Skip to main content
Top
Published in:
Cover of the book

2023 | OriginalPaper | Chapter

1. Introduction

Author : Alaa M. Rashad

Published in: Silica Fume in Geopolymers

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silica fume (SF) is a by-product of ferrosilicon alloys or the silicon metal industry. Due to its high fineness and amorphous silica, it is widely used in Portland cement (PC) systems as a cementitious material to enhance the durability and mechanical properties. In recent developments, numerous studies have been implemented to obtain superior properties of various types of geopolymer by incorporating SF. On the whole, SF can be recycled into geopolymers in three various forms: as an additive to the precursor or as a part of a precursor, as a part of an activator or as a foaming agent. Recycling SF into various geopolymer types may have a positive effect or an adverse effect. This mainly depends on precursor/SF fineness, activator concentration and type, activator/binder ratio, testing age, curing condition, SF amount and Si/Al ratio. The target of this document is to review, summarize and analyse the past studies focused on the effect of SF, in its three various forms, on the properties of geopolymers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.M. Rashad, A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—a guide for civil engineer. Constr. Build. Mater. 47, 29–55 (2013)CrossRef A.M. Rashad, A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—a guide for civil engineer. Constr. Build. Mater. 47, 29–55 (2013)CrossRef
2.
go back to reference A.M. Rashad, A brief on high-volume class F fly ash as cement replacement—a guide for civil engineer. Int. J. Sustain. Built Environ. 4(2), 278–306 (2015)CrossRef A.M. Rashad, A brief on high-volume class F fly ash as cement replacement—a guide for civil engineer. Int. J. Sustain. Built Environ. 4(2), 278–306 (2015)CrossRef
3.
go back to reference A.M. Rashad, An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr. Build. Mater. 187, 89–117 (2018)CrossRef A.M. Rashad, An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr. Build. Mater. 187, 89–117 (2018)CrossRef
4.
go back to reference A.M. Rashad, Metakaolin as cementitious material: history, scours, production and composition—a comprehensive overview. Constr. Build. Mater. 41, 303–318 (2013)CrossRef A.M. Rashad, Metakaolin as cementitious material: history, scours, production and composition—a comprehensive overview. Constr. Build. Mater. 41, 303–318 (2013)CrossRef
5.
go back to reference A.M. Rashad, Additives to increase carbonation resistance of slag activated with sodium sulfate. ACI Mater. J. 119(2) (2022) A.M. Rashad, Additives to increase carbonation resistance of slag activated with sodium sulfate. ACI Mater. J. 119(2) (2022)
6.
go back to reference B.C. McLellan, R.P. Williams, J. Lay, A. Van Riessen, G.D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 19(9–10), 1080–1090 (2011)CrossRef B.C. McLellan, R.P. Williams, J. Lay, A. Van Riessen, G.D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 19(9–10), 1080–1090 (2011)CrossRef
7.
go back to reference A.M. Rashad, Effect of nanoparticles on the properties of geopolymer materials. Mag. Concr. Res. 71(24), 1283–1301 (2019)CrossRef A.M. Rashad, Effect of nanoparticles on the properties of geopolymer materials. Mag. Concr. Res. 71(24), 1283–1301 (2019)CrossRef
8.
go back to reference A.M. Rashad, The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Mater. Sci. Technol. 35(2), 127–146 (2019)CrossRef A.M. Rashad, The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Mater. Sci. Technol. 35(2), 127–146 (2019)CrossRef
9.
go back to reference A.M. Rashad, Effect of steel fibers on geopolymer properties—the best synopsis for civil engineer. Constr. Build. Mater. 246, 118534 (2020)CrossRef A.M. Rashad, Effect of steel fibers on geopolymer properties—the best synopsis for civil engineer. Constr. Build. Mater. 246, 118534 (2020)CrossRef
10.
go back to reference A.M. Rashad, Effect of limestone powder on the properties of alkali-activated materials—a critical overview. Constr. Build. Mater. 356, 129188 (2022)CrossRef A.M. Rashad, Effect of limestone powder on the properties of alkali-activated materials—a critical overview. Constr. Build. Mater. 356, 129188 (2022)CrossRef
11.
go back to reference A. Rashad, Y. Bai, P. Basheer, N. Milestone, N. Collier, Hydration and properties of sodium sulfate activated slag. Cem. Concr. Compos. 37, 20–29 (2013)CrossRef A. Rashad, Y. Bai, P. Basheer, N. Milestone, N. Collier, Hydration and properties of sodium sulfate activated slag. Cem. Concr. Compos. 37, 20–29 (2013)CrossRef
12.
go back to reference A.M. Rashad, Y. Bai, Effect of slag fineness and Na2SO4 concentration on carbonation of Na2SO4-activated slag. ACI Mater. J. 120(1) (2023) A.M. Rashad, Y. Bai, Effect of slag fineness and Na2SO4 concentration on carbonation of Na2SO4-activated slag. ACI Mater. J. 120(1) (2023)
13.
go back to reference C. Shi, A. Fernández-Jiménez, Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 137(3), 1656–1663 (2006)CrossRef C. Shi, A. Fernández-Jiménez, Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 137(3), 1656–1663 (2006)CrossRef
14.
go back to reference R. Vinai, M. Soutsos, Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem. Concr. Res. 116, 45–56 (2019)CrossRef R. Vinai, M. Soutsos, Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders. Cem. Concr. Res. 116, 45–56 (2019)CrossRef
15.
go back to reference A.M. Rashad, G.M. Essa, W. Morsi, Traditional cementitious materials for thermal insulation. Arab. J. Sci. Eng., 1–13 (2022) A.M. Rashad, G.M. Essa, W. Morsi, Traditional cementitious materials for thermal insulation. Arab. J. Sci. Eng., 1–13 (2022)
16.
go back to reference Y. Cheng, P. Cong, Q. Zhao, H. Hao, L. Mei, A. Zhang, Z. Han, M. Hu, Study on the effectiveness of silica fume-derived activator as a substitute for water glass in fly ash-based geopolymer. J. Build. Eng. 51, 104228 (2022)CrossRef Y. Cheng, P. Cong, Q. Zhao, H. Hao, L. Mei, A. Zhang, Z. Han, M. Hu, Study on the effectiveness of silica fume-derived activator as a substitute for water glass in fly ash-based geopolymer. J. Build. Eng. 51, 104228 (2022)CrossRef
17.
go back to reference A.M. Rashad, Y.A. Mosleh, Effect of tidal zone and seawater attack on alkali-activated blended slag pastes. ACI Mater. J. 119(2) (2022) A.M. Rashad, Y.A. Mosleh, Effect of tidal zone and seawater attack on alkali-activated blended slag pastes. ACI Mater. J. 119(2) (2022)
18.
go back to reference Y. Luna-Galiano, C. Leiva, C. Arenas, C. Fernández-Pereira, Fly ash based geopolymeric foams using silica fume as pore generation agent. Phys. Mech. Acoust. Prop. J. Non-Crystal. Solids 500, 196–204 (2018) Y. Luna-Galiano, C. Leiva, C. Arenas, C. Fernández-Pereira, Fly ash based geopolymeric foams using silica fume as pore generation agent. Phys. Mech. Acoust. Prop. J. Non-Crystal. Solids 500, 196–204 (2018)
19.
go back to reference F. Matalkah, A. Ababneh, R. Aqel, Efflorescence control in calcined kaolin-based geopolymer using silica fume and OPC. J. Mater. Civ. Eng. 33(6), 04021119 (2021)CrossRef F. Matalkah, A. Ababneh, R. Aqel, Efflorescence control in calcined kaolin-based geopolymer using silica fume and OPC. J. Mater. Civ. Eng. 33(6), 04021119 (2021)CrossRef
20.
go back to reference N. Billong, J. Oti, J. Kinuthia, Using silica fume based activator in sustainable geopolymer binder for building application. Constr. Build. Mater. 275, 122177 (2021)CrossRef N. Billong, J. Oti, J. Kinuthia, Using silica fume based activator in sustainable geopolymer binder for building application. Constr. Build. Mater. 275, 122177 (2021)CrossRef
21.
go back to reference M. Uysal, M.M. Al-mashhadani, Y. Aygörmez, O. Canpolat, Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Constr. Build. Mater. 176, 271–282 (2018)CrossRef M. Uysal, M.M. Al-mashhadani, Y. Aygörmez, O. Canpolat, Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Constr. Build. Mater. 176, 271–282 (2018)CrossRef
22.
go back to reference Y. Jaradat, F. Matalkah, Effects of micro silica on the compressive strength and absorption characteristics of olive biomass ash-based geopolymer. Case Stud. Constr. Mater. 18, e01870 (2023) Y. Jaradat, F. Matalkah, Effects of micro silica on the compressive strength and absorption characteristics of olive biomass ash-based geopolymer. Case Stud. Constr. Mater. 18, e01870 (2023)
23.
go back to reference A.M. Rashad, Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Environ. Sci. Pollut. Res. 29(3), 3784–3793 (2022)CrossRef A.M. Rashad, Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Environ. Sci. Pollut. Res. 29(3), 3784–3793 (2022)CrossRef
24.
go back to reference R. Bajpai, K. Choudhary, A. Srivastava, K.S. Sangwan, M. Singh, Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 254, 120147 (2020)CrossRef R. Bajpai, K. Choudhary, A. Srivastava, K.S. Sangwan, M. Singh, Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 254, 120147 (2020)CrossRef
25.
go back to reference C.B. Cheah, L.E. Tan, M. Ramli, The engineering properties and microstructure of sodium carbonate activated fly ash/slag blended mortars with silica fume. Compos. B Eng. 160, 558–572 (2019)CrossRef C.B. Cheah, L.E. Tan, M. Ramli, The engineering properties and microstructure of sodium carbonate activated fly ash/slag blended mortars with silica fume. Compos. B Eng. 160, 558–572 (2019)CrossRef
26.
go back to reference A.M. Rashad, M.H. Khalil, A preliminary study of alkali-activated slag blended with silica fume under the effect of thermal loads and thermal shock cycles. Constr. Build. Mater. 40, 522–532 (2013)CrossRef A.M. Rashad, M.H. Khalil, A preliminary study of alkali-activated slag blended with silica fume under the effect of thermal loads and thermal shock cycles. Constr. Build. Mater. 40, 522–532 (2013)CrossRef
27.
go back to reference R.P. Singh, K.R. Vanapalli, V.R.S. Cheela, S.R. Peddireddy, H.B. Sharma, B. Mohanty, Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts. Constr. Build. Mater. 378, 131168 (2023)CrossRef R.P. Singh, K.R. Vanapalli, V.R.S. Cheela, S.R. Peddireddy, H.B. Sharma, B. Mohanty, Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts. Constr. Build. Mater. 378, 131168 (2023)CrossRef
28.
go back to reference P. Kathirvel, G. Murali, Effect of using available GGBFS, silica fume, quartz powder and steel fibres on the fracture behavior of sustainable reactive powder concrete. Constr. Build. Mater. 375, 130997 (2023)CrossRef P. Kathirvel, G. Murali, Effect of using available GGBFS, silica fume, quartz powder and steel fibres on the fracture behavior of sustainable reactive powder concrete. Constr. Build. Mater. 375, 130997 (2023)CrossRef
29.
go back to reference R. Siddique, Utilization of silica fume in concrete: review of hardened properties. Resour. Conserv. Recycl. 55(11), 923–932 (2011)CrossRef R. Siddique, Utilization of silica fume in concrete: review of hardened properties. Resour. Conserv. Recycl. 55(11), 923–932 (2011)CrossRef
30.
go back to reference M.I. Khan, R. Siddique, Utilization of silica fume in concrete: review of durability properties. Resour. Conserv. Recycl. 57, 30–35 (2011)CrossRef M.I. Khan, R. Siddique, Utilization of silica fume in concrete: review of durability properties. Resour. Conserv. Recycl. 57, 30–35 (2011)CrossRef
31.
go back to reference A.M. Rashad, H.E.-D.H. Seleem, A.F. Shaheen, Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. Int. J. Concr. Struct. Mater. 8, 69–81 (2014)CrossRef A.M. Rashad, H.E.-D.H. Seleem, A.F. Shaheen, Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. Int. J. Concr. Struct. Mater. 8, 69–81 (2014)CrossRef
32.
go back to reference A.M. Rashad, Potential use of silica fume coupled with slag in HVFA concrete exposed to elevated temperatures. J. Mater. Civ. Eng. 27(11), 04015019 (2015)CrossRef A.M. Rashad, Potential use of silica fume coupled with slag in HVFA concrete exposed to elevated temperatures. J. Mater. Civ. Eng. 27(11), 04015019 (2015)CrossRef
33.
go back to reference A.M. Rashad, An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads. J. Clean. Prod. 87, 735–744 (2015)CrossRef A.M. Rashad, An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads. J. Clean. Prod. 87, 735–744 (2015)CrossRef
34.
go back to reference J.R. Liew, M.-X. Xiong, B.-L. Lai, Design of Steel-Concrete Composite Structures Using High-Strength Materials (Woodhead Publishing, 2021) J.R. Liew, M.-X. Xiong, B.-L. Lai, Design of Steel-Concrete Composite Structures Using High-Strength Materials (Woodhead Publishing, 2021)
35.
go back to reference X. Dai, S. Aydın, M.Y. Yardımcı, K. Lesage, G. De Schutter, Rheology and microstructure of alkali-activated slag cements produced with silica fume activator. Cem. Concr. Compos. 125, 104303 (2022)CrossRef X. Dai, S. Aydın, M.Y. Yardımcı, K. Lesage, G. De Schutter, Rheology and microstructure of alkali-activated slag cements produced with silica fume activator. Cem. Concr. Compos. 125, 104303 (2022)CrossRef
36.
go back to reference A. Wetzel, B. Middendorf, Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 100, 53–59 (2019)CrossRef A. Wetzel, B. Middendorf, Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 100, 53–59 (2019)CrossRef
37.
go back to reference C.S. Thunuguntla, T.G. Rao, Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Constr. Build. Mater. 193, 173–188 (2018)CrossRef C.S. Thunuguntla, T.G. Rao, Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Constr. Build. Mater. 193, 173–188 (2018)CrossRef
38.
go back to reference J.I. Escalante-Garcia, V.M. Palacios-Villanueva, A.V. Gorokhovsky, G. Mendoza-Suárez, A.F. Fuentes, Characteristics of a NaOH-activated blast furnace slag blended with a fine particle silica waste. J. Am. Ceram. Soc. 85(7), 1788–1792 (2002)CrossRef J.I. Escalante-Garcia, V.M. Palacios-Villanueva, A.V. Gorokhovsky, G. Mendoza-Suárez, A.F. Fuentes, Characteristics of a NaOH-activated blast furnace slag blended with a fine particle silica waste. J. Am. Ceram. Soc. 85(7), 1788–1792 (2002)CrossRef
39.
go back to reference Y. Zhu, M.A. Longhi, A. Wang, D. Hou, H. Wang, Z. Zhang, Alkali leaching features of 3-year-old alkali activated fly ash-slag-silica fume: for a better understanding of stability. Compos. B Eng. 230, 109469 (2022)CrossRef Y. Zhu, M.A. Longhi, A. Wang, D. Hou, H. Wang, Z. Zhang, Alkali leaching features of 3-year-old alkali activated fly ash-slag-silica fume: for a better understanding of stability. Compos. B Eng. 230, 109469 (2022)CrossRef
40.
go back to reference Y. Liu, C. Shi, Z. Zhang, N. Li, D. Shi, Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. Cem. Concr. Compos. 12, 103665 (2020) Y. Liu, C. Shi, Z. Zhang, N. Li, D. Shi, Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume. Cem. Concr. Compos. 12, 103665 (2020)
41.
go back to reference A. Saludung, T. Azeyanagi, Y. Ogawa, K. Kawai, Effect of silica fume on efflorescence formation and alkali leaching of alkali-activated slag. J. Clean. Prod. 315, 128210 (2021)CrossRef A. Saludung, T. Azeyanagi, Y. Ogawa, K. Kawai, Effect of silica fume on efflorescence formation and alkali leaching of alkali-activated slag. J. Clean. Prod. 315, 128210 (2021)CrossRef
42.
go back to reference V.R. Živica, Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 28(1), 21–25 (2006) V.R. Živica, Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 28(1), 21–25 (2006)
43.
go back to reference Z. Zhang, L. Li, X. Ma, H. Wang, Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr. Build. Mater. 113, 237–245 (2016)CrossRef Z. Zhang, L. Li, X. Ma, H. Wang, Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr. Build. Mater. 113, 237–245 (2016)CrossRef
44.
go back to reference P. Cong, L. Mei, Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr. Build. Mater. 275, 122171 (2021)CrossRef P. Cong, L. Mei, Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr. Build. Mater. 275, 122171 (2021)CrossRef
45.
go back to reference H.E. Elyamany, M. Abd Elmoaty, A.M. Elshaboury, Setting time and 7-day strength of geopolymer mortar with various binders. Constr. Build. Mater. 187, 974–983 (2018) H.E. Elyamany, M. Abd Elmoaty, A.M. Elshaboury, Setting time and 7-day strength of geopolymer mortar with various binders. Constr. Build. Mater. 187, 974–983 (2018)
46.
go back to reference H. Alanazi, J. Hu, Y.-R. Kim, Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Constr. Build. Mater. 197, 747–756 (2019)CrossRef H. Alanazi, J. Hu, Y.-R. Kim, Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Constr. Build. Mater. 197, 747–756 (2019)CrossRef
47.
go back to reference P. Duan, C. Yan, W. Zhou, Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem. Concr. Compos. 78, 108–119 (2017)CrossRef P. Duan, C. Yan, W. Zhou, Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem. Concr. Compos. 78, 108–119 (2017)CrossRef
48.
go back to reference F. Okoye, J. Durgaprasad, N. Singh, Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram. Int. 42(2), 3000–3006 (2016)CrossRef F. Okoye, J. Durgaprasad, N. Singh, Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram. Int. 42(2), 3000–3006 (2016)CrossRef
49.
go back to reference F. Wang, X. Sun, Z. Tao, Z. Pan, Effect of silica fume on compressive strength of ultra-high-performance concrete made of calcium aluminate cement/fly ash based geopolymer. J. Build. Eng., 105398 (2022) F. Wang, X. Sun, Z. Tao, Z. Pan, Effect of silica fume on compressive strength of ultra-high-performance concrete made of calcium aluminate cement/fly ash based geopolymer. J. Build. Eng., 105398 (2022)
50.
go back to reference H.A. Alcamand, P.H. Borges, F.A. Silva, A.C.C. Trindade, The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars. Ceram. Int. 44(5), 5037–5044 (2018)CrossRef H.A. Alcamand, P.H. Borges, F.A. Silva, A.C.C. Trindade, The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars. Ceram. Int. 44(5), 5037–5044 (2018)CrossRef
51.
go back to reference U. Javed, F.U.A. Shaikh, P.K. Sarker, Microstructural investigation of lithium slag geopolymer pastes containing silica fume and fly ash as additive chemical modifiers. Cem. Concr. Compos. 134, 104736 (2022)CrossRef U. Javed, F.U.A. Shaikh, P.K. Sarker, Microstructural investigation of lithium slag geopolymer pastes containing silica fume and fly ash as additive chemical modifiers. Cem. Concr. Compos. 134, 104736 (2022)CrossRef
52.
go back to reference H.E.D.H. Seleem, A.M. Rashad, T. Elsokary, Effect of elevated temperature on physico-mechanical properties of blended cement concrete. Constr. Build. Mater. 25(2), 1009–1017 (2011)CrossRef H.E.D.H. Seleem, A.M. Rashad, T. Elsokary, Effect of elevated temperature on physico-mechanical properties of blended cement concrete. Constr. Build. Mater. 25(2), 1009–1017 (2011)CrossRef
53.
go back to reference H.E.-D.H. Seleem, A.M. Rashad, B.A. El-Sabbagh, Durability and strength evaluation of high-performance concrete in marine structures. Constr. Build. Mater. 24(6), 878–884 (2010)CrossRef H.E.-D.H. Seleem, A.M. Rashad, B.A. El-Sabbagh, Durability and strength evaluation of high-performance concrete in marine structures. Constr. Build. Mater. 24(6), 878–884 (2010)CrossRef
54.
go back to reference M. Morsy, S. Shebl, A. Rashad, Effect of fire on microstructure and mechanical properties of blended cement pastes containing metakaolin and silica fume. Asian J. Civ. Eng. Build. Hous. 9, 93–105 (2008) M. Morsy, S. Shebl, A. Rashad, Effect of fire on microstructure and mechanical properties of blended cement pastes containing metakaolin and silica fume. Asian J. Civ. Eng. Build. Hous. 9, 93–105 (2008)
55.
go back to reference M. Morsy, A. Rashad, S. Shebl, Effect of elevated temperature on compressive strength of blended cement mortar. Build. Res. J. 56(2–3), 173–185 (2008) M. Morsy, A. Rashad, S. Shebl, Effect of elevated temperature on compressive strength of blended cement mortar. Build. Res. J. 56(2–3), 173–185 (2008)
56.
go back to reference X. Liu, C. Hu, L. Chu, Microstructure, compressive strength and sound insulation property of fly ash-based geopolymeric foams with silica fume as foaming agent. Materials 13(14), 3215 (2020)CrossRef X. Liu, C. Hu, L. Chu, Microstructure, compressive strength and sound insulation property of fly ash-based geopolymeric foams with silica fume as foaming agent. Materials 13(14), 3215 (2020)CrossRef
Metadata
Title
Introduction
Author
Alaa M. Rashad
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-33219-7_1

Premium Partners