel properties for microelectronic, optoelectronic, and thermoelectric applications. Adv. Theory Simul. 1, 1700005 (2018)CrossRef B. Peng, K. Xu, H. Zhang, Z. Ning, H. Shao, G. Ni, J. Li, Y. Zhu, H. Zhu, C.M. Soukoulis, 1D SbSeI, SbSI, and SbSBr with high stability and novel properties for microelectronic, optoelectronic, and thermoelectric applications. Adv. Theory Simul. 1, 1700005 (2018)CrossRef
27.
go back to reference F. Palazon, Metal chalcohalides: next generation photovoltaic materials? Sol. RRL 6, 2100829 (2022)CrossRef F. Palazon, Metal chalcohalides: next generation photovoltaic materials? Sol. RRL 6, 2100829 (2022)CrossRef
28.
go back to reference Y.C. Choi, K.W. Jung, Recent progress in fabrication of antimony/bismuth chalcohalides for lead-free solar cell applications. Nanomaterials 10, 2284 (2020) Y.C. Choi, K.W. Jung, Recent progress in fabrication of antimony/bismuth chalcohalides for lead-free solar cell applications. Nanomaterials 10, 2284 (2020)
29.
go back to reference S. Farooq, T. Feeney, J.O. Mendes, V. Krishnamurthi, S. Walia, E. Della Gaspera, J. van Embden, High Gain Solution-Processed Carbon-Free BiSI Chalcohalide Thin Film Photodetectors. Adv. Funct. Mater. 31, 2104788 (2021) S. Farooq, T. Feeney, J.O. Mendes, V. Krishnamurthi, S. Walia, E. Della Gaspera, J. van Embden, High Gain Solution-Processed Carbon-Free BiSI Chalcohalide Thin Film Photodetectors. Adv. Funct. Mater. 31, 2104788 (2021)
30.
go back to reference M.M. Frutos, M.E.P. Barthaburu, L. Fornaro, I. Aguiar, Bismuth chalcohalide-based nanocomposite for application in ionising radiation detectors. Nanotechnology 31, 225710 (2020)CrossRef M.M. Frutos, M.E.P. Barthaburu, L. Fornaro, I. Aguiar, Bismuth chalcohalide-based nanocomposite for application in ionising radiation detectors. Nanotechnology 31, 225710 (2020)CrossRef
31.
go back to reference Y. He et al., Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer. Cryst. Growth Des. 19, 2074 (2019)CrossRef Y. He et al., Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer. Cryst. Growth Des. 19, 2074 (2019)CrossRef
32.
go back to reference H. Xu, X. Wang, Q. Nie, Y. He, P. Zhang, T. Xu, S. Dai, X. Zhang, Glass formation and properties of Ge-Ga-Te-ZnI2 far infrared chalcohalide glasses. J. Non. Cryst. Solids 383, 212 (2014)CrossRef H. Xu, X. Wang, Q. Nie, Y. He, P. Zhang, T. Xu, S. Dai, X. Zhang, Glass formation and properties of Ge-Ga-Te-ZnI2 far infrared chalcohalide glasses. J. Non. Cryst. Solids 383, 212 (2014)CrossRef
33.
go back to reference C. Fourmentin, X.H. Zhang, E. Lavanant, T. Pain, M. Rozé, Y. Guimond, F. Gouttefangeas, L. Calvez, IR GRIN lenses prepared by ionic exchange in chalcohalide glasses. Sci. Rep. 11, 11081 (2021)CrossRef C. Fourmentin, X.H. Zhang, E. Lavanant, T. Pain, M. Rozé, Y. Guimond, F. Gouttefangeas, L. Calvez, IR GRIN lenses prepared by ionic exchange in chalcohalide glasses. Sci. Rep. 11, 11081 (2021)CrossRef
34.
go back to reference S. Simsek, H. Koc, S. Palaz, O. Oltulu, A.M. Mamedov, E. Ozbay, Band Gap and Optical Transmission in the Fibonacci Type One-Dimensional A5B6C7 Based Photonic Crystals. Phys. Status Solidi Curr. Top. Solid State Phys. 12, 540 (2015) S. Simsek, H. Koc, S. Palaz, O. Oltulu, A.M. Mamedov, E. Ozbay, Band Gap and Optical Transmission in the Fibonacci Type One-Dimensional A5B6C7 Based Photonic Crystals. Phys. Status Solidi Curr. Top. Solid State Phys. 12, 540 (2015)
35.
go back to reference S. Simsek, S. Palaz, A.M. Mamedov, E. Ozbay, Fibonacci sequences quasiperiodic A5B6C7 ferroelectric based photonic crystal: FDTD analysis. Integr. Ferroelectr. 183, 26 (2017)CrossRef S. Simsek, S. Palaz, A.M. Mamedov, E. Ozbay, Fibonacci sequences quasiperiodic A5B6C7 ferroelectric based photonic crystal: FDTD analysis. Integr. Ferroelectr. 183, 26 (2017)CrossRef
36.
go back to reference M. Arumugam, M.Y. Choi, Recent progress on Bismuth Oxyiodide (BiOI) photocatalyst for environmental remediation. J. Ind. Eng. Chem. 81, 237 (2020)CrossRef M. Arumugam, M.Y. Choi, Recent progress on Bismuth Oxyiodide (BiOI) photocatalyst for environmental remediation. J. Ind. Eng. Chem. 81, 237 (2020)CrossRef
37.
go back to reference S. Güler-Klllç, Ç. Klllç, Crystal and electronic structure of BiTeI, AuTeI, and PdTeI compounds: a dispersion-corrected density-functional study. Phys. Rev. B Condens. Matter Mater. Phys. 91, 245204 (2015) S. Güler-Klllç, Ç. Klllç, Crystal and electronic structure of BiTeI, AuTeI, and PdTeI compounds: a dispersion-corrected density-functional study. Phys. Rev. B Condens. Matter Mater. Phys. 91, 245204 (2015)
38.
go back to reference V.A. Kulbachinskii, V.G. Kytin, A.A. Kudryashov, A.N. Kuznetsov, A.V. Shevelkov, On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI. J. Solid State Chem. 193, 154 (2012)CrossRef V.A. Kulbachinskii, V.G. Kytin, A.A. Kudryashov, A.N. Kuznetsov, A.V. Shevelkov, On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI. J. Solid State Chem. 193, 154 (2012)CrossRef
39.
go back to reference S. Li, L. Xu, X. Kong, T. Kusunose, N. Tsurumachi, Q. Feng, Bi13S18X2-based solar cells (X = Cl, Br, I): photoelectric behavior and photovoltaic performance. Phys. Rev. Appl. 15, 34040 (2021)CrossRef S. Li, L. Xu, X. Kong, T. Kusunose, N. Tsurumachi, Q. Feng, Bi13S18X2-based solar cells (X = Cl, Br, I): photoelectric behavior and photovoltaic performance. Phys. Rev. Appl. 15, 34040 (2021)CrossRef
40.
go back to reference S.R. Kavanagh, C.N. Savory, D.O. Scanlon, A. Walsh, Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn2SbS2I3. Mater. Horizons 8, 2709 (2021)CrossRef S.R. Kavanagh, C.N. Savory, D.O. Scanlon, A. Walsh, Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn2SbS2I3. Mater. Horizons 8, 2709 (2021)CrossRef
41.
go back to reference D. Tiwari, F. Cardoso-Delgado, D. Alibhai, M. Mombrú, D.J. Fermín, Photovoltaic performance of phase-pure orthorhombic BiSI thin-films. ACS Appl. Energy Mater. 2, 3878 (2019)CrossRef D. Tiwari, F. Cardoso-Delgado, D. Alibhai, M. Mombrú, D.J. Fermín, Photovoltaic performance of phase-pure orthorhombic BiSI thin-films. ACS Appl. Energy Mater. 2, 3878 (2019)CrossRef
42.
go back to reference Y.C. Choi, E. Hwang, Controlled growth of BiSi Nanorod-based films through a two-step solution process for solar cell applications. Nanomaterials 9, 1650 (2019) Y.C. Choi, E. Hwang, Controlled growth of BiSi Nanorod-based films through a two-step solution process for solar cell applications. Nanomaterials 9, 1650 (2019)
43.
go back to reference Y.C. Choi, K.W. Jung, One-step solution deposition of antimony selenoiodide films via precursor engineering for lead-free solar cell applications. Nanomaterials 11, 3206 (2021) Y.C. Choi, K.W. Jung, One-step solution deposition of antimony selenoiodide films via precursor engineering for lead-free solar cell applications. Nanomaterials 11, 3206 (2021)
44.
go back to reference A.C. Wibowo, C.D. Malliakas, Z. Liu, J.A. Peters, M. Sebastian, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg. Chem. 52, 7045 (2013)CrossRef A.C. Wibowo, C.D. Malliakas, Z. Liu, J.A. Peters, M. Sebastian, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg. Chem. 52, 7045 (2013)CrossRef
45.
go back to reference K. Mistewicz, M. Jesionek, M. Nowak, M. Kozioł, SbSeI Pyroelectric nanogenerator for a low temperature waste heat recovery. Nano Energy 64, 103906 (2019)CrossRef K. Mistewicz, M. Jesionek, M. Nowak, M. Kozioł, SbSeI Pyroelectric nanogenerator for a low temperature waste heat recovery. Nano Energy 64, 103906 (2019)CrossRef
46.
go back to reference S. Johnsen, Z. Liu, J.A. Peters, J.H. Song, S. Nguyen, C.D. Malliakas, H. Jin, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis, Thallium chalcohalides for X-Ray and γ-Ray detection. J. Am. Chem. Soc. 133, 10030 (2011)CrossRef S. Johnsen, Z. Liu, J.A. Peters, J.H. Song, S. Nguyen, C.D. Malliakas, H. Jin, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis, Thallium chalcohalides for X-Ray and γ-Ray detection. J. Am. Chem. Soc. 133, 10030 (2011)CrossRef
47.
go back to reference M. Tamilselvan, A.J. Bhattacharyya, Antimony Sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity. RSC Adv. 6, 105980 (2016)CrossRef M. Tamilselvan, A.J. Bhattacharyya, Antimony Sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity. RSC Adv. 6, 105980 (2016)CrossRef
48.
go back to reference G. Chen, W. Li, Y. Yu, Q. Yang, Fast and low-temperature synthesis of one-dimensional (1D) single-crystalline SbSI microrod for high performance photodetector. RSC Adv. 5, 21859 (2015)CrossRef G. Chen, W. Li, Y. Yu, Q. Yang, Fast and low-temperature synthesis of one-dimensional (1D) single-crystalline SbSI microrod for high performance photodetector. RSC Adv. 5, 21859 (2015)CrossRef
49.
go back to reference K. Mistewicz et al., A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 517, 146138 (2020)CrossRef K. Mistewicz et al., A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 517, 146138 (2020)CrossRef
50.
go back to reference K. Mistewicz, M. Nowak, D. Stróż, A ferroelectric-photovoltaic effect in SbSI nanowires. Nanomaterials 9, 580 (2019) K. Mistewicz, M. Nowak, D. Stróż, A ferroelectric-photovoltaic effect in SbSI nanowires. Nanomaterials 9, 580 (2019)
51.
go back to reference P. Kwolek, K. Pilarczyk, T. Tokarski, J. Mech, J. Irzmański, K. Szaciłowski, Photoelectrochemistry of N-type antimony sulfoiodide nanowires. Nanotechnology 26, 105710 (2015)CrossRef P. Kwolek, K. Pilarczyk, T. Tokarski, J. Mech, J. Irzmański, K. Szaciłowski, Photoelectrochemistry of N-type antimony sulfoiodide nanowires. Nanotechnology 26, 105710 (2015)CrossRef
52.
go back to reference Y.C. Choi, E. Hwang, D.H. Kim, Controlled growth of SbSI thin films from amorphous Sb2S3 for low-temperature solution processed chalcohalide solar cells. APL Mater. 6, 121108 (2018)CrossRef Y.C. Choi, E. Hwang, D.H. Kim, Controlled growth of SbSI thin films from amorphous Sb2S3 for low-temperature solution processed chalcohalide solar cells. APL Mater. 6, 121108 (2018)CrossRef
53.
go back to reference Z. Ran, X. Wang, Y. Li, D. Yang, X.G. Zhao, K. Biswas, D.J. Singh, L. Zhang, Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials. Npj Comput. Mater. 4, 14 (2018)CrossRef Z. Ran, X. Wang, Y. Li, D. Yang, X.G. Zhao, K. Biswas, D.J. Singh, L. Zhang, Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials. Npj Comput. Mater. 4, 14 (2018)CrossRef
54.
go back to reference H. Rodot, A. Hrubý, J. Horák, Amorphous semiconducting AsSeI. Czechoslov. J. Phys. 21, 1213 (1971)CrossRef H. Rodot, A. Hrubý, J. Horák, Amorphous semiconducting AsSeI. Czechoslov. J. Phys. 21, 1213 (1971)CrossRef
55.
go back to reference C. Liu, X.J. Wang, Room temperature synthesis of Bi4O5I2 and Bi5O7I Ultrathin nanosheets with a high visible light photocatalytic performance. Dalt. Trans. 45, 7720 (2016)CrossRef C. Liu, X.J. Wang, Room temperature synthesis of Bi4O5I2 and Bi5O7I Ultrathin nanosheets with a high visible light photocatalytic performance. Dalt. Trans. 45, 7720 (2016)CrossRef
56.
go back to reference A. Alzamly et al., Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts. J. Photochem. Photobiol. A Chem. 375, 30 (2019)CrossRef A. Alzamly et al., Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts. J. Photochem. Photobiol. A Chem. 375, 30 (2019)CrossRef
57.
go back to reference M. Li, Y. Cui, Y. Jin, H. Li, Facile hydrolysis synthesis of Bi4O5Br2 photocatalyst with excellent visible light photocatalytic performance for the degradation of resorcinol. RSC Adv. 6, 47545 (2016)CrossRef M. Li, Y. Cui, Y. Jin, H. Li, Facile hydrolysis synthesis of Bi4O5Br2 photocatalyst with excellent visible light photocatalytic performance for the degradation of resorcinol. RSC Adv. 6, 47545 (2016)CrossRef
58.
go back to reference X. Xiong, T. Zhou, X. Liu, S. Ding, J. Hu, Surfactant-mediated synthesis of single-crystalline Bi3O4Br nanorings with enhanced photocatalytic activity. J. Mater. Chem. A 5, 15706 (2017)CrossRef X. Xiong, T. Zhou, X. Liu, S. Ding, J. Hu, Surfactant-mediated synthesis of single-crystalline Bi3O4Br nanorings with enhanced photocatalytic activity. J. Mater. Chem. A 5, 15706 (2017)CrossRef
59.
go back to reference B. Xu, Y. Gao, Y. Li, S. Liu, D. Lv, S. Zhao, H. Gao, G. Yang, N. Li, L. Ge, Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: the effect of defect states on photocatalytic performance. Appl. Surf. Sci. 507, 144806 (2020)CrossRef B. Xu, Y. Gao, Y. Li, S. Liu, D. Lv, S. Zhao, H. Gao, G. Yang, N. Li, L. Ge, Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: the effect of defect states on photocatalytic performance. Appl. Surf. Sci. 507, 144806 (2020)CrossRef
60.
go back to reference L. Xinping, H. Tao, H. Fuqiang, W. Wendeng, S. Jianlin, Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl. J. Phys. Chem. B 110, 24629 (2006)CrossRef L. Xinping, H. Tao, H. Fuqiang, W. Wendeng, S. Jianlin, Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl. J. Phys. Chem. B 110, 24629 (2006)CrossRef
61.
go back to reference S. Palaz, O. Oltulu, A.M. Mamedov, E. Ozbay, AVBVICVII ferroelectrics as novel materials for phononic crystals. Ferroelectrics 511, 12 (2017)CrossRef S. Palaz, O. Oltulu, A.M. Mamedov, E. Ozbay, AVBVICVII ferroelectrics as novel materials for phononic crystals. Ferroelectrics 511, 12 (2017)CrossRef
62.
go back to reference M. Nowak, Photoferroelectric nanowires, in Nanowires Science and Technology (IntechOpen, Rijeka, 2010), p. Ch. 13 M. Nowak, Photoferroelectric nanowires, in Nanowires Science and Technology (IntechOpen, Rijeka, 2010), p. Ch. 13
63.
go back to reference J. Kreisel, M. Alexe, P.A. Thomas, A photoferroelectric material is more than the sum of its parts. Nat. Mater. 11, 260 (2012)CrossRef J. Kreisel, M. Alexe, P.A. Thomas, A photoferroelectric material is more than the sum of its parts. Nat. Mater. 11, 260 (2012)CrossRef
64.
go back to reference H. Li, F. Li, Z. Shen, S.T. Han, J. Chen, C. Dong, C. Chen, Y. Zhou, M. Wang, Photoferroelectric perovskite solar cells: principles advances and insights. Nano Today 37, 101062 (2021)CrossRef H. Li, F. Li, Z. Shen, S.T. Han, J. Chen, C. Dong, C. Chen, Y. Zhou, M. Wang, Photoferroelectric perovskite solar cells: principles advances and insights. Nano Today 37, 101062 (2021)CrossRef
65.
go back to reference K.T. Butler, J.M. Frost, A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838 (2015)CrossRef K.T. Butler, J.M. Frost, A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838 (2015)CrossRef
66.
go back to reference R. Kern, An electro-optical and electromechanical effect in SbSI. J. Phys. Chem. Solids 23, 249 (1962)CrossRef R. Kern, An electro-optical and electromechanical effect in SbSI. J. Phys. Chem. Solids 23, 249 (1962)CrossRef
67.
go back to reference R. Kniep, H.D. Reski, Chalcogenide iodides of arsenic. Angew. Chemie Int. Ed. English 20, 212 (1981)CrossRef R. Kniep, H.D. Reski, Chalcogenide iodides of arsenic. Angew. Chemie Int. Ed. English 20, 212 (1981)CrossRef
68.
go back to reference G.P. Voutsas, P.J. Rentzeperis, The crystal structure of the paraelectric bismuth thiochloride, BiSCl. Zeitschrift Für Krist. Cryst. Mater. 152, 109 (1980)CrossRef G.P. Voutsas, P.J. Rentzeperis, The crystal structure of the paraelectric bismuth thiochloride, BiSCl. Zeitschrift Für Krist. Cryst. Mater. 152, 109 (1980)CrossRef
69.
go back to reference G.P. Voutsas, P.J. Rentzeperis, Crystal structure of bismuth selenochloride, BiSeCl. Zeitschrift Für Krist. Cryst. Mater. 177, 117 (1986)CrossRef G.P. Voutsas, P.J. Rentzeperis, Crystal structure of bismuth selenochloride, BiSeCl. Zeitschrift Für Krist. Cryst. Mater. 177, 117 (1986)CrossRef
70.
go back to reference E. Dönges, Über Chalkogenohalogenide Des Dreiwertigen Antimons Und Wismuts. II. Über Selenohalogenide Des Dreiwertigen Antimons Und Wismuts Und Über Antimon(III)‐selenid Mit 2 Abbildungen. ZAAC J. Inorg. Gen. Chem. 263, 280 (1950) E. Dönges, Über Chalkogenohalogenide Des Dreiwertigen Antimons Und Wismuts. II. Über Selenohalogenide Des Dreiwertigen Antimons Und Wismuts Und Über Antimon(III)‐selenid Mit 2 Abbildungen. ZAAC J. Inorg. Gen. Chem. 263, 280 (1950)
71.
go back to reference A.M. Ganose, K.T. Butler, A. Walsh, D.O. Scanlon, Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A 4, 2060 (2016)CrossRef A.M. Ganose, K.T. Butler, A. Walsh, D.O. Scanlon, Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A 4, 2060 (2016)CrossRef
72.
go back to reference A. Audzijonis, R. Sereika, L. Žigas, R. Žaltauskas, A. Kvedaravicius, Lattice dynamics of ferroelectric SbSBr crystal. Ferroelectrics 413, 434 (2011)CrossRef A. Audzijonis, R. Sereika, L. Žigas, R. Žaltauskas, A. Kvedaravicius, Lattice dynamics of ferroelectric SbSBr crystal. Ferroelectrics 413, 434 (2011)CrossRef
73.
go back to reference A. Audzijonis, G. Gaigalas, L. Žigas, A. Pauliukas, B. Šalkus, R. Žaltauskas, A. Kvedaravičius, A. Čerškus, J. Narušis, Investigation of the electronic structure of the SbSeBr cluster. Cent. Eur. J. Phys. 6, 415 (2008) A. Audzijonis, G. Gaigalas, L. Žigas, A. Pauliukas, B. Šalkus, R. Žaltauskas, A. Kvedaravičius, A. Čerškus, J. Narušis, Investigation of the electronic structure of the SbSeBr cluster. Cent. Eur. J. Phys. 6, 415 (2008)
74.
go back to reference G.P. Voutsas, P.J. Rentzeperis, The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift Für Krist. Cryst. Mater. 161, 111 (1982)CrossRef G.P. Voutsas, P.J. Rentzeperis, The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift Für Krist. Cryst. Mater. 161, 111 (1982)CrossRef
75.
go back to reference A.G. Papazoglou, P.J. Rentzeperis, The crystal structure of antimony telluroiodide, SbTel. Zeitschrift Für Krist. Cryst. Mater. 165, 159 (1983)CrossRef A.G. Papazoglou, P.J. Rentzeperis, The crystal structure of antimony telluroiodide, SbTel. Zeitschrift Für Krist. Cryst. Mater. 165, 159 (1983)CrossRef
76.
go back to reference M. Balkanski, J.Y. Prieur, A. Almeida, Ferroelectric phase transition of SbSBr. Ferroelectrics 54, 261 (1984)CrossRef M. Balkanski, J.Y. Prieur, A. Almeida, Ferroelectric phase transition of SbSBr. Ferroelectrics 54, 261 (1984)CrossRef
77.
go back to reference T. Inushima, A. Okamoto, K. Uchinokura, E. Matsuura, Observation of a phase transition in SbSBr single crystals grown by vapor transport method. J. Phys. Soc. Japan 48, 2167 (1980)CrossRef T. Inushima, A. Okamoto, K. Uchinokura, E. Matsuura, Observation of a phase transition in SbSBr single crystals grown by vapor transport method. J. Phys. Soc. Japan 48, 2167 (1980)CrossRef
78.
go back to reference E. Furman, O. Brafman, J. Makovsky, Phonons and ferroelectric phase transitions in SbSBr and SbSI and their solid solutions. Phys. Rev. B 8, 2341 (1973)CrossRef E. Furman, O. Brafman, J. Makovsky, Phonons and ferroelectric phase transitions in SbSBr and SbSI and their solid solutions. Phys. Rev. B 8, 2341 (1973)CrossRef
79.
go back to reference R. Nitsche, H. Roetschi, P. Wild, New ferroelectric V. VI. VII compounds of the SbSI type, Appl. Phys. Lett. 4, 210 (1964) R. Nitsche, H. Roetschi, P. Wild, New ferroelectric V. VI. VII compounds of the SbSI type, Appl. Phys. Lett. 4, 210 (1964)
80.
go back to reference H. Akkus, A. Kazempour, H. Akbarzadeh, A.M. Mamedov, Band structure and optical properties of SbSeI: density-functional calculation. Phys. Status Solidi Basic Res. 244, 3673 (2007)CrossRef H. Akkus, A. Kazempour, H. Akbarzadeh, A.M. Mamedov, Band structure and optical properties of SbSeI: density-functional calculation. Phys. Status Solidi Basic Res. 244, 3673 (2007)CrossRef
81.
go back to reference K. Ishikawa, Y. Shikata, K. Toyoda, Dielectric properties of Sb1−xBixSI crystals. Phys. Status Solidi 25, K187 (1974)CrossRef K. Ishikawa, Y. Shikata, K. Toyoda, Dielectric properties of Sb1−xBixSI crystals. Phys. Status Solidi 25, K187 (1974)CrossRef
82.
go back to reference S. Surthi, S. Kotru, R.K. Pandey, Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition. J. Mater. Sci. Lett. 22, 591 (2003)CrossRef S. Surthi, S. Kotru, R.K. Pandey, Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition. J. Mater. Sci. Lett. 22, 591 (2003)CrossRef
83.
go back to reference K. Imai, S. Kawada, M. Ida, Anomalous pyroelectric properties of SbSi single crystals. J. Phys. Soc. Jpn 21, 1855 (1966)CrossRef K. Imai, S. Kawada, M. Ida, Anomalous pyroelectric properties of SbSi single crystals. J. Phys. Soc. Jpn 21, 1855 (1966)CrossRef
84.
go back to reference W.A. Smith, J.P. Doughertyt, L.E. Cross, Pyroelectricity in SbSI. Ferroelectrics 33, 3 (1981)CrossRef W.A. Smith, J.P. Doughertyt, L.E. Cross, Pyroelectricity in SbSI. Ferroelectrics 33, 3 (1981)CrossRef
85.
go back to reference A. Mansingh, T.S. Rao, I-V and C-V characteristics of ferroelectric SbSI(Film)-Si-metal. Ferroelectrics 50, 263 (1983)CrossRef A. Mansingh, T.S. Rao, I-V and C-V characteristics of ferroelectric SbSI(Film)-Si-metal. Ferroelectrics 50, 263 (1983)CrossRef
86.
go back to reference M. Yoshida, K. Yamanaka, Y. Hamakawa, Semiconducting and dielectric properties of C-Axis oriented Sbsi thin film. Jpn. J. Appl. Phys. 12, 1699 (1973)CrossRef M. Yoshida, K. Yamanaka, Y. Hamakawa, Semiconducting and dielectric properties of C-Axis oriented Sbsi thin film. Jpn. J. Appl. Phys. 12, 1699 (1973)CrossRef
87.
go back to reference E. Fatuzzo, G. Harbeke, W.J. Merz, R. Nitsche, H. Roetschi, W. Ruppel, Ferroelectricity in SbSI. Phys. Rev. 127, 2036 (1962)CrossRef E. Fatuzzo, G. Harbeke, W.J. Merz, R. Nitsche, H. Roetschi, W. Ruppel, Ferroelectricity in SbSI. Phys. Rev. 127, 2036 (1962)CrossRef
88.
go back to reference J. Grigas, A. Kajokas, A. Audzijonis, L. Igas, Peculiarities and properties of SbSI Electroceramics. J. Eur. Ceram. Soc. 21, 1337 (2001)CrossRef J. Grigas, A. Kajokas, A. Audzijonis, L. Igas, Peculiarities and properties of SbSI Electroceramics. J. Eur. Ceram. Soc. 21, 1337 (2001)CrossRef
89.
go back to reference A. Audzijonis, L. Žigas, R. Sereika, R. Žaltauskas, Origin of ferroelectric phase transition in SbSClxI1–x mixed crystals. Int. J. Mod. Phys. B 28, 1450209 (2014)CrossRef A. Audzijonis, L. Žigas, R. Sereika, R. Žaltauskas, Origin of ferroelectric phase transition in SbSClxI1–x mixed crystals. Int. J. Mod. Phys. B 28, 1450209 (2014)CrossRef
90.
go back to reference M. Iqbal Khan, T. Chandra Upadhyay, General Introduction to Ferroelectrics, in Multifunctional Ferroelectric Materials, ed. by D. R. Sahu (IntechOpen, Rijeka, 2021), p. Ch. 2 M. Iqbal Khan, T. Chandra Upadhyay, General Introduction to Ferroelectrics, in Multifunctional Ferroelectric Materials, ed. by D. R. Sahu (IntechOpen, Rijeka, 2021), p. Ch. 2
91.
go back to reference P. Szperlich, Piezoelectric A15B16C17 compounds and their nanocomposites for energy harvesting and sensors: a review. Materials 14, 6973 (2021) P. Szperlich, Piezoelectric A15B16C17 compounds and their nanocomposites for energy harvesting and sensors: a review. Materials 14, 6973 (2021)
92.
go back to reference Y. Purusothaman, N.R. Alluri, A. Chandrasekhar, S.J. Kim, Photoactive piezoelectric energy harvester driven by antimony Sulfoiodide (SbSI): A AVBVICVII Class ferroelectric-semiconductor compound. Nano Energy 50, 256 (2018)CrossRef Y. Purusothaman, N.R. Alluri, A. Chandrasekhar, S.J. Kim, Photoactive piezoelectric energy harvester driven by antimony Sulfoiodide (SbSI): A AVBVICVII Class ferroelectric-semiconductor compound. Nano Energy 50, 256 (2018)CrossRef
93.
go back to reference B. Toroń, K. Mistewicz, M. Jesionek, M. Kozioł, D. Stróż, M. Zubko, Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires. Energy 212, 118717 (2020)CrossRef B. Toroń, K. Mistewicz, M. Jesionek, M. Kozioł, D. Stróż, M. Zubko, Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires. Energy 212, 118717 (2020)CrossRef
94.
go back to reference K. Mistewicz, M. Jesionek, H.J. Kim, S. Hajra, M. Kozioł, Ł Chrobok, X. Wang, Nanogenerator for determination of acoustic power in ultrasonic reactors. Ultrason. Sonochem. 78, 105718 (2021)CrossRef K. Mistewicz, M. Jesionek, H.J. Kim, S. Hajra, M. Kozioł, Ł Chrobok, X. Wang, Nanogenerator for determination of acoustic power in ultrasonic reactors. Ultrason. Sonochem. 78, 105718 (2021)CrossRef
95.
go back to reference K. Mistewicz, Pyroelectric nanogenerator based on an SbSI-TiO2 nanocomposite. Sensors 22, 69 (2022) K. Mistewicz, Pyroelectric nanogenerator based on an SbSI-TiO2 nanocomposite. Sensors 22, 69 (2022)
96.
go back to reference J.Z. Xin, C.G. Fu, W.J. Shi, G.W. Li, G. Auffermann, Y.P. Qi, T.J. Zhu, X.B. Zhao, C. Felser, Synthesis and Thermoelectric properties of rashba semiconductor BiTeBr with intensive texture. Rare Met. 37, 274 (2018)CrossRef J.Z. Xin, C.G. Fu, W.J. Shi, G.W. Li, G. Auffermann, Y.P. Qi, T.J. Zhu, X.B. Zhao, C. Felser, Synthesis and Thermoelectric properties of rashba semiconductor BiTeBr with intensive texture. Rare Met. 37, 274 (2018)CrossRef
97.
go back to reference H. Garot, D’un Produit Résultant de l’action Réciproque Du Sulfure d’antimoine et de l’iode. J. Pharm 10, 511 (1824) H. Garot, D’un Produit Résultant de l’action Réciproque Du Sulfure d’antimoine et de l’iode. J. Pharm 10, 511 (1824)
98.
go back to reference R. Nitsche, W.J. Merz, Photoconduction in ternary V-VI-VII compounds. J. Phys. Chem. Solids 13, 154 (1960)CrossRef R. Nitsche, W.J. Merz, Photoconduction in ternary V-VI-VII compounds. J. Phys. Chem. Solids 13, 154 (1960)CrossRef
99.
go back to reference A. Kikuchi, Y. Oka, E. Sawaguchi, Crystal structure determination of SbSi. J. Phys. Soc. Japan 23, 337 (1967)CrossRef A. Kikuchi, Y. Oka, E. Sawaguchi, Crystal structure determination of SbSi. J. Phys. Soc. Japan 23, 337 (1967)CrossRef
100.
go back to reference S. Ueda, I. Tatsuzaki, Y. Shindo, Change in the dielectric constant of SbSI caused by illumination. Phys. Rev. Lett. 18, 453 (1967)CrossRef S. Ueda, I. Tatsuzaki, Y. Shindo, Change in the dielectric constant of SbSI caused by illumination. Phys. Rev. Lett. 18, 453 (1967)CrossRef
101.
go back to reference D. Berlincourt, H. Jaffe, W.J. Merz, R. Nitsche, Piezoelectric effect in the ferroelectric range in SbSI. Appl. Phys. Lett. 4, 61 (1964)CrossRef D. Berlincourt, H. Jaffe, W.J. Merz, R. Nitsche, Piezoelectric effect in the ferroelectric range in SbSI. Appl. Phys. Lett. 4, 61 (1964)CrossRef
102.
go back to reference K. Hamano, T. Nakamura, Y. Ishibashi, T. Ooyane, Piezoelectric property of SbSI single crystal. J. Phys. Soc. Japan 20, 1886 (1965)CrossRef K. Hamano, T. Nakamura, Y. Ishibashi, T. Ooyane, Piezoelectric property of SbSI single crystal. J. Phys. Soc. Japan 20, 1886 (1965)CrossRef
103.
go back to reference J.F. Li, D. Viehland, A.S. Bhalla, L.E. Cross, Pyro-Optic studies for infrared imaging. J. Appl. Phys. 71, 2106 (1992)CrossRef J.F. Li, D. Viehland, A.S. Bhalla, L.E. Cross, Pyro-Optic studies for infrared imaging. J. Appl. Phys. 71, 2106 (1992)CrossRef
104.
go back to reference S. Surthi, S. Kotru, R.K. Pandey, SbSI films for ferroelectric memory applications. Integr. Ferroelectr. 48, 263 (2002)CrossRef S. Surthi, S. Kotru, R.K. Pandey, SbSI films for ferroelectric memory applications. Integr. Ferroelectr. 48, 263 (2002)CrossRef
105.
go back to reference A. Mansingh, T.S. Rao, Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films. J. Appl. Phys. 58, 3530 (1985)CrossRef A. Mansingh, T.S. Rao, Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films. J. Appl. Phys. 58, 3530 (1985)CrossRef
106.
go back to reference S. Narayanan, R. K. Pandey, Physical vapor deposition of antimony sulpho-iodide (SbSI) thin films and their properties, in IEEE International Symposium on Applications of Ferroelectrics (1994), pp. 309–311 S. Narayanan, R. K. Pandey, Physical vapor deposition of antimony sulpho-iodide (SbSI) thin films and their properties, in IEEE International Symposium on Applications of Ferroelectrics (1994), pp. 309–311
107.
go back to reference C. Wang et al., SbSI nanocrystals: an excellent visible light photocatalyst with efficient generation of singlet oxygen. ACS Sustain. Chem. Eng. 6, 12166 (2018)CrossRef C. Wang et al., SbSI nanocrystals: an excellent visible light photocatalyst with efficient generation of singlet oxygen. ACS Sustain. Chem. Eng. 6, 12166 (2018)CrossRef
108.
go back to reference A.V. Gomonnai, I.M. Voynarovych, A.M. Solomon, Y.M. Azhniuk, A.A. Kikineshi, V.P. Pinzenik, M. Kis-Varga, L. Daroczy, V.V. Lopushansky, X-Ray diffraction and raman scattering in SbSI nanocrystals. Mater. Res. Bull. 38, 1767 (2003)CrossRef A.V. Gomonnai, I.M. Voynarovych, A.M. Solomon, Y.M. Azhniuk, A.A. Kikineshi, V.P. Pinzenik, M. Kis-Varga, L. Daroczy, V.V. Lopushansky, X-Ray diffraction and raman scattering in SbSI nanocrystals. Mater. Res. Bull. 38, 1767 (2003)CrossRef
109.
go back to reference M. Tasviri, Z. Sajadi-Hezave, SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 436, 174 (2017)CrossRef M. Tasviri, Z. Sajadi-Hezave, SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 436, 174 (2017)CrossRef
110.
go back to reference C. Wang, K. Tang, Q. Yang, B. Hai, G. Shen, C. An, W. Yu, Y. Qian, Synthesis of novel SbSI nanorods by a hydrothermal method. Inorg. Chem. Commun. 4, 339 (2001)CrossRef C. Wang, K. Tang, Q. Yang, B. Hai, G. Shen, C. An, W. Yu, Y. Qian, Synthesis of novel SbSI nanorods by a hydrothermal method. Inorg. Chem. Commun. 4, 339 (2001)CrossRef
111.
go back to reference G. Peng, H. Lu, Y. Liu, D. Fan, The construction of a single-crystalline SbSI nanorod array-WO3heterostructure photoanode for high PEC performance. Chem. Commun. 57, 335 (2021)CrossRef G. Peng, H. Lu, Y. Liu, D. Fan, The construction of a single-crystalline SbSI nanorod array-WO3heterostructure photoanode for high PEC performance. Chem. Commun. 57, 335 (2021)CrossRef
112.
go back to reference J. Varghese, C. O’Regan, N. Deepak, R.W. Whatmore, J.D. Holmes, Surface roughness assisted growth of vertically oriented ferroelectric SbSI nanorods. Chem. Mater. 24, 3279 (2012)CrossRef J. Varghese, C. O’Regan, N. Deepak, R.W. Whatmore, J.D. Holmes, Surface roughness assisted growth of vertically oriented ferroelectric SbSI nanorods. Chem. Mater. 24, 3279 (2012)CrossRef
113.
go back to reference C. Wang et al., Nonlinear optical response of SbSI nanorods dominated with direct band gaps. J. Phys. Chem. C 125, 15441 (2021)CrossRef C. Wang et al., Nonlinear optical response of SbSI nanorods dominated with direct band gaps. J. Phys. Chem. C 125, 15441 (2021)CrossRef
114.
go back to reference A.K. Pathak, M.D. Prasad, S.K. Batabyal, One-dimensional SbSI crystals from Sb, S, and I mixtures in ethylene glycol for solar energy harvesting. Appl. Phys. A Mater. Sci. Process. 125, 213 (2019)CrossRef A.K. Pathak, M.D. Prasad, S.K. Batabyal, One-dimensional SbSI crystals from Sb, S, and I mixtures in ethylene glycol for solar energy harvesting. Appl. Phys. A Mater. Sci. Process. 125, 213 (2019)CrossRef
115.
go back to reference S. Manoharan, D. Kesavan, P. Pazhamalai, K. Krishnamoorthy, S.J. Kim, Ultrasound irradiation mediated preparation of antimony sulfoiodide (SbSI) nanorods as a high-capacity electrode for electrochemical supercapacitors. Mater. Chem. Front. 5, 2303 (2021)CrossRef S. Manoharan, D. Kesavan, P. Pazhamalai, K. Krishnamoorthy, S.J. Kim, Ultrasound irradiation mediated preparation of antimony sulfoiodide (SbSI) nanorods as a high-capacity electrode for electrochemical supercapacitors. Mater. Chem. Front. 5, 2303 (2021)CrossRef
116.
go back to reference O. Gladkovskaya, I. Rybina, Y.K. Gun’Ko, A. Erxleben, G.M.O’Connor, Y. Rochev, Water-based ultrasonic synthesis of SbSI nanoneedles. Mater. Lett. 160, 113 (2015) O. Gladkovskaya, I. Rybina, Y.K. Gun’Ko, A. Erxleben, G.M.O’Connor, Y. Rochev, Water-based ultrasonic synthesis of SbSI nanoneedles. Mater. Lett. 160, 113 (2015)
117.
118.
go back to reference K.M. Rabe, M. Dawber, C. Lichtensteiger, C.H. Ahn, J.M. Triscone, Modern physics of ferroelectrics: essential background, in topics in applied physics, vol. 105 (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2007), pp.1–30CrossRef K.M. Rabe, M. Dawber, C. Lichtensteiger, C.H. Ahn, J.M. Triscone, Modern physics of ferroelectrics: essential background, in topics in applied physics, vol. 105 (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2007), pp.1–30CrossRef
119.
go back to reference K. Han, Q. Wang, Polymers for thin film capacitors: energy storage—Li conducting polymers, in Polymer Science: A Comprehensive Reference, vol. 10, ed. by K. Matyjaszewski, M. Möller (Elsevier, Amsterdam, 2012), pp.811–830CrossRef K. Han, Q. Wang, Polymers for thin film capacitors: energy storage—Li conducting polymers, in Polymer Science: A Comprehensive Reference, vol. 10, ed. by K. Matyjaszewski, M. Möller (Elsevier, Amsterdam, 2012), pp.811–830CrossRef
120.
go back to reference X. Chai, J. Jiang, Q. Zhang, X. Hou, F. Meng, J. Wang, L. Gu, D.W. Zhang, A.Q. Jiang, Nonvolatile Ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020)CrossRef X. Chai, J. Jiang, Q. Zhang, X. Hou, F. Meng, J. Wang, L. Gu, D.W. Zhang, A.Q. Jiang, Nonvolatile Ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020)CrossRef
121.
go back to reference P. Sharma, Q. Zhang, D. Sando, C.H. Lei, Y. Liu, J. Li, V. Nagarajan, J. Seidel, Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017)CrossRef P. Sharma, Q. Zhang, D. Sando, C.H. Lei, Y. Liu, J. Li, V. Nagarajan, J. Seidel, Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017)CrossRef
122.
go back to reference J. Varghese, R.W. Whatmore, J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. J. Mater. Chem. C 1, 2618 (2013)CrossRef J. Varghese, R.W. Whatmore, J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. J. Mater. Chem. C 1, 2618 (2013)CrossRef
123.
go back to reference L. Liang, X. Kang, Y. Sang, H. Liu, One-dimensional ferroelectric nanostructures: synthesis, properties, and applications. Adv. Sci. 3, 1500358 (2016)CrossRef L. Liang, X. Kang, Y. Sang, H. Liu, One-dimensional ferroelectric nanostructures: synthesis, properties, and applications. Adv. Sci. 3, 1500358 (2016)CrossRef
124.
go back to reference A. Rüdiger, R. Waser, Size effects in nanoscale ferroelectrics. J. Alloys Compd. 449, 2 (2008)CrossRef A. Rüdiger, R. Waser, Size effects in nanoscale ferroelectrics. J. Alloys Compd. 449, 2 (2008)CrossRef
125.
go back to reference O.G. Vendik, S.P. Zubko, L.T. Ter-Martirosayn, Experimental evidence of the size effect in thin ferroelectric films. Appl. Phys. Lett. 73, 37 (1998)CrossRef O.G. Vendik, S.P. Zubko, L.T. Ter-Martirosayn, Experimental evidence of the size effect in thin ferroelectric films. Appl. Phys. Lett. 73, 37 (1998)CrossRef
126.
go back to reference Y. Park, K.M. Knowles, K. Cho, Particle-size effect on the ferroelectric phase transition in PbSc1/2Ta1/2O3 ceramics. J. Appl. Phys. 83, 5702 (1998)CrossRef Y. Park, K.M. Knowles, K. Cho, Particle-size effect on the ferroelectric phase transition in PbSc1/2Ta1/2O3 ceramics. J. Appl. Phys. 83, 5702 (1998)CrossRef
127.
go back to reference K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B 37, 5852 (1988)CrossRef K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B 37, 5852 (1988)CrossRef
128.
go back to reference T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, J. Wang, Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles. J. Appl. Phys. 94, 618 (2003)CrossRef T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, J. Wang, Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles. J. Appl. Phys. 94, 618 (2003)CrossRef
129.
go back to reference W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50, 698 (1994)CrossRef W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50, 698 (1994)CrossRef
130.
go back to reference Y.A. Barnakov, I.U. Idehenre, S.A. Basun, T.A. Tyson, D.R. Evans, Uncovering the mystery of ferroelectricity in zero dimensional nanoparticles. Nanoscale Adv. 1, 664 (2019)CrossRef Y.A. Barnakov, I.U. Idehenre, S.A. Basun, T.A. Tyson, D.R. Evans, Uncovering the mystery of ferroelectricity in zero dimensional nanoparticles. Nanoscale Adv. 1, 664 (2019)CrossRef
131.
go back to reference M.K. Teng, M. Massot, M. Balkanski, S. Ziolkiewicz, Atomic substitution and ferroelectric phase transition in BixSb1-XSI. Phys. Rev. B 17, 3695 (1978)CrossRef M.K. Teng, M. Massot, M. Balkanski, S. Ziolkiewicz, Atomic substitution and ferroelectric phase transition in BixSb1-XSI. Phys. Rev. B 17, 3695 (1978)CrossRef
132.
go back to reference P.S. Peercy, Raman scattering near the tricritical point in SbSI. Phys. Rev. Lett. 35, 1581 (1975)CrossRef P.S. Peercy, Raman scattering near the tricritical point in SbSI. Phys. Rev. Lett. 35, 1581 (1975)CrossRef
133.
go back to reference B. Garbarz-Glos, Dielectric properties of SbSI-modifed in phase transition region. Ferroelectrics 292, 137 (2003)CrossRef B. Garbarz-Glos, Dielectric properties of SbSI-modifed in phase transition region. Ferroelectrics 292, 137 (2003)CrossRef
134.
go back to reference R. Sereika, R. Zaltauskas, V. Lapeika, S. Stanionytė, R. Juškenas, Structural changes in chlorine-substituted SbSI. J. Appl. Phys. 126, 114101 (2019)CrossRef R. Sereika, R. Zaltauskas, V. Lapeika, S. Stanionytė, R. Juškenas, Structural changes in chlorine-substituted SbSI. J. Appl. Phys. 126, 114101 (2019)CrossRef
135.
go back to reference A.R. Damodaran, J.C. Agar, S. Pandya, Z. Chen, L. Dedon, R. Xu, B. Apgar, S. Saremi, L.W. Martin, New modalities of strain-control of ferroelectric thin films. J. Phys. Condens. Matter 28, 263001 (2016)CrossRef A.R. Damodaran, J.C. Agar, S. Pandya, Z. Chen, L. Dedon, R. Xu, B. Apgar, S. Saremi, L.W. Martin, New modalities of strain-control of ferroelectric thin films. J. Phys. Condens. Matter 28, 263001 (2016)CrossRef
136.
go back to reference Y. Wang, Y. Hu, Z. Chen, Y. Guo, D. Wang, E.A. Wertz, J. Shi, Effect of strain on the curie temperature and band structure of low-dimensional SbSI. Appl. Phys. Lett. 112, 183104 (2018)CrossRef Y. Wang, Y. Hu, Z. Chen, Y. Guo, D. Wang, E.A. Wertz, J. Shi, Effect of strain on the curie temperature and band structure of low-dimensional SbSI. Appl. Phys. Lett. 112, 183104 (2018)CrossRef
Metadata
Title
Introduction
Author
Krystian Mistewicz
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-25136-8_1

Premium Partners